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Abstract. The NARMAX OLS-ERR methodology is ap-
plied to identify a mathematical model for the dynamics of
the Dst index. The NARMAX OLS-ERR algorithm, which
is widely used in the field of system identification, is able
to identify a mathematical model for a wide class of non-
linear systems using input and output data. Solar wind-
magnetosphere coupling functions, derived from analytical
or data based methods, are employed as the inputs to such
models and the outputs are geomagnetic indices. The newly
deduced coupling function,p1/2V 4/3BT sin6(θ/2), has been
implemented as an input to model the Dst dynamics. It was
shown that the identified model has a very good forecasting
ability, especially with the geomagnetic storms.

Keywords. Magnetospheric physics (Solar wind-
magnetosphere interactions)

1 Introduction

The Earth’s magnetosphere is a complex nonlinear system
that responds to solar wind. This complexity means that un-
til now the derivation of a mathematical model from first
principles have been unsuccessful. However, the magneto-
sphere is a low-dimensional system (Sharma, 1995; Valdivia
et al., 1996; Klimas et al., 1996) and therefore the robust
machinery of a low-dimensional system identification tech-
nique can be applied in the quest for a mathematical model
of the magnetospheric dynamics. The obvious outputs for
such a system are geomagnetic indices such as the Dst. It
appears that only a small number of variables, or solar wind-
magnetosphere coupling functions, control the majority of
the dynamics. Previous studies have been devoted to ob-
taining these coupling functions. Initially these were simple
solar wind parameters, such as the velocityV , the dynamic
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pressurep (Chapman and Ferraro, 1931) and the north-south
IMF Bz (Dungey, 1961). However, these parameters proved
to have little influence over the dynamics of the magneto-
sphere. Since the end of the 1960s, coupling functions re-
lated to the reconnection process have dominated the search,
these combinations of the solar wind parameters have proved
to be more reliable. Two well known coupling functions are
the half-wave rectifier,V Bs, by Burton et al.(1975), where
Bs is the southward component of the IMF, and theε param-
eter, ε = V B2sin4(θ/2), by Perreault and Akasofu(1978),
where θ = tan−1(By/Bz) and is the IMF clock angle and
there are many more.

These coupling functions can then be employed as in-
puts for modeling the magnetosphere and using the geo-
magnetic indices for the output.Klimas et al. (1996) re-
viewed different approaches to modelling the solar wind-
magnetospher coupling. Two nonlinear data analysis pre-
diction techniques were discussed, neural networks stud-
ied by Hernandez et al.(1993) and local linear prediction
techniques studied byPrichard and Price(1992), Price and
Prichard(1993), Sharma et al.(1993), Sharma(1995), and
Valdivia et al. (1996). A conclusion from these studies is
that the neural networks were promising for prediction but
because the neural net is not physically interpretable it could
not reveal the magnetospheres dynamics. The local linear
predictor discussed, employed a linear prediction filter (LPF)
to approximate the nonlinear system for a much smaller
range. The variation of the LPF with the average interval ac-
tivity indicates the nonlinear coupling. They conveyed that
this method gives a high degree of accuracy, however, the
problem with this method is that the LPF coefficients only
gave a local fit to the coupling and do not provide a global
model. For the physical interpretation of this model it would
be necessary to reconstruct the coupling from all of the local
approximations.

Temerin and Li(2006) found a model to predict Dst us-
ing solar wind parameters based on the data from 1995 to
2002. Solar wind and Dst index data were analyzed for the
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8 year period, the terms in the model were found by mini-
mizing the root mean square (RMS) error between the pre-
dicted and the measured Dst. They employed a trial and error
procedure on many different terms and chose the terms with
the lowest RMS error as the best term. They found that the
Dst index depended on a driver term which included approx-
imately the square root of the density, the velocity squared or
a slightly higher power, linear tangential magnetic field and
sin(θ/2) to the power of 6. The coupling function for the
model was thereforeITL = p1/2V BT sin6(θ/2). The predic-
tion efficiency and linear correlation coefficient were applied
to validate their model. This model proved to have very good
forecasting capabilities for the parameters used in the study.
However, the trial and error methodology can never guaran-
tee that it is the optimal model and is related to the physics.

