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Abstract. Artificial ionospheric plasmas descending from
the background F-region have been observed on multiple oc-
casions at the High Frequency Active Auroral Research Pro-
gram (HAARP) facility since it reached full 3.6 MW power.
Proximity of the transmitter frequency to the 2nd harmonic
of the electron gyrofrequency (2fce) has been noted as a re-
quirement for their occurrence, and their disappearance after
only a few minutes has been attributed to the increasing fre-
quency mismatch at lower altitudes. We report new experi-
ments employing frequency sweeps to match 2fce in the arti-
ficial plasmas as they descend. In addition to revealing the
dependence on the 2fce resonance, this technique reliably
produces descending plasmas in multiple transmitter beam
positions and appears to increase their stability and lifetime.
High-speed ionosonde measurements are used to monitor the
altitude and density of the artificial plasmas during both the
formation and decay stages.

Keywords. Ionosphere (Active experiments; Ionization
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1 Introduction

Significant artificial enhancements in plasma density dur-
ing high-power HF heating experiments at the High Fre-
quency Active Auroral Research Program (HAARP) facil-
ity (62.4◦ N, 145.15◦ W, 62◦ Magnetic) were first observed
in 2008 after expansion of the facility to a total power of
3.6 MW (Pedersen et al., 2009). Subsequent experiments
revealed the formation of rapidly descending layers of en-
hanced ionization sufficiently dense to locally absorb power
from the HF beam to produce a glowing spot of artificial
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ionization near 150 km altitude (Pedersen et al., 2010). Ad-
ditional cases have recently been identified by Kendall et
al. (2010). In all previous cases, the HAARP transmitter
was operated at 2.85 MHz, which matches the 2nd harmonic
of the local electron cyclotron frequency (2fce) at approxi-
mately 230 km altitude. Lower F-region matching altitudes,
corresponding to higher transmitter frequencies, were not
possible due to a gap in the HAARP frequency allocation
above 2.85 MHz. Proximity to 2fce is known to greatly en-
hance optical emissions and fluxes of suprathermal electrons
(Kosch et al., 2005, 2007; Djuth et al., 2005). Increas-
ing offset from this resonance was suggested by Pedersen
et al. (2010) as a possible reason for the generally unstable
nature of the artificial plasmas, which disappeared rapidly
upon reaching 150 km altitude, where 2fce is ∼2.95 MHz, or
100 kHz above the 2.85 MHz transmitter frequency. In this
article we summarize the results of a large number of fre-
quency sweep experiments designed to maintain the trans-
mitter frequency near 2fce within the artificial plasmas as
they descend in altitude. These experiments required a tem-
porary frequency authorization to operate outside the stan-
dard HAARP allocation.

2 Experiment

The frequency sweep experiments were carried out between
11 and 21 November 2009. A typical experiment consisted
of full-power (3.6 MW total power,∼440 MW effective radi-
ated power) fixed-frequency O-mode heating for one minute
at 2.85 MHz to precondition the F-region followed by a fre-
quency sweep from 2.85 MHz (2fce at 230 km) to 2.95 MHz
(150 km) in 10 or more fixed steps over periods of 6–15 min.
This 100 kHz span represents the largest frequency interval
which could be swept without the HAARP transmitter be-
ing turned off for retuning. Most experiments were run in
late twilight when optical observations were possible and the
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Fig. 1. Frequency sweeps from 2.85 to 2.95 MHz on 14 November 2009 (left) and 19 November 2009 (right). The 14 November sweep took
6 min and the transmitter was pointed at magnetic zenith, while the 19 November sweep took 12 min and the beam was vertical. Contours
of plasma frequency are shown in black for 2.0 and 3.0 MHz where they exist (3.0 MHz contours appear only inside the red contours on the
right panel and are too crowded to be labeled). Matching altitudes forfT = 2fce, fT = fuh, andfT = fp are shown in blue, green, and red,
respectively. The terminator is shown as a dashed black line.

background ionospheric profiles were conducive to probing
the double resonance between the upper hybrid frequency
(fuh) and 2fce. The primary diagnostic was a DPS-4D
ionosonde (Reinisch et al., 2009) operated at the HAARP
site in a fast sweep mode covering 1–5 MHz every 10 s. As
the HAARP transmitter interferes with ionosonde reception
within ∼ ±500 kHz of the transmitter frequencyfT, prevent-
ing crucial determination of whether the plasma frequencyfp
is above or belowfT (“overdense” or “underdense,” respec-
tively), we blanked the HAARP transmitter for up to 5 s each
minute to reduce interference or allow short high-resolution
ionograms to be made. The artificial plasmas typically per-
sisted through blanked intervals of up to 5 s, but were gener-
ally observed to lose resonance and decay if the transmitter
was off for more than 10 s.

