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Abstract. The fast solar wind is permeated by all kinds of
plasma waves which have a broad range of wavelengths and
occur on many different scales. Kinetically, a plasma wave
induces ion-wave interactions which can within the quasi-
linear theory be described as a diffusion process. The impact
this diffusion may have on the shape of the proton velocity
distribution function (VDF) is studied. We first analyse the-
oretically some of the possible kinetic effects of the waves
on the ions. Then the model predictions are compared with
the detailed in-situ plasma measurements made by the Helios
spacecraft on 14 April 1976 at 0.3 AU and found to comply
favourably with resonant diffusion of protons in obliquely
propagating magnetohydrodynamic waves. In particular, the
shape at the edges of the VDFs at positive proton velocities in
the wind frame can be well explained by cyclotron-resonant
diffusion of the protons in oblique fast magnetoacoustic and
Alfv én waves propagating away from the Sun.

Keywords. Interplanetary physics (MHD waves and turbu-
lence; Plasma waves and turbulence; Solar wind plasma)

1 Introduction

The solar wind is accessible to in situ plasma measurements,
and thus represents a unique space plasma laboratory to study
generally wave-particle interactions. Kinetic processes in the
solar wind have been reviewed byMarsch(2006) a couple
of years ago. The measured proton velocity distributions
in fast solar wind reveal as salient non-thermal features the
strongly anisotropic core and field-aligned beam (Marsch et
al., 1982). The origin and regulation of these characteristics
remain under discussion, but it seems clear that waves play a
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major role in shaping the observed velocity distribution func-
tions (VFDs). Marsch and Tu(2001a) found the first evi-
dence for the occurrence of diffusion-related plateaus formed
by the solar wind protons. They appeared to be in resonance
predominantly with parallel Alfv́en/ion-cyclotron waves and
to undergo continuously pitch-angle scattering. The resulting
temperature anisotropy and plateau formation through res-
onant pitch-angle diffusion of solar wind protons was then
studied byTu and Marsch(2002). Moreover,Bourouaine
et al. (2010) could show that the proton anisotropy and the
Alfv én/ion-cyclotron-wave intensity were linked and posi-
tively correlated.

In this paper, we will corroborate these findings and
demonstrate that wave-induced diffusion can significantly
shape the observed VDFs, in particular in their tails de-
fined as regions below the 10 % level of the respective max-
ima. It turns out that oblique propagation is the key property
which enables particles at positive as well as negative reso-
nant speed (referred to asV‖ in the solar wind frame along the
local magnetic field) to diffuse effectively along segments of
circles centered in the Alfv́en velocity. This basic process is
mainly driven by low-frequency and obliquely propagating
Alfv én/ion-cyclotron waves and by slow/fast magnetosonic
waves, of which the Alfv́en waves are known to be the ma-
jor and energetically dominant component of the turbulence
in fast solar wind streams (Tu and Marsch, 1995). The
slow mode waves (sometimes also interpreted as pressure-
balanced structures, PBS, occurring on a wide range of scales
(Marsch and Tu, 1993; Kellogg and Horbury, 2005; Yao et
al., 2011; Howes et al., 2011)) also contribute, but the oblique
fast mode waves seem to be least important (Matthaeus et al.,
1991; Marsch and Tu, 1993; Tu and Marsch, 1994).
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2 Quasi-linear diffusion operator

Before we discuss the physical consequences of the diffusion
equation, we reiterate some of the basic equations and defi-
nitions needed subsequently. The quasi-linear theory (QLT)
has been described in many seminal original articles. There-
fore, we can here refer to the textbooks ofMelrose and
McPhedran(1991) andStix (1992) for the original literature.
In QLT it is assumed that the electromagnetic wave fields
can generally be Fourier-decomposed in plane waves with
the frequency,ω(k), and growth rate,γ (k), for any particu-
lar wave mode for a given wave vectork, which may have
any direction with respect to the constant background field,
B0. We may also require the related wave dispersion rela-
tion, which for any linear wave mode in a multi-component
plasma has been calculated many times and can be found for
instance in the books ofStix (1992) or Brambilla(1998).