The approach ofBoaghe et al.(2001) was to utilize the ro-
bust Nonlinear Autoregressive Moving Average Model With
Exogenous Inputs (NARMAX) to identify a model of the Dst
index usingIB as an input. The model was then applied
to predict the Dst and to compute generalized frequency re-
sponse function (GFRF) by directly mapping the identified
NARMAX model into the frequency domain. The valida-
tion produced both good long term and short term predic-
tions of the Dst index. The coherency between the measured
and the predicted Dst index was also analyzed to validate the
model. This indicated the model performed well in both the
frequency domain and the time domain.

The ability to yield a mathematical expression makes the
NARMAX approach highly useful for analyzing the relative
contribution of the different input functions to the magneto-
spheric dynamics, as indicated in the paper byBoaghe et al.
(2001), unlike neural networks or LPF. TheBoaghe et al.
(2001) approach was generalized for multi input single out-
put (MISO) models byZhu et al.(2007) and continuous time
models byZhu et al.(2006).

In this study the NARMAX OLS-ERR algorithm was
employed to identify a single input single output model
(SISO) for forecasting the Dst index using a solar wind-
magnetosphere coupling function deduced byBoynton et al.
(2011). This was done by utilizing the model structure de-
tection stage of the NARMAX OLS-ERR algorithm, where
the coupling functions were assessed according to their er-
ror reduction ratio (ERR). The best coupling function found
in this study wasp1/2V αBT sin6(θ/2) whereα was incon-
clusive but should be in the range 4/3–2. The value ofα

used in this study was 4/3, making the coupling function
C = p1/2V 4/3BTsin6(θ/2). Balikhin et al. (2010) studied
the approach ofBoynton et al.(2011) and illustrated how
this data based approach can assist in the analytical deriva-
tion of the coupling functions from first principles.Balikhin
et al. (2010) showed analytically that the factor sin6(θ/2)

should appear in the previous theoretical model byKan and
Lee(1979).

The main aim of this study is to identify a NARMAX SISO
model that can forecast the major magnetic disturbances of

the Dst accurately, that is a model that can forecast the time,
magnitude and duration of a large magnetic storm.

2 NARMAX system identification

A NARMAX model, introduced byLeontaritis and Billings
(1985a,b), can describe a wide class of linear and nonlinear
systems. The SISO NARMAX model can be represented by

y(t) = F [y(t −1),...,y(t −ny),

u(t −1),...,u(t −nu),

e(t −1),...,e(t −ne)]+e(t) (1)

whereF [·] is a nonlinear function,y, u, ande are the output,
input and noise respectively andny , nu andne are the max-
imum delays of the output, the input and the error respec-
tively. The noise in the system is unmeasurable and takes
into account any unmeasured disturbances, measurement er-
rors and modelling errors, and is assumed to be bounded and
uncorrelated with any input or past output.

2.1 NARMAX OLS-ERR algorithm

The identification of a NARMAX model has three stages;
(1) model structure detection which obtains the significant
terms involved in the system, (2) parameter estimation which
calculates the coefficients for each of the significant model
terms and (3) model validation which assesses the models
effectiveness.

The orthogonal least squares (OLS) algorithm byBillings
et al.(1988) can perform both model structure detection and
parameter estimation. Using a nonlinear function to repre-
sentF [·] (Eq. 1), in this study, a linear-in-the-parameters
polynomial, the algorithm works by assessing the signifi-
cance of all the possible monomials in the polynomial by
their ERR, thus detecting the structure of the model. A
monomial with a higher ERR indicates that it has a higher
contribution to the system. The algorithm then implements
a least squares method to estimate the coefficients of signifi-
cant monomials. Since there can be many monomials in the
polynomial, most of them insignificant, the algorithm is set to
find and estimate the coefficient for the few significant terms
to reduce the time taken for the algorithm to run. Only a brief
explanation of the algorithm is given here, the full algorithm
is beyond the scope of this article but can be found in studies
by Billings et al.(1988, 1989).

