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Abstract. Localised depressions in the magnetic field mag-
nitude, or magnetic holes, are common features in many re-
gions of solar system plasma. Two distinct mechanisms for
their generation have been proposed. The first proposed that
the structures are generated locally, close to the point of ob-
servation. The alternative has been proposed byRussell et al.
(2008), who suggest that the observed magnetic holes repre-
sent nonlinear mirror structures that can be carried by the so-
lar wind over vast distances of mirror stable plasma. Accord-
ing toRussell et al.(2008), magnetic holes are created in the
vicinity of the sun and are convected by the solar wind out-
ward. Periods of Cluster 1 and VEX data when both space-
craft were connected by the solar wind flow have been con-
sidered in this study, in order to determine the evolution of
the magnetic holes occurrence rate. The comparison of the
magnetic holes occurrence near the Venus and the Earth sup-
ports theRussell et al.(2008) premise that they are generated
closer to the Sun most likely somewhere within the orbit of
Mercury.

Keywords. Space plasma physics (Nonlinear phenomena)

1 Introduction

Localised nonlinear dips in the magnetic field were first re-
ferred to as “magnetic holes” byTurner et al.(1977) dur-
ing their analysis of IMP6 data in the solar wind. Since
this observation, it has been found that these structures are
commonly observed in many regions of solar system plasma
such as the solar wind (Turner et al., 1977; Fitzenreiter and
Burlaga, 1978; Stevens and Kasper, 2007), planetary magne-
tosheaths (Balogh et al., 1992; Hubert et al., 1989; Tsurutani
et al., 1982; Kaufmann et al., 1970), the Io wake, in cometary

Correspondence to:O. A. Amariutei
(cop07oa@sheffiled.ac.uk)

plasma (Russell et al., 1987) and even at the borders of the
heliosphere (Tsurutani et al., 1984). An example of mag-
netic holes observed by the Venus Express magnetometer
in the solar wind is shown in Fig.1. A number of models
have been proposed to explain the observations of magnetic
holes, the most common and widely accepted of which at-
tribute the majority of magnetic holes to the nonlinear stage
of mirror instability (Southwood and Kivelson, 1993). The
shape and duration of the magnetic holes seen in Fig.1 is
very similar to mirror wave structures observed in the magne-
tosheath (Balikhin et al., 2003, 2010; Chisham et al., 1999).
Comprehensive theory of mirror instability that accounts for
electron temperature (Pokhotelov et al., 2000), finite Lar-
mor radius effects (Pokhotelov et al., 2004), plasma gradients
(Pokhotelov et al., 2001), non-Maxwellian and multicompo-
nent plasmas (Pokhotelov et al., 2008) has been developed.
Analytical studies of the quasilinear and nonlinear stages of
the instability (Pokhotelov et al., 2010) demonstrated how
the mirror waves can be carried by the solar wind over long
distances through the mirror stable plasma. However there
are some arguments against attribution of all observed mag-
netic holes (dips) to the mirror instability (Tsurutani et al.,
1992).

The region of magnetic hole generation is still unclear
Russell et al.(2008) suggested that magnetic holes are cre-
ated much closer to the Sun and survive for very long peri-
ods whilst being convected by the solar wind over huge dis-
tances in what is essentially a mirror stable plasma. Recently,
THEMIS observations have been used to explain how mag-
netic holes can exist in the mirror stable plasma (Balikhin
et al., 2009). If, as Russell et al.(2008) suggest, magnetic
holes are generated closer to the Sun, they can be used for
remote sensing of the plasma conditions in their region of
generation. Plasma from the region in which the magnetic
hole was generated will be trapped within the magnetic dep-
pression and carried along with the structure as it convects
with the solar wind. Both the polarisation of a particular
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Fig. 1. Magnetic holes observed by Venus Express (top panel) and Cluster C1 (bottom panel). Each panel is 3 min long showing time of the
day.

holes and the distribution of plasma trapped within them can
provide valuable information about conditions in the region
in which the magnetic hole was generated. As a analysis of
Russell et al.(2008) suggestion regarding the generation re-
gion, the present paper exploits a conjunction between Venus
and Earth (using observations by VEX and Cluster) that took
place on 27 March 2009. Since the two spacecraft are sep-
arated by a distance of over 0.3 AU the probability for the
spacecraft to detect the same magnetic hole, which size is
of the order of 101−102 ion Larmor radii, is very unlikely.