Figure 1 shows two examples of frequency sweeps and
the artificial descending layers produced by them on 14
and 19 November 2009. Both modes started with 1 min of
fixed 2.85 MHz, then stepped in frequency by 5 kHz to reach
2.95 MHz after 6 min (14 November) or 12 min (19 Novem-
ber), dwelling on each frequency for 18 s or 36 s, respec-
tively. At the conclusion of the sweep the transmitter re-
mained at 2.95 MHz until being manually turned off. Con-
tours of plasma density in the background ionosphere and ar-
tificial layers were derived by inversion of hand-scaled iono-
gram traces. Note that topside density profiles are not observ-
able with the ionosonde technique; contours on the topsides
of both artificial and natural ionospheric layers are a product
of the model used by the inversion software.

For the experiment beginning at 02:45 UT on 14 Novem-
ber (left panel), the transmitter beam was directed at the mag-
netic zenith (202◦ az 14◦ zen). At the start of the experiment,
the matching altitudes forfp (red) andfuh (green) were be-
low 2fce (blue) by about 15 and 25 km in altitude, respec-

tively. The contours descended slightly during the first few
minutes of heating, but no clear artificial layer formed un-
til 02:48 UT when the frequency sweep brought 2fce close
to fuh. After this, the plasma density contours descended at
an average rate of∼170 m s−1 and closely paralleled 2fce,
with fuh maintaining a∼5 kHz separation. Near 02:50 UT,
the background ionosphere became underdense butfp within
the artificial layer reachedfT and remained just below it for
the next 4 min. Thefuh contour crossed 2fce at 02:51 UT as
the density contours began to lag the transmitter frequency
ramp. The layer persisted near∼150 km altitude for 2 min
afterfT reached 2.95 MHz, withfuh ≈ 2fce in the artificial
layer. In this particular case, the decay of the layer corre-
sponded closely with the terminator crossing, although arti-
ficial descending plasmas were formed during both prior and
later experiments on this same night.

For the case on 19 November (right panel), the transmit-
ter beam was directed vertically, and the background iono-
sphere was at higher altitude, withfuh already close to 2fce.
Although the background ionosphere remained underdense
throughout this experiment, with the peak frequencyf0F2 de-
clining from 2.70 to 2.55 MHz between 02:25 and 02:45 UT,
the density contours began descending almost immediately,
and the artificial layer became overdense much of the time
after 02:32 UT, exceeding 3 MHz in many cases. The aver-
age rate of descent was 120 m s−1. Unlike the 14 November
case,fuh remained well below 2fce in altitude throughout,
maintaining a steady 15–20 kHz separation. We note that in
this and some other cases, the descending layers appeared
in the ionosonde data as pairs of traces 10–20 km apart in
range. We have not attempted to resolve multiple artificial
layers with the contours in the figure, and have scaled only
the lowest observed artificial layer. As horizontally separated
echoes at the same altitude would need to be 20◦–28◦ apart to
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Fig. 2. MUIR radar short-pulse ion line echoes for a frequency
sweep in the magnetic zenith from 01:37 to 01:50:30 UT on 19
November 2009. Contours of plasma frequency at 2.0 and 3.0 MHz
are superimposed (black), as are contours wherefT = fp (red),fuh
(green) and 2fce (blue).

produce the 10–20 km range difference observed, we believe
the rise in altitude after 02:40 UT is the result of a higher alti-
tude layer becoming apparent in the contours as a lower layer
disappears.