The spectral energy density of the magnetic field of a mode
is given byB(k) =| B̃(k) |

2 /(8π) and evolves according to

∂

∂t
B(k) = 2γ (k)B(k) , (1)

which follows from the Fourier decomposition of the mag-
netic field vector as

B(x,t)=

∑
k

B̃(k)eik·xe−i
∫ t

0 dt ′[ω(k,t ′)+iγ (k,t ′)] , (2)

wherex is the spatial coordinate andt is the time, and the
Fourier-transform,̃B(k), of the magnetic field vector,B(x),
are assumed to be defined such that they have the same phys-
ical dimension.

The quasi-linear diffusion equation describes the evolution
of the velocity distribution function,fj (V‖,V⊥,t), of any
particle speciesj in an inertial frame of reference, in which
the particles and waves are supposed to propagate. We will
throughout this paper assume that the VDF is normalized to a
density of unity. The general diffusion equation for any type
of waves in a magnetized plasma has originally been derived
by Kennel and Engelmann(1966). It is calculated in a trans-
parent way in the textbookStix (1992) and can be written
afterMarsch and Tu(2001b) andMarsch(2002) concisely in
the form

∂

∂t
fj (V‖,V⊥,t)=

+∞∑
s=−∞

∑
k

B̂(k)
1

V⊥

×

∂

∂α

(
V⊥νj (k,s;V‖,V⊥)

∂

∂α
fj (V‖,V⊥,t)

)
, (3)

where the pitch-angle gradient was introduced. It is given by
the combined velocity derivative

∂

∂α
= V⊥

∂

∂V‖

−

(
V‖ −

ω(k)

k‖

)
∂

∂V⊥

. (4)

The relevant phase velocity appearing here is given a name
of its own asC(k) = ω(k)/k‖. The magnetic field fluctua-

tion spectrum is normalized to the background-field energy
density:

B̂(k) =

(
B̃(k)

B0

)2(
k‖

k

)2 1

1− | k̂ ·e(k) |2
. (5)

The term in the denominator comes from the replacement of
the electric field by the magnetic field power density as de-
rived in Marsch(2002). The circular and longitudinal com-
ponents of the wave-polarization unit vector (see, e.g.Mel-
rose and McPhedran, 1991, or Mann et al., 1997, for multi-
species plasma) are here defined as

e±(k) = ex(k)± i ey(k) andez(k). (6)

Therebye− corresponds to right, respectivelye+ to left hand
polarization of the wave. In Eq. (3), it turned out to be physi-
cally meaningful to introduce what we may call an ion-wave
relaxation or wave-particle collision rate. It is defined as

νj (k,s;V‖,V⊥) = π�2
j δ(ω(k)−s�j −k‖V‖)

×|
1

2
(Js−1e+ +Js+1e−)+

Vj (k,s)

V⊥

Jsez|
2 . (7)

Note that the quantity (Eq.7) has indeed the dimension of
an inverse time or rate, and it can be considered as transi-
tion probability (Melrose and McPhedran, 1991) for inelastic
wave-particle scattering. Here we also introduced thes-order
resonance speed,

Vj (k,s) =
ω(k)−s�j

k‖

= C(k)−
s

y‖

VA, (8)

and made use of the Bessel function (with indexs), Js =

Js(k⊥V⊥/�j ), with Js(0) = δs,0. We defined above a nor-
malized parallel wave vector asy‖ = k‖VA/�j .

In the previous equations and in what follows the defini-
tions are as usual: The speed of light is denoted byc, the
ion charge byej , its density bynj , the mass bymj , and the
plasma frequency of speciesj is ω2

j = (4πe2
jnj )/mj . The

ion gyrofrequency carries the sign of the charge and reads
�j = (ejB0)/(mj c). The mass density of speciesj is de-
fined asρj = njmj , and the total mass density isρ =

∑
j ρj .

The Alfvén speed is based on it and thus defined asV 2
A =

B2
0/(4πρ). The fundamental Eq. (3), with all its ingredients

as listed above, is quoted here without derivation as the start-
ing point of our subsequent calculations.

3 Cyclotron resonance and diffusion plateaus

It is obvious from the structure of the diffusion operator (3),
involving the pitch-angle-gradient derivation (4), that any ve-
locity distribution which is a function of the quantity

E(V‖,V⊥) =
1

2

(
V 2

⊥
+V 2

‖

)
−

∫ V‖

0
dV ′

‖
C(V ′

‖
) (9)
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is conserved along the characteristics of Eq. (4). We here
assumed that the phase speed is a function ofV‖, and then
formally integrated it with respect to that variable (Isenberg
and Lee, 1996). Thus for a dispersion-less wave,E(V‖,V⊥)

is simply the specific kinetic energy of a particle moving in
the wave frame of reference, as it was defined previously by
the phase speedC(k). Therefore, any distribution function
fj = fj (E) is a steady-state solution of the diffusion equa-
tion.

