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Abstract. Cluster four point measurements provide a com-
prehensive dataset for the separation of temporal and spa-
tial variations, which is crucial for the calculation of the
cross shock electrostatic potential using electric field mea-
surements. While Cluster is probably the most suited among
present and past spacecraft missions to provide such a sep-
aration at the terrestrial bow shock, it is far from ideal for a
study of the cross shock potential, since only 2 components
of the electric field are measured in the spacecraft spin plane.
The present paper is devoted to the comparison of 3 differ-
ent techniques that can be used to estimate the potential with
this limitation. The first technique is the estimate taking only
into account the projection of the measured components onto
the shock normal. The second uses the ideal MHD condition
E ·B = 0 to estimate the third electric field component. The
last method is based on the structure of the electric field in
the Normal Incidence Frame (NIF) for which only the po-
tential component along the shock normal and the motional
electric field exist. All 3 approaches are used to estimate the
potential for a single crossing of the terrestrial bow shock
that took place on the 31 March 2001. Surprisingly all three
methods lead to the same order of magnitude for the cross
shock potential. It is argued that the third method must lead
to more reliable results. The effect of the shock normal inac-
curacy is investigated for this particular shock crossing. The
resulting electrostatic potential appears too high in compari-
son with the theoretical results for low Mach number shocks.
This shows the variability of the potential, interpreted in the
frame of the non-stationary shock model.
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1 Introduction

The main process that takes place at the front of a collision-
less shock is the redistribution of the upstream ion flow ki-
netic energy into the heating of the bulk plasma, and the ac-
celeration of a fraction of plasma particles to very high ener-
gies. Since the very early stage of shock physics it was ar-
gued that the interactions between plasma particles and fields
in the shock front replaces the role of collisions in ordinary
hydrodynamic shocks and leads to the energy redistribution
at the front (Sagdeev, 1966; Sagdeev and Galeev, 1969). In
many cases such interactions were explained in the frame
of anomalous processes related to various instabilities in the
shock front. A comprehensive review of various instabilities
in the shock front can be found inPapadopoulos(1985). Re-
sults of the extensive experimental studies of the terrestrial
bow shock by INTERSHOCK and AMPTE (Scudder et al.,
1986; Krasnoselskikh et al., 1991) and numerical simulations
(Leroy et al., 1982; Scholer et al., 2003) have shown that the
effect of coherent macroscopic fields in the front of a strong,
supercritical, quasi-perpendicular shock is enough to account
for observed plasma thermalisation and acceleration. Re-
cent observations by Venus Express (VEX) have shown that
the effect of this force is enough to explain thermalisation
in weak quasi-perpendicular shocks as well (Balikhin et al.,
2008). This does not mean that early models based on the
quest of micro instabilities that take the place of collisions to
allow shocks to form (Sagdeev, 1966) have lost their impor-
tance. On the contrary, such instabilities are very important
for the energy redistribution at quasi-parallel shocks. More-
over, the main motivation in shock studies is that they are
the most effective accelerators. According to present views,
cosmic rays consist of particles accelerated to huge ener-
gies by collision-less shocks formed in the vicinity of var-
ious astrophysical objects. These accelerated particles and
waves generated then determine the structure of these as-
trophysical shocks. In addition, numerical simulations for
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ultra-relativistic shocks associated with gamma ray burst af-
terglow indicate such shocks are formed by filamentational
instability as in classical anomalous process based shock
models.