An earlier frequency sweep on 19 November 2009, be-
ginning at 01:37 UT when the background ionosphere was
overdense and lower in altitude, further illustrates the depen-
dence of layer formation on proximity to 2fce. This experi-
ment was identical to the 02:26 UT sweep in Fig. 1 except the
transmitter beam was directed at the magnetic zenith. Dur-
ing this period, the MUIR radar (Oyama et al., 2006) was
pointed at the magnetic zenith and operating in narrow-pulse
ion line mode, which detects enhanced echoes from decay
of Langmuir waves excited by the HAARP transmitter. The
reflection height at 2.85 MHz at the start of the run was be-
low 200 km altitude, compared to 230 km for 2fce. After the
first minute of heating, a slight lowering of the bottomside
became apparent, corresponding to a sharp decrease in the
altitude of radar echoes, but after this initial effect there were
no significant changes in the ionosphere for the next 6 min.
As 2fce approachedfp andfuh near 01:45 UT, however, a
layer became apparent on the bottomside and descended at
∼110 m s−1 to almost 140 km over the next 5 min,fuh and
2fce closely paralleling each other with a separation of 10–
20 kHz. As with many other cases, the descending layer be-
came overdense toward the end of the sweep, with MUIR
radar echoes strengthening. At 01:50:30 the transmitter went
off, and the layer decayed in place.

An additional test of dependence on the 2nd gyroharmonic
is provided by comparing descending (in matching altitude)
sweeps with ascending sweeps. Figure 3 shows two repeti-
tions of such an experiment carried out between 02:00 and
02:18 UT on 12 November 2009. The transmitter stepped
from 2.85 Mhz to 2.95 MHz in 20 kHz steps over 5 min and
then reversed in frequency after 1 min at 2.95 MHz, the cycle
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Fig. 3. Multiple triangular frequency sweeps from 02:00 to
02:18 UT on 12 November 2009.

repeating after reaching 2.85 MHz. As the contours show, ar-
tificial plasmas were produced and followed 2fce downward
both times, but died off when the matching altitude rose back
up into the natural F-region. In this particular experiment
fuh remained very close to 2fce in the descending phase.
Estimated descent rates were 210 m s−1 for the sweep start-
ing at 02:00 UT, and 220 m s−1 for the second repetition at
02:10 UT. The relatively large frequency steps and high de-
scent rates in this experiment perhaps prevented the descend-
ing plasma from building up to larger densities: the spotty
appearance of the contours offuh suggest that the density
barely reachedfuh to within the error in the ionogram scal-
ing.

The high temporal resolution of the DPS-4D ionosonde
deployed specifically for the November 2009 experiments al-
lowed accurate measurements of the decay of the artificial
plasmas to be made for the first time. Measurements of layer
decay provide a critical constraint on any explanation of layer
production, as the production mechanism must be capable of
maintaining the plasma density against the losses causing the
decay once production ceases. Here we examine the plasma
densities after the frequency sweep shown in Fig. 2 ended
at 01:50:30 UT, while an artificial layer was present at low
altitude just below 150 km. The transmitter was off for 30 s
before beginning a fixed-frequency mode at 01:51:00. This
eventually created a new descending layer, but the original
layer lost resonance during the 30 s off period and contin-
ued to decay even after the transmitter came back on. The
left panel of Fig. 4 shows density profiles within the decay-
ing layer; the portion of the profiles above the peak is shown
as dashed, as the topside is not observable and results from
a model used by the ionogram inversion software. Thirty
seconds prior to shutdown, the peak frequency in the artifi-
cial layer (f0A) was slightly over 3.0 MHz. Peak frequency
dropped steadily over the course of the first minute, at which
point f0A had declined below 2.0 MHz. Ionogram echo
traces were still visible for approximately another minute,
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Fig. 4. Left: density profiles at 10 s resolution from high-speed ionograms near the end of the frequency sweep experiment in Fig. 2. Right:
loss (L) and production (Q) rates estimated from peak densities as the layer decayed.

but at these much lower densities the decay was greatly re-
duced, the profiles bunching up nearf0A = 1.5 MHz. A plot
of peak density (NmA) vs. time (right panel) clearly shows
the decay of the density, which when fit to a standardN2

loss formula gives a loss coefficient of 1.6×10−7 cm3 s−1.
This rate closely matches the theoretical rate (Rees, 1989)
for a plasma with the 65% NO+ and 35% O+2 composition
specified by the IRI model at a reduced temperature of 800 K,
which is in turn very close to the neutral temperature of 744 K
predicted by the MSIS model. Although recombination rates
decrease with the higher temperatures expected during heat-
ing, this measurement made soon after turn-off provides an
upper limit of∼2300 cm−3 s−1 for the production needed to
maintain the observed density of 1.2×105 cm−3 against re-
combination.