Therefore a statistical study of the occurrence of magnetic
holes around this conjugation period has been conducted and
its results are presented in this paper.
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Fig. 2. Schematic representation of Venus-Sun inferior conjunction,
that took place on 27 March 2009.

2 Data and analysis

2.1 Instrumentation

Data used in this statistical study were collected in the solar
wind by the magnetometer instruments onboard the Venus
Express (VEX) and Cluster spacecraft. Operating since April
2006, the VEX (Titov et al., 2006; Svedhem et al., 2007)
is in a polar orbit with a period of 24 h. Since the pericen-
tre/apocentre distances are 250/66 000 km and that the pe-
riapsis occurs at around 78◦ N, the satellite spends most of
its time in the solar wind. Since VEX is a magnetically
unclean spacecraft, VEX magnetometer instrument (Zhang
et al., 2006) uses a dual sensor arrangement to enable the re-
moval of stray magnetic fields generated by the operation of
the spacecraft. The time resolution of the data used in this
study is 1 s and for every each orbit we have excluded the pe-
riods when magnetic field was perturbed by the planet. The
Cluster (Escoubet et al., 1997) satellites also occupy polar or-
bits. However, the orbit differs from that of VEX in that the
line of apsides lies close to the equatorial plane. As a result,
Cluster measurements in the solar wind are typically limited
to a period from December to May. Cluster is a magneti-
cally clean spacecraft and so the generation of stray magnetic
fields due to spacecraft operations is minimised. The data
from the Cluster fluxgate magnetometer (FGM) instrument
(Balogh et al., 1997) used in this study has a 5 Hz sampling
rate. Only the data when Cluster and VEX are outside the
bow shock, in the solar wind have been considered. We have
examined a period of 3 months of data, centred in the only
Venus-Sun conjunction that has occurred in 2009. An infe-
rior conjunction, when the two planets (Earth and Venus) lie
in a line on the same side of the Sun (Fig.2), occurs approx-
imately once every 9 months. Due to the limited time when
the Cluster satellites are in solar wind, and considering that

Vex mission has only started in 2006, March 2009 is the only
time interval that could be considered.

2.2 Methodology

One of the first computational methods proposed for the
identification of the magnetic holes (Winterhalter et al.,
1994) proposed a sliding window based method. Each data
point is compared to the mean field magnitude in a 300 s
window centred in the data point. The ratioBmin/Bmean is
calculated and compared to a threshold value determined on
a trial and error basis. A second selection condition limits
the field rotation observed across each event to less than 10◦.
Later studies had a more flexible approach on the numerical
values of the thresholds and the detection method has been
improved by considering the standard deviation in determin-
ing whether a candidate is indeed a magnetic hole, followed
by visual inspection (Zhang et al., 2008).

In this paper we investigate the occurrence of magnetic
holes over a period of 3 months using a wavelet based
methodology. The proposed methodology has few advan-
tages in comparison with the previous discussed studies,
given by the variable scale and window length, a better corre-
lation of the data set with the disturbance in the background
and the ability to process automatically considerable amount
of data.

Due to the quality and resolution of the data, the back-
ground, width, shape and structure of the magnetic dips, we
have chosen “Morlet” wavelet to analyse the data. The length
of the scales by which the function will be stretched reflects
the maximum duration of a magnetic hole, ranging from few
seconds to almost a minute (Winterhalter et al., 1994; Turner
et al., 1977). By varying the wavelet scale and translating
along the localised index of the time series, one can construct
a representation showing both the amplitude of any features
against the scale of the wavelet and how this amplitude varies
in time. The wavelet function at each scale is normalised to
have unit energy, so that the wavelet transforms at each scale
are directly comparable to each other and to the transforms
applied to subsequent sliding windows. The size of the cone
of influence (COI) has been computed for a better detection
accuracy. this results in a better measure of the decorrelation
time for a single negative peak in the time series. By compar-
ing the width of the peak in the wavelet power spectrum with
this decorrelation time, one can distinguish between a dip in
the data (possibly due to noise) and a harmonic component
at the equivalent Fourier frequency. A 95 % confidence level
was computed against a red noise background spectra. It has
been used to initiate a null hypothesis for the significance of a
peak in the wavelet power spectrum, offering extra reliability
for the automatic detection.
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Fig. 3. VEX (dashed line) and Cluster (solid line) probability dis-
tribution functions of the occurrence rate.