However, as mentioned above for the quasi-perpendicular
planetary and interplanetary shocks that are observed in the
solar system, macro electric and magnetic fields in the shock
front can explain the energy redistribution without invoking
models based on instabilities (Wu, 1984; Leroy and Man-
geney, 1984; Scudder et al., 1986; Balikhin and Gedalin,
1994). Therefore comprehensive measurements of electro-
static potential and the magnetic field structure of the shock
front are required to understand the evolution of the plasma
parameters across these shocks. The number of studies de-
voted to the magnetic field structure of the terrestrial bow
shock significantly outnumber the studies of the electric field.
One of the possible reasons is due to the complexity of the
electric field measurements across the region with nonuni-
form plasma temperature/density. Only a few papers de-
voted to the electric field and electrostatic potential in the
shock have been published (Heppner et al., 1978; Wygant
et al., 1987; Formisano, 1982; Scudder et al., 1986; Balikhin
et al., 2002; Scholer et al., 2003) in comparison to hun-
dreds dedicated to the magnetic field structure of the various
types of shocks. The estimate of the cross shock potential
is also susceptible to the inaccuracy of the calculated rela-
tive shock/spacecraft velocity, because it requires the spacial
integration of the electric field over the spatial coordinates.
Therefore, the ability to distinguish between temporal and
spatial variations is crucial for the reliable identification of
the shock front potential. Four closely spaced satellites such
as Cluster appear ideal for the analysis of the shock poten-
tial. However, the electric field instrument onboard each of
the Cluster satellites does not measure all three components
of the electric field, providing only the X- and Y-components
in the satellite spin plane. In order to exploit the spatio-
temporal potential of the Cluster mission, additional assump-
tions are required to estimate the potential in such cases.
A straight-forward approach which involves no computation
prior to the calculation of the potential assumes that if the
angle between the spin plane and the shock normal is small,
then the potential can be estimated using only the two avail-
able electric field components. If the spin plane is not almost
perpendicular to the shock normal such an estimate should
give a correct order of magnitude for the cross shock poten-
tial. The second method that has been used is based on the
assumptionE ·B = 0 (ideal MHD). This condition allows the
identification of the third component of the electric field and
subsequently the cross shock potential. This methodology
has been used in a number of studies (Bale and Mozer, 2007;
Bale et al., 2008). The final method to be considered in the
present study uses the structure of electric field in the Nor-
mal Incidence Frame (NIF) in which the upstream velocity
lies along the shock normal. Only two components of elec-
tric field exist in this frame: the potential along the shock

normal, andV ×B. As velocity is directed along the normal,
only the component of the magnetic field that is perpendicu-
lar to the shock normalBperp contributes to the termV ×B.
ThereforeE ·Bperpmust be equal to zero, giving the possibil-
ity to determine the missing third component of the electric
field and therefore identify the cross-shock potential. The
present paper is devoted to the comparative study of these 3
methods applied to a particular shock observed by the four
Cluster spacecraft on 31 March 2001.

2 Data and instrumentation

The data used in this study were collected by the Clus-
ter spacecraft during a day of 11 bow shock crossings on
31 March 2001. The electric field measurements were
made by the Electric Fields and Waves experiment (EFW)
(Gustafsson et al., 1997), which is part of the wave con-
sortium controlled by the Digital Wave Processor (DWP)
(Woolliscroft et al., 1997). The EFW instrument consists of
4 spherical probes deployed on 44 m wire booms (88 m sen-
sor separation), the potential difference between the probes
is used to measure the electric field components in the spin
plane of the spacecraft (ISR2). In the ISR2 frame, the
spacecraft spin axis is represented by the X-axis. When
the ISR2 frame is inverted about the spin axis it varies by
< 6◦ of the geocentric solar ecliptic (GSE) frame. A signi-
ficant limitation of this instrument is the absence of a third
field vector, as a result only 2 components are recorded in
the ISR2 frame. The Fluxgate Magnetometer (FGM) in-
strument (Balogh et al., 1997) provides magnetic field mea-
surements which are used to identify the shock crossing re-
gion, and correlate with the EFW datasets. The time reso-
lution of the EFW and FGM datasets are 25 Hz and 22 Hz
respectively. Ion density(Ni) used to calculate Alfv́en
Mach number(Ma), was estimated using the electron plasma
frequency

(
ωpe

)
measured by the WHISPER instrument

(Décŕeau et al., 1997). The solar wind upstream bulk flow
velocity

(
Vup

)
was obtained from the Cluster Ion Spectro-

meter (CIS) instrument (Rème et al., 1997).

3 Shock crossing: 31 March 2001, 18:28 UT

The present paper is devoted to a particular shock that oc-
curred on 31 March 2001 at 18:28 UT. On this day solar wind
conditions were to some extent irregular due to the passage
of a CME. The magnetic field and solar wind velocity up-
stream of the shock measured by the Cluster 1 spacecraft
were 27 nT and 590 km s−1, respectively. The model normal
(Farris et al., 1991) in the GSE frame is [0.92,−0.09, 0.37],
and the shock velocity was determined to be 29 km s−1. Re-
maining parameters areθBN = 88◦ and plasma densityNi =

17.4 cm−3. The Alfvén Mach number is rather moderate at
3.7 which is consistent with the lack of any significant over-
shoot.
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Fig. 1. Measurements made by the four Cluster spacecraft as they observed one of eleven bow shock crossing on 31 March 2001 at 18:28 UT.
The top panel illustrates the magnitude of the magnetic field profile measured by the four FGM instruments onboard each spacecraft. The
four lower panels show the electric field measurements recorded by the relative EFW instruments over the same time period.
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Fig. 2. A shock crossing observed by the Cluster 1 spacecraft at 18:28 on 31 March 2001. The upper panel shows the magnitude of the
magnetic field profile measured the Cluster 1 FGM instrument across the shock. The lower panel shows the x-component of the electric field
recorded by the EFW instrument over the same time interval (in the spacecraft spin frame).