In addition, the resonance condition must also be obeyed:

V‖ = C(y‖,y⊥)−
s

y‖

VA . (10)

Herey⊥ = k⊥VA/�j , and the phase speedC is assumed to
be given by the solution of a particular dispersion relation, of
which we will discuss typical examples below. Let us here
consider the general case,C(y) = g(y‖,y⊥)VA . Through the
resonance condition (10), we may then consider (at a fixed
k⊥) the parallel velocity to be a function of the parallel wave
vector, i.e. we haveV‖ = V‖(y‖), of which we can calculate
the derivative, in order to replace the differential in the inte-
gral (9), and thus change the variable of integration (Isenberg
and Lee, 1996). We obtain

dV‖

dy‖

=
dC

dy‖

+VA
s

y2
‖

= VA

(
s

y2
‖

+
dg

dy‖

)
, (11)

and with its help find that the integral in Eq. (9) which we
call I is equal to:∫ V‖

0
dV ′

‖
C(V ′

‖
) = V 2

A

∫ y‖

y0

dy′

‖
g(y′

‖
,y⊥)

(
s

y′2
‖

+
dg

dy′

‖

)
. (12)

For dispersion-less Alfv́en waves the situation becomes sim-
ple, asCA = VA , andV‖ = VA(1− s/y‖), and thusy0 = s.
Also, g = 1, and the derivative ofg vanishes. Then the in-
tegration can be readily carried out, and by exploiting the
resonance condition yields for Eq. (12) the simple result:
I = V‖VA . Then the energy (up to an arbitrary constant) per
mass unit becomes

EA(V‖,V⊥) =
1

2

(
V 2

⊥
+(V‖ −VA)2

)
. (13)

These solution characteristics define the quasilinear diffusion
plateaus, which in this case are circles centered at the Alfvén
speed, and are defined by the specific kinetic energy of a par-
ticle in the wave frame.

For strongly dispersive waves like ion-cyclotron waves,
the full dispersion relation is needed, and to solve the inte-
gral (12) one may require numerical integration. In the so-
lar wind context, this has been done byHeuer and Marsch
(2007) to evaluate the apparent diffusion plateaus in the mea-
sured VDFs of solar wind protons, which were first detected
by Marsch and Tu(2001a) in the Helios plasma data. Exem-
plary velocity distributions revealing distinct plateaus can be
found in these two papers.

4 Kinetic Alfv én waves: dispersion relation and impos-
sibility of cyclotron resonance

To discuss another important and non-trivial dispersion rela-
tion, we consider the so called kinetic Alfvén wave (KAW),
which is a dispersive plasma wave including an electric field
along the background magnetic field. The KAW theory has
a long history and many applications, in particular recently
to the solar wind in the context of gyrokinetic theory (Howes
et al., 2008). For a review of this wave in the space plasma
context see the paper byHollweg(1999). The simplified dis-
persion relation (here for cold electrons, but a more complete
treatment is contained in Hollweg’s paper) reads:

ω = k‖VA

√
1+(k⊥vp/�p)2

1+(k⊥c/ωe)2
, (14)

with the ion thermal speed defined asvj =
√

kBTj/mj , the
ion temperature asTj , and Boltzmann’s constant iskB. Thus
we find that the above functiong only depends onk⊥ and
consequently

CKAW = VA g(y⊥). (15)

Note, however, that this dispersion relation has only a limited
range of validity, and strictly speaking requires thatω � �j .
Here we will as a nontrivial example use the KAW and dis-
regard this restriction for the time being. Again like for the
Alfv én wave the derivative ofg for the KAW is zero, i.e.
g′

= 0, and thus the integral (12) can be directly evaluated as
follows,

I = gVA(V‖ +(1−g)VA), (16)

whereby the resonance conditionV‖ = VA(g − s/y‖) for a
KAW has been exploited. Except for an unimportant con-
stant, we obtain the plateau (energy) equation in the concise
form

EKAW (V‖,V⊥) =
1

2

(
V 2

⊥
+(V‖ −CKAW )2

)
. (17)

Note that according to Eq. (14) g > 1, and thus the phase
speed of the kinetic Alfv́en wave,CKAW , is always larger
than the Alfv́en speedVA .