2.2 Methodology

Hourly averaged solar wind data from OMNI web, for the pe-
riod from the start of 1998 to the end of 2008, have been used
in this study. For a reliable model, the NARMAX OLS-ERR
algorithm needs equally spaced and sampled time series data
of typically 1000 data points. However the solar wind data
are occasionally interrupted by data gaps which breaks up the
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Fig. 1. Output and intput for training the model.(a) The output to
the system Dst index.(b) The input to the system coupling func-
tion C.

continuous data. The Dst index data sections, for the time
period of the uninterrupted solar wind data with>1000 data
points, were searched for large magnetic storms. This was to
ensure that the data which the model was trained on, had in it
the dynamics of a large storm. The data section found to run
the NARMAX OLS-ERR algorithm was for the period from
10:00 UT 18 March to 08:00 UT 7 September 2001. Figure1
displays the output Dst index and input coupling function,C,
used as the training data set for the model.

A quadratic linear-in-the-parameters polynomial was em-
ployed for the nonlinear functionF [·] and the maximum de-
lay for the output and input wereny = 2 andnu = 3. The
algorithm identified the model as

Dst(t) = 0.8335Dst(t −1)

−3.083×10−4p1/2V 4/3BTsin6
(

θ

2

)
(t −1)

−6.608×10−7Dstp1/2V 4/3BTsin6
(

θ

2

)
(t −1)

+0.13112Dst(t −2)
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(
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(
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2

))2

(t −2)
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(
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2

)
(t −3)

+1.5255×10−10
(

p1/2V 4/3BTsin6
(

θ

2

))2

(t −1)

+7.3573×10−5p1/2V 4/3BTsin6
(

θ

2

)
(t −2)

+0.73433

+1.545×10−4Dst2(t −1)+noise terms (2)

where the estimated noise model is not shown here and con-
tains ten terms.
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Fig. 2. Correlation tests for model validation of Eq. (2).

3 Model validation

The third stage of identifying a NARMAX model is the
model validation. To do this, the identified model was sub-
jected to both correlation tests (Billings and Zhu, 1989) and
the model predictive performance was analyzed in both time
and frequency.

3.1 Correlation validation

The correlation tests, for nonlinear systems (Billings et al.,
1989), are implemented to confirm that the residuals are un-
correlated with all the combinations of past values of the in-
puts or the outputs. For a SISO NARMAX model, the model
is unbiassed if the following correlations satisfy the condi-
tions:

8ee(τ ) = δ(τ ) ∀τ

8ue(τ ) = 0 ∀τ

8(u2)′e(τ ) = 0 ∀τ

8(u2)′(e2)(τ ) = 0 ∀τ

8e(eu)(τ ) = 0 ∀τ ≥ 0

 (3)

where8 represents the cross-correlation between the two
subscripts,τ is the delay,u is the inputC, δ is the unit im-
pulse function and the prime means that the mean has been
removed. Figure2 shows the results of the correlation tests.

As seen in Fig.2, all the correlation tests are satisfied to
within the confidence limits (dashed lines). Therefore the
tests show that the model is unbiased.

3.2 Model predictive performance

The one step ahead (OSA) predicted output and the model
predicted output (MPO) were calculated from the NARMAX

www.ann-geophys.net/29/965/2011/ Ann. Geophys., 29, 965–971, 2011



968 R. J. Boynton et al.: Data derived NARMAX Dst model

80 85 90 95 100 105 110 115 120 125 130
−400

−300

−200

−100

0

Day of year, 2000

D
s

t
In

d
ex

(b
la

ck
),

O
S
A

(g
ra

y
),

(n
T

)

(a)

80 85 90 95 100 105 110 115 120 125 130
−400

−300

−200

−100

0

Day of year, 2000

D
s

t
In

d
ex

(b
la

ck
),

M
P

O
(g

ra
y
),

(n
T

)

(b)

Fig. 3. (a)Measured Dst index in black and OSA Dst in grey.(b) Measured Dst index in black and MPO Dst in grey. Both for the same time
period starting from 01:00 UT 17 March 2000 until 18:00 UT 9 May 2000.

model (2). The OSA uses the values of the measured Dst in-
dex, in Eq. (2), to predict the next value of Dst, while the
MPO uses the estimated values of Dst to predict the next
value of Dst. Both the OSA and MPO are calculated from
the measured values of the solar wind data. The MPO is
therefore less accurate than the OSA, however, the MPO will
indicate whether the model has a good long term prediction.
The data employed to calculate both OSA and MPO were
the uninterrupted solar wind data sections, with>1000 data
points, from the start of 1998 to the end of 2008.