The sequence in which the Cluster spacecraft encountered
the bow shock was C4, C2, C1 and finally C3. This is illus-
trated by the top panel of Fig.1. Additionally Fig.2 shows
the measurements during the shock crossing recorded by the
FGM and EFW instruments onboard the Cluster 1 space-
craft. The top panel of Fig.2 displays the magnitude of the
magnetic field several seconds before and after the shock.
The magnetic profile displays an abundance of low frequency
plasma waves prior to the shock crossing which commence at

approximately 18:28:07 UT. The lower panel illustrates the
X-component of the EFW measurements in the spacecraft
spin frame. The electric field appears constant upstream of
the shock at around 5 mV m−1 which reflects theV ×B term.
It is worth noting that fluctuations within the electric field ap-
pear to accurately correspond to observations in the magnetic
field profile. There is also a notable spike like structure at
18:28:13.500 UT during the crossing. Such small scale struc-
tures were often observed within the quasi-perpendicular part
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Fig. 3. The magnetic field profile of a shock crossing observed by the Cluster 1 and 4 satellites on 31 March 2001. The time interval shows
the crossing several seconds upstream and around 30 s downstream of the crossing. The black line shows the magnitude of the magnetic field
whereas the grey line is the magnetic field projected along the normal. The upper and lower panels represent the Cluster 1 and Cluster 4
spacecraft, respectively.

of the terrestrial bow shock and have been statistically stud-
ied by Walker et al.(2004). The lower panels of Fig.1
demonstrate that a small scale structure within the shock
front, has been observed in the electric field by all four Clus-
ter spacecraft.

4 Shock normal

The shock normal̂n is one of the key parameters in the esti-
mate of the cross-shock potentialφ. This is not only because
it is the electric field component parallel ton̂ (En) that con-
tributes toφ, but also due to the effect of the normal shock-
spacecraft velocity on the spatial integration of the electric
field. In the present paper the shock normaln has been iden-
tified using theFarris et al.(1991) model shock surface. The
multi spacecraft timing analysis (Schwartz, 1998) produces
a normal that has a very small angle (< 5◦) with n̂. Fig-
ure 3 displays|B| and the projection of the magnetic field
alongn̂ (Bn), for the Cluster 1 (top) and Cluster 4 (bottom)
spacecraft. It can be seen that the average values ofBn do
not possess any significant change within the ramp where
|B| experiences a 60–70 nT change. The change of the av-
erage value from the far upstream to the deep downstream
is also insignificant, supporting the estimate of the normal
n̂. Spacecraft 2 and 3 show similar results. However, for all
four spacecraft the decreasing portions of overshot coincide
with deviation inBn as also can be seen in Fig.3. This can
be explained by a presence of an additional ripple-like local
structure.

The velocity along the shock normal was determined
based on a selection of the 6 possible geometric parings of
the 4 Cluster satellites as they encountered the bow shock.
Only 3 pairs of crossings have been used, since the other
3 separation vectors were close to being perpendicular to
n̂. The following 3 spacecraft pairings were used, C1→C4,
C2→C3 and C3→C4. The total variation between the 3
identified velocities was less that 15 %. The mean of the 3
velocity pairings 29.4 km s−1 has been used as the shock ve-
locity Vs.

5 Methodology for the estimation of cross-shock
potential

As the electric field is frame dependent, the Lorentz transfor-
mation should be used to estimate the cross shock potential
in the NIF frame using the electric field data measured in
the spacecraft frame. The electric field components resulting
from Vs andV nif (NIF frame velocityV nif = n̂×

(
V u × n̂

)
)

could reach quite significant values of a few mV m−1 which
may contribute errors leading to the miscalculation ofφ.

Electric field measurements made by the EFW instrument
onboard all 4 Cluster spacecraft consist of only 2 components
directed along the X and Y directions in the spacecraft spin
frame. As a result only an estimate ofφ can be calculated.
The present paper is devoted to three separate techniques for
estimating cross shock potential.