3 Discussion

The primary result of these frequency sweep experiments is
a direct confirmation that the 2fce resonance is key to pro-
duction, reproduction, and maintenance of the descending
artificial plasmas. When the transmitter is swept upward in
frequency (downward in altitude), artificial plasmas were ob-
served to begin forming almost every time 2fce nearedfuh,
and the plasma descended to maintainfuh on the bottomside
of the layer just below 2fce (in both altitude and frequency)
whenever the sweep rate was slow enough for the process to
keep pace. The artificial plasmas were also more stable and
longer-lived, remaining detectable for up to 20 min compared
to the∼3 min life cycles seen at fixed frequencies. Reverse
ramps sweeping upward in matching altitude sometimes pro-
duced small bumps in density contours when 2fce crossed

fuh, but resulted in loss of resonance and decay if a layer
was already present. The strong dependence on 2fce explains
the sporadic nature of prior observations: when frequencies
were limited to 2.85 MHz or lower (altitudes above 230 km),
layer initiation depended on the specific altitude of the back-
ground ionosphere, and resonance close to 2fce could not be
maintained locally in the plasma as it descended in altitude.
Frequency sweeps have an additional advantage of requiring
only a rough estimate of the true density profile and reso-
nance altitudes, which can be difficult to determine in real
time.

While frequency sweeps represent a practical break-
through, allowing artificial descending layers to be produced
almost on demand and in multiple transmitter beam posi-
tions, there are also implications for the physical mecha-
nisms operating to create the plasmas. The strong prefer-
ence for descending (in matching altitude) frequency ramps
over ascending ramps or fixed frequencies clearly illustrates
the dominant role of local resonance within the descending
plasma. This is confirmed by ion line echos from the MUIR
radar, which also originate primarily from the bottomside
of the artificial layers just below the reflection height. The
observed decay of the layers after more than∼10 s with-
out power transmission also indicates that the layers are lo-
cally produced and maintained. Non-local effects depen-
dent on transport of either plasma or accelerated electrons
from higher altitudes could be expected to resume after even
longer breaks, and should be able to also produce lower-
density non-resonant artificial plasmas. These have not been
observed thus far: all layers not already decaying have been
dense enough forfT to match at leastfuh to within the mar-
gin of error in the ionosonde measurements. Decay appears
irreversible, regardless of transmitter power or frequency,
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once densities drop belowfuh, again with allowance for mea-
surement uncertainty. The presence of MUIR radar ion line
echoes even in apparently underdense regions suggests that
the layers may actually be overdense to within the uncer-
tainty in the ionosonde measurements, and that Langmuir
waves may play a significant role in their formation, even
though there are clear cases (such as the right side of Fig. 1)
where artificial layers appear to be initiated in a completely
underdense ionosphere.

4 Conclusions

Frequency sweeps through a previously unavailable band at
the HAARP facility have allowed a large number of artifi-
cial descending layers to be produced in multiple beam po-
sitions. Production is optimized when when 2fce is nearfuh
in the background ionosphere and the frequency is swept to
maintain the double resonance locally in the artificial plasma
as it descends. Typical rates of descent range from 100–
250 m s−1, with fuh generally remaining 5–20 kHz below
2fce. The artificial layers are able to persist up to∼10 s with-
out power from the transmitter, but lose resonance and decay
irreversibly for longer periods. These facts limit the role of
non-local production mechanisms and indicate that the dom-
inant processes require resonance in the artificial plasma.
High-speed ionosondes have allowed loss rates in decaying
layers to be measured, providing a quantitative constraint on
plasma production mechanisms.

We expect this technique for reliable reproduction of this
recently discovered phenomenon to greatly aid experimenta-
tion and research into the physical mechanisms and potential
uses of artificial ionospheric plasmas at the HAARP facility,
other existing or planned heating facilities, or under a wider
range of ionospheric and transmitter conditions.
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