Figure3 demonstrates one of the uninterrupted data sec-
tions from 01:00 UT 17 March 2000 until 18:00 UT 9 May
2000. Figure3a displays the measured Dst in black and the
OSA Dst in grey. The OSA has an excellent comparability
with the measured Dst, with very little difference between
them. Figure3b shows the measured Dst in black and the
MPO Dst in grey. Since the MPO is calculated using the pre-
vious calculations or previous predictions of Dst, rather than
the measured, the MPO does not follow the measured Dst as
closely as the OSA, however, it manages to follow the storms
with a good agreement, forecasting the time and magnitude
of the large and small storms. This indicates the model has a
very good long term predictability.

Three criteria are used to analyse the the performance of
the data sections. Figure3 only displays one of the 32 un-
interrupted data sections, these are not shown here due to
limited space. These criteria were the normalized root mean
square error (NRMSE)

ENRMSE=

√√√√√√√√√√
N∑

t=1

[(
y(t)− ŷ(t)

)2
]

N∑
t=1

[
(y(t)− ȳ(t))2

] (4)

the correlation coefficient

ρyŷ =

N∑
t=1

[
(y(t)− ȳ(t))

(
ŷ(t)− ¯̂y(t)

)]
√√√√ N∑

t=1

[
(y(t)− ȳ(t))2

] N∑
t=1

[(
ŷ(t)− ¯̂y(t)

)2
] (5)

and the coherency function

Cyŷ =

∣∣Pyŷ(f )
∣∣

Pyy(f )Pŷŷ(f )
(6)

wherey(t) is the measured and̂y(t) is the estimated values
of the Dst at timet , N is the number of data points, the bar
denotes the mean andP is the cross-spectral density of the
subscripts at frequencyf .

The NRMSE is utilized in many studies to evaluate the
prediction efficiency and indicates numerically the accuracy
of the model. Over the 32 data sections, the mean NRMSE
for the OSA Dst was 0.2195 with a standard deviation of
0.0540 and for the MPO Dst was 0.7719 with a standard de-
viation of 0.3166. The OSA has a small NRMSE with only
a small deviation with the error over the 32 data sets. The
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Fig. 4. (a)Coherency between the measured and OSA Dst.(b) Co-
herency between the measured and MPO Dst.

MPO has a lager error with higher deviation, which is ex-
pected since the MPO uses the calculated Dst, rather than
the measured, in Eq. (2). This indicates that the model has a
good relationship with the measured Dst and that it is valid
for the 11 year period.

The correlation coefficient is most often employed as an
indicator of a models predictive performance and illustrates
the linear dependance between the measured and estimated
Dst. The mean correlation coefficient for the OSA Dst was
0.9751 with a standard deviation of 0.0114 and for the MPO
Dst was 0.8403 with a standard deviation of 0.0740. The
high values for the correlation coefficient and low values for
the standard deviation, for both the OSA and MPO, attest that
the model performs very well over the 11 year period.

Although the NRMSE and the correlation coefficient are
both good indicators of a models predictive performance,
they do not necessarily give a true expression of how well
the model performs relevant to the objectives of this study.
The objectives were to identify a model that can forecast the
onset, magnitude and duration of magnetic storms. The co-
herency function is able reveal the dependence between fre-
quencies of the measured and estimated Dst and is therefore
able to determine how well the model simulates the low fre-
quencies of the magnetic storms. Since a magnetic storm can
last for between 1–5 days, a large coherence at these frequen-
cies would indicate that the model captures the dynamics of

Fig. 5. (a)Measured and OSA Dst scatter plot.(b) Measured and
MPO Dst scatter plot.

the storm, particularly the recovery phase. The data was di-
vided into 32 bins of 1024 data point intervals, so that the
coherency could be averaged over these subintervals. Fig-
ure 4 displays the coherency for both the OSA (a) and the
MPO (b) estimates. For the low frequencies of a magnetic
storm (0.01–0.04 h−1) both the OSA and MPO have a high
coherency, although the drop in coherency at higher frequen-
cies, in Fig.4b, illustrates that the model is not quite as good
at forecasting the shorter storms.