The estimate of the cross shock potentialφest can be ob-
tained by taking into account only the two components mea-
sured by the EFW instrument. The implicit assumption in
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Fig. 4. A shock crossing made by the Cluster 1 spacecraft around 18:28 on 31 March 2001. The grey line shows the magnetic field magnitude
measured by the Cluster 1 FGM instrument during the bow shock crossing. The dotted black line is the estimate based on the assumption that
the electric field alongB is zero. The black dashed line shown the estimate based on only the 2 measured electric field components. The black
solid line represents the potential estimate by evaluating the missing electric field component based on the NIF condition (ENIF ·B⊥ = 0).

this procedure is that the direction of the shock normal is not
almost perpendicular to the axis of the spacecraft spin plane.
Such an estimate will provide a correct spatial scale of the
cross shock potential and a reasonable estimate of its magni-
tude. However, this method cannot be expected to produce a
precise magnitude of the potential|φ|.

To obtain more reliable and accurate values of the cross
shock potential from Cluster data, the properties of the elec-
tric field in the NIF frameENIF of reference can be used. In
the NIF the motional componentV u ×B is perpendicular to
the electrostatic component which is the gradient ofφ along
the normal. The upstream magnetic field can be decomposed
into the component parallel tôn (Bn), and a perpendicular
componentB⊥. The conditionENIF ·B⊥ = 0 allows the de-
termination of the third unmeasured component of the elec-
tric field.

Often when only two components of the electric field are
available the third component is reconstructed by assuming
that the component ofE alongB is zero (Bale and Mozer,
2007) E ·B = 0 (ideal MHD). It is worth noting that whilst
this approximation might provide an accurate estimate for
some other structures and regions, it is unacceptable for the
terrestrial bow shock. This can be illustrated by electron dy-
namics. The de-Hoffman-Teller frame (HTF) of reference is
defined by the condition that the upstream velocity is parallel
to the upstream magnetic field. Therefore the motional com-
ponent of electric field vanishes, leading to charged particle
energy conservation in the HTF. As discussed byGoodrich
and Scudder(1984) the electrostatic potential in the HTF is
directly related to the electron energization. Setting the par-
allel electric field to zero will distort the value of the electro-

static potential in HTF for quasi-perpendicular shocks. As a
result the “bump on flattop” electron distributions (Feldman
et al., 1983) would not be observed. In spite of all this crit-
icism of theE · B = 0 assumption, it will be used in the
present paper for comparison with the results obtained by the
first two methods.

It is worth noting that upstream of the shock front the only
component that contributes to the DC electric field is the mo-
tional V ×B field. This value will be constant across the
shock. Therefore, the upstream value ofV ×B can be used
to account for the motional electric field across the whole
shock front.

Finally to calculate the electrostatic potential,ENIF is spa-
tially integrated through the shock front, including both the
foot and shock ramp regions. The integration is discontinued
at the end of the shock ramp just prior to downstream.

6 Results

The change of the electrostatic potential within the shock
crossing measured by the Cluster 1 spacecraft, is displayed
in Fig. 4, together with the magnitude of the magnetic field
(grey solid line). The zero level reference line ofφ = 0 is
also shown in this figure. Three methods of potential esti-
mates lead to the differences in theφ. The lowest value of
the potential is a result of the method based on the NIF con-
dition ENIF ·B⊥ = 0 (solid line). The highest is based on the
ideal MHD assumption previously used byBale et al.(2008)
(dotted). The estimate based on 2 components only results
in the intermediate estimate (dashed). The legend in this fig-
ure describes the scaling of the potential with respect to both
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Table 1. Cross shock potential estimates for each electric field dataset. Provided are calculations for the potential in Volts and also the
potential normalised with respect to the upstream ion kinetic energy (E

up
i

).

Mehod C1φ (V) C1φ
(
/E

up
i

)
C2φ (V) C2φ

(
/E

up
i

)
C3φ (V) C3φ

(
/E

up
i

)
C4φ (V) C4φ

(
/E

up
i

)
NIF structure 1785 0.9042 1330 0.6737 563 0.2852 1991 1.0086
2 Measured Components 2426 1.2290 1796 0.9098 762 0.3860 2703 1.3693
E.B = 0 (ideal MHD) 3026 1.5329 2147 1.0876 858 0.4346 3326 1.6849
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Fig. 5. Electric cross-shock potential estimates of all four Clus-
ter spacecraft. The circle markers represent the potential estimates
prior to any variation whereas, the error bars represent the upper and
lower limits of the maximum and minimum potential evaluations as
a result of a variation about the model normal of±5◦.