2.3 Criteria and thresholds

For the purpose of our study, we characterise the mirror
modes structures by: the depth of the corresponding depres-
sion of the magnetic field, the width of the magnetic hole and
field rotation across the dip. The wavelet transform produces
a matrixW(s,t) with the size(s,xn), wheres are the num-
ber of scales andxn is the length of the magnetic field time
series. The level of correlation is reflected in the value of the
corresponding term in the matrix of wavelets and it indicates
the relative width of the magnetic hole and the index location
of the dip in the magnetic field time series. Once the index
of a candidate is known, a point by point algorithm was used
to determine from the magnetic field magnitude data, the ex-
act width by computing the difference between consecutive
points ([x(2)− x(1) x(3)− x(2) ... x(n)− x(n− 1)]),
wherex(1) is the index of the dip,x(n) is the maximum rel-
ative width determined by the wavelet transform. After deter-
mining the position and the width, we determine the linearity
of the hole by computing the field rotation across the hole:
θ = arccos((Ba ·Bb)/(‖Ba ×Bb‖)) < 10◦. Only linear holes
are considered to reduce the misidentification of structures
generated by other processes associated with the interplane-
tary discontinuities. Each magnetic hole is considered to be
a distinct event regardless of the proximity of other similar
events. Our observed mirror mode structure occurrence rate
is comparable with the results (Zhang et al., 2008; Soucek
et al., 2008). It is likely that among the detected events there
are also contributions from other types of discontinuities that
produce field decreases but which are not commonly con-
sidered magnetic holes. It is difficult to classify the nature
of the magnetic field drops based upon magnetic field alone
due to the obvious variations in the structure of the magnetic
hole (Fig.1). However in studying the mirror mode waves,
we are more interested in the relative value of the occurrence

rate than the absolute one. In other words, we are interested
in comparing the occurrence rate at various heliocentric dis-
tances in respect to time.

2.4 Statistics

Once the occurrence rate has been determined by the wavelet
detection algorithm, for both date sets (VEX and Cluster), a
probability distribution function (p.d.f.) is computed using a
kernel smoothing density estimation technique. This method
computes a probability density estimate of the occurrence
over the 3 months for each of the data sets. The smooth-
ness of the kernel density estimate is evident compared to
the discreteness of the histogram provided by the two occur-
rence vectors. This discrete appearance is a result from the
inherent statistical inefficiency of histograms as compared to
kernel estimators. The estimate is based on a normal ker-
nel function, using a window parameter that is a function of
the number of points in the occurrence vector. The density
is evaluated at one hundred equally spaced points that cover
the range of the data.

The kernel density approximation of probability density
function is defined by:

f̂b(x) =
1

mb

m∑
i=1

K
(x −xi

h

)
where b is the bandwidth,(x,x1,...,xi) are the indepen-
dent and identically distributed random variables sampled
from theK(x) distribution with an unknown densityf and
kernelKb – the scaled kernel with the property:Kb(x) =

1/b ·K(x/b), whereK is the standard normal distribution,
described by the probability density function:

K(x|µ,σ) =
1

σ
√

(2π)
e

−(x −µ)2

2σ 2

3 Results and conclusions

The two p.d.f. resulting from VEX (dashed line) and Clus-
ter (solid line) data are shown in Fig.3. Surprisingly they
are very similar in overall shape and even some fine features.
For example secondary maxima in Cluster data around 1 and
9 correspond to the secondary maxima in VEX around 1 and
distinct change in the slope of the distribution at 9. The mir-
ror instability is a kinetic instability, with some similarity to
the plasma beam instabilities. However the role of resonance
particles is played by ions with very small velocities (South-
wood and Kivelson, 1993). The growth rate and subsequent
nonlinear stage of evolution depends upon the peculiarities
of distribution of these small portion of ions. So it is very
unlikely and even impossible to explain the similarity of the
p.d.f. in Fig.3 by the generation mechanism. Such a simi-
larity can only be explained if indeed asRussell et al.(2008)
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assumed the magnetic holes are generated close to to the Sun
and are carried by the solar wind further and further, passing
on their way both the Venus and the Earth.
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