Figure5 shows the scatter plots of (a) OSA and measured
Dst and (b) MPO and measured Dst, for all the 32 data sets.
Figure5a indicates that the OSA has a very good correlation
with most the points of the scatter lining up on the 45◦ line.
It can be seen that a few points do not line up exactly on
the 45◦ line, however, this is only a small number out of the
76 548 points used for the plot. Figure5b depicts the the vast
majority of points lining up on the 45◦ line and therefore
illustrates that the MPO has a good correlation. Both scatters
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depict that there are more points scattered about below the
45◦ line rather than above it. This means the model tends
to overestimate rather than underestimate the geomagnetic
storms.

4 Discussion and conclusion

A model that forecasts the complex nonlinear dynamics of
the Dst index, which employ a solar wind-magnetosphere
coupling function byBoynton et al.(2011), has been iden-
tified using the NARMAX OLS-ERR algorithm. The ob-
jectives of this model, were to be able to forecast the time,
magnitude and duration of magnetic storms accurately, i.e.,
predict when a storm is to occur, how strong it will be and
how long it will last. Therefore the forecasting of the high
frequency, small oscillation changes (e.g., between days 80
and 85 in Fig.3) are considered unimportant in this study.
Another objective for this study was to assess the ability of
the coupling function byBoynton et al.(2011) as an input to
model the Dst index.

A number of predictive performance criteria were used
to gauge how well these objectives were achieved. The
NRMSE and correlation coefficient, which are most com-
monly used in the predictive performance evaluation, indi-
cated a good model performance, the coherency function was
high around the frequencies of 2 to 5 days, which indicated
that the model is very good at picking out the storms, and the
scatter plots showed that the model, although for the most
part had a high correlation, tended to overestimate, rather
than underestimate, the magnetic storms. The MPO scatter
plateaus around zero for positive values of Dst which indi-
cates that the model does not forecast the sudden commence-
ments. Although unimportant to the aims of this study, the
addition of more inputs could be able to identify the dynam-
ics of the sudden commencements.

When comparing the results of this study to other studies
that model the Dst Index, the obtained model (2) is found to
be very good. The model byBoaghe et al.(2001) yielded a
correlation coefficient of 0.9895 for the OSA and had a max-
imum coherency of about 0.85 for the MPO. The model (2)
had a marginally higher maximum coherency of about 0.9
for the MPO compared toBoaghe et al.(2001). The corre-
lation coefficient for theBoaghe et al.(2001) model is high,
however, the data set used for this correlation was the mea-
sured Dst on which the model was trained and is only a 1000
point (hour) interval. The model (2) had an average OSA
correlation coefficient of 0.9751 for 32 data sets consisting
of over 76 thousand points (hours) and therefore these two
OSA values cannot be compared. However, a fairer compar-
ison will be to analyse the model performance for the data
section shown in Fig.3, on which the model was not trained.
This gives an OSA correlation coefficient of 0.9899 which is
higher than that of the model byBoaghe et al.(2001). The
model byZhu et al.(2006) was again only analysed on one

data section of 1000 data points and returned the very good
results of a NRMSE of 0.4194 for the MPO and 0.1755 for
the OSA. The average results from the 32 data sets for the
NRMSE for the model (2) are not as good, however, the
NRMSE for the data section shown in Fig.3 returns better
results thanZhu et al.(2006), a NRMSE of 0.3375 for the
MPO and 0.1420 for the OSA. TheTemerin and Li(2006)
model has an excellent MPO correlation coefficient of 0.956.
However, the model is trained on the entire 8 year period
which this correlation is made. The correlation of the model
Dst and the measured Dst using data on which the model
was not trained, would give a more accurate indication of the
model performance. This is because even a bad model can
have a good fit with the data that it was trained on.

In conclusion, the coupling function byBoynton et al.
(2011) performs very well at modelling the Dst index on
its own and although model (2) proves more than adequate
against other Dst models, there is still room for improvement.
The current model only enlists one input, while the model by
Temerin and Li(2006) implements many more, such as IMF
and pressure terms. Therefore in the future it would be bene-
ficial to employ a MISO NARMAX algorithm using the cur-
rent coupling function along with more inputs such as IMF
and pressure terms.
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