Volts and the upstream ion energyE
up
i =

miV
2
up

2 . Table1 sum-
marises the values of the overall cross shock potential change
obtained by these 3 techniques for all four Cluster spacecraft.
It can be seen that the relative values of the potential estimate
by all 3 methods are similar to these obtained by the Clus-
ter 1 spacecraft. The lowest and highest values are always
resulting fromENIF ·B⊥ = 0 andE ·B = 0, respectively. The
2 component based estimate values are always intermediate
with respect to the other methods. Even the lowest of the
potential estimates obtained using NIF condition appear too
high in the case of the Cluster 1 and 4 crossings. The possible
physical reasons for such high values of the potential will be
explained later in the Discussion section. To ensure that these
values are not the result of an error during the identification
of the shock normal and consequent shock velocity, the ef-
fect of the normal variation has been investigated for the NIF
condition based method. The direction of the normaln̂ has
been subjected to a variation of a 10◦ cone around its iden-
tified model value. Obviously any variation in the direction
of the normal leads to variation in the shock velocity, NIF
frame,ENIF etc. The extreme minimal and maximum values
resulting from such a variation within the cone are shown as
the upper and lower boundaries for the error bars in Fig.5.
It can be seen that even minimal values of the potential for

Cluster 4 resulting from such variation is quite high at about
80 % of the upstream ion kinetic energy.

7 Discussion

The change of the cross shock potential for Cluster 1 dis-
played in Fig.4 is representative of the four spacecraft cross-
ings of this shock. The increase in the potential starts up-
stream of the ramp in the region of low frequency turbulence.
Since ISEE and AMPTE projects, it is known that this region
almost coincides with the foot of a quasi-perpendicular shock
(e.g. Krasnoselskikh et al., 1991). Initially it was thought
that these waves are the result of plasma instabilities caused
by the counter streaming plasma flow and the beam of re-
flected ions. However, data from closely spaced spacecraft
(inside the coherency length of the turbulence) enabled the
dismissal of these models and indicated that these waves are
the result of the nonlinear evolution of the shock front itself
(Krasnoselskikh, 1985; Balikhin et al., 1997, 1999; Walker
et al., 2008). The increase of the potential in the foot is
about a quarter of the overall change. The rest of the in-
crease corresponds to the region of the magnetic ramp. A
small scale structure is evident in the electric field at around
18:28:13.5 in Fig. 1 which contributes around 15 % of the
electrostatic potential. According to the estimation based on
the NIF condition, the contribution of this small scale struc-
ture is around 300 V. Such a considerable increase of the po-
tential over a small spatial scale should lead to non-adiabatic
dynamics of electrons and a corresponding increase of tem-
perature (Gedalin et al., 1995; Balikhin and Gedalin, 1994;
Balikhin et al., 1998). The increase of the cross shock poten-
tial should also lead to the decrease of the ion thermal energy
downstream of the shock e.g.Ofman et al.(2009).

The peculiar feature of the potential estimates for all four
shocks is the unexpectedly high values ofφ in comparison to
theoretical studies such asGedalin(1997). In a study byBale
et al.(2008) of the bow shock crossings that take place on 31
March 2001, their methodology (ideal MHD) also produced
high potential estimates very similar to the results obtained
with the ideal MHD condition in the present paper. The over-
all high resulting potential for the shock studied in the present
paper can be the result of two factors. The first is the high
concentration of alpha particles on that day (about 9 % of the
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protons). Therefore the value of the upstream average ion
kinetic energy based on the proton mass should lead to sig-
nificant underestimation. The second reason is the unusual
CME observed on this day. There are a total of 9 crossings
of the terrestrial bow shock in a short period of about 2 and a
half hours. This indicates non-stationarity of the solar wind
conditions. Such non-stationarity can lead to shock reforma-
tion induced by the change in the abnormal solar wind con-
ditions, and results in unusual values of the potential for this
particular crossing.

The main conclusion that should be drawn from this study
is that all three methods lead to the same order of magni-
tude of the cross shock potential, and exactly the same spa-
tial scales of the potential change. However as these methods
still lead to a significant difference in the potential estimates,
the NIF derived method should be used for a more accurate
estimation. As theE ·B = 0 technique is based on an as-
sumption that is not valid at the shock front. The simplistic
methodology of the potential estimate when only two mea-
sured components are taken into account (without any other
additional assumptions) are able to provide the same relia-
bility of φ spatial scales as the more sophisticated technique
that uses the NIF conditionENIF ·B⊥ = 0. The spatial scales
of the shock are one of the most important parameters, as
they are related to the physical processes that balance non-
linearity and lead to the shock structure formation (Kennel
et al., 1985; Sagdeev, 1979; Papadopoulos, 1981). In ad-
dition, the spatial scale determines the mechanism of inter-
action between the incoming solar wind particles, and the
macro electric and magnetic fields within the shock. While
there are many studies of the magnetic field scales within the
shock front (e.g.Balikhin et al., 1995; Hobara et al., 2010;
Newbury and Russell, 1996), only a few studies are devoted
to the scales of the electric field e.g.Walker et al.(2004). The
results of the present study facilitate the ability to estimateφ

spatial scales in the case of limited electric field datasets such
as Cluster, and can allow an easier comprehensive statistical
study of these scales based on a large number of shocks ob-
served by Cluster.

Acknowledgements.This work was supported by STFC and EP-
SRC grants. The authors wish to acknowledge the Custer FGM,
EFW, CIS, WHISPER and DWP teams for providing the datasets
for this study.

Guest Editor M. Gedalin thanks L. Ofman and another anony-
mous referee for their help in evaluating this paper.

References

Bale, S. D. and Mozer, F. S.: Measurement of Large Parallel
and Perpendicular Electric Fields on Electron Spatial Scales
in the Terrestrial Bow Shock, Phys. Rev. Lett., 98, 205001,
doi:10.1103/PhysRevLett.98.205001, 2007.

Bale, S. D., Mozer, F. S., and Krasnoselskikh, V. V.: Direct mea-
surement of the cross-shock electric potential at low plasmaβ,
quasi-perpendicular bow shocks, ArXiv e-prints, 2008.

Balikhin, M. and Gedalin, M.: Kinematic mechanism of electron
heating in shocks: Theory vs observations, Geophys. Res. Lett.,
21, 841–844,doi:10.1029/94GL00371, 1994.

Balikhin, M., Krasnosselskikh, V., and Gedalin, M.: The scales
in quasiperpendicular shocks, Adv. Space Res., 15, 247–260,
doi:10.1016/0273-1177(94)00105-A, 1995.

Balikhin, M. A., Walker, S. N., de Wit, T. D., Alleyne, H. S. C. K.,
Woolliscroft, L. J. C., Mier-Jedrzejowicz, W. A. C., and Baumjo-
hann, W.: Non-stationarity and low frequency turbulence at a
quasiperpendicular shock front, Adv. Space Res., 20, 729–734,
doi:10.1016/S0273-1177(97)00463-8, 1997.

Balikhin, M., Krasnoselskikh, V. V., Woolliscroft, L. J. C., and
Gedalin, M.: A study of the dispersion of the electron distribu-
tion in the presence of E and B gradients: Application to electron
heating at quasi-perpendicular shocks, J. Geophys. Res., 103,
2029–2040,doi:10.1029/97JA02463, 1998.

Balikhin, M. A., Alleyne, H., Treumann, R. A., Nozdrachev, M. N.,
Walker, S. N., and Baumjohann, W.: The role of nonlinear in-
teraction in the formation of LF whistler turbulence upstream of
a quasi-perpendicular shock, J. Geophys. Res. (Space Physics),
104, 12525–12536,doi:10.1029/1998JA900102, 1999.

Balikhin, M. A., Nozdrachev, M., Dunlop, M., Krasnoselskikh,
V., Walker, S. N., Alleyne, H. S. C. K., Formisano, V., An-
dre, M., Balogh, A., Eriksson, A., and Yearby, K.: Obser-
vation of the terrestrial bow shock in quasi-electrostatic sub-
shock regime, J. Geophys. Res. (Space Physics), 107, 1155,
doi:10.1029/2001JA000327, 2002.

Balikhin, M. A., Zhang, T. L., Gedalin, M., Ganushkina, N. Y.,
and Pope, S. A.: Venus Express observes a new type of shock
with pure kinematic relaxation, Geophys. Res. Lett., 35, L01103,
doi:10.1029/2007GL032495, 2008.

Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J.,
Thomlinson, J. G., Glassmeier, K. H., Musmann, G., Lühr, H.,
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