We recall thatHollweg(1999) found the KAW to be ellip-
tically polarized in its transverse field components as well as
compressive, i.e. there also is a longitudinal component, so
that all three components of the polarization unit vectore(k)

are nonzero and contribute to the matrix element (Eq.7). The
lowest-order Bessel functions are about 0.5 forβj = 1 and
y⊥ ≥ 1, as considered here, and thusνj ≤ �j . Therefore, dif-
fusion in the KAW field would, in principle, occur quickly,
say within several gyro periods of the ions under considera-
tion, and its effectiveness would mainly depend on the rela-
tive spectral intensity (Eq.5), which determines the strength
of the “diffusion constant” at the relevantk in Eq. (3).
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Whereas forβj of order unity, the normalized parallel
wave numbery‖ can in fact be considerably smaller than one,
it has to be near one in low-beta conditions (like in the so-
lar corona) in order to match the resonance condition (10),
which for the standard lowest-order cyclotron resonance at
s = 1 of a thermal particle of speciesj , with V‖ = −vj prop-
agating oppositely to a KAW wave with phase speed given
by Eq. (15), can be written

VA/y‖ = gVA +vj . (18)

But for g ≈ 1 we haveCKAW ≈ VA , and then the KAW slows
down and according to Eq. (14) becomes a high-frequency
wave, a situation that is inconsistent with the original as-
sumptions made in its derivation (Hollweg, 1999). There-
fore, the resonance requirement always forces the corre-
sponding wave frequency to become close to the gyrofre-
quency,ω/�j = y⊥g k‖/k⊥ ≈ 1, and for KAW this is not
consistent with the original dispersion relation (14). In con-
clusion, the plateaus calculated formally for KAW in Eq. (17)
are not accessible to thermal protons, as they cannot comply
with the resonance condition.

It is worth noting that the typical anisotropy of the KAW
near the proton gyroscale can also be estimated from the dis-
persion relation (14) and shown to satisfy the following rela-
tion:

k⊥

k‖

= y⊥

g(y⊥)�p

ω
√

β
� 1, (19)

where, for the inequality, we used the values,β ≈ 1, g ≈
√

2,
y⊥ = 1 andω ≈ 0.1�p, for which the anisotropy of the KAW
fluctuations isk⊥/k‖ ≈ 14, i.e. they have a propagation an-
gle larger than 85◦. However, according to some recent
observations (Chen et al., 2010b,a) the inferred fluctuation
anisotropy is found to be onlyk⊥/k‖ ∼ 3. This ratio is sig-
nificantly smaller than the anisotropy ratio we expect for the
low-frequency KAWs.

According to the turbulence theory ofHowes et al.(2008),
the KAWs are argued to play a major role in the local heat-
ing and acceleration of the solar wind protons. One of the
consequence of their results is that the protons should re-
ceive thermal energy through Landau damping of the turbu-
lent fluctuations near the proton gyroscale. However, since
the dispersive KAWs requireω � �p, they can neither damp
via resonant ion-cyclotron wave dissipation nor cause the ob-
served (see the subsequent section) diffusion and resulting
perpendicular heating of the protons.

Recent work byHe et al.(2011) provided possible evi-
dence of Alfv́en/ion-cyclotron waves in the angle distribu-
tion of magnetic helicity of solar wind turbulence. There-
fore, the fluctuations observed (Chen et al., 2010b,a) around
and slightly above the proton inertial length scale are likely a
combination of oblique Alfv́en/ion-cyclotron and KAW/fast-
mode/whistler waves.

5 Cyclotron-resonance condition and the dispersion re-
lation of oblique magnetohydrodynamic waves

The problem arises under which conditions the above dis-
cussed general plateaus of Eq. (9) are really accessible to
the particles, and for which kind of waves other than parallel
ion-cyclotron waves. Accessibility is a condition for obtain-
ing effective diffusion in the considered wave field, a pro-
cess which depends essentially on the particles’ plasma beta,
βj = (vj/VA)2, since it determines the width of their dis-
tribution function in velocity space. But also the resonance
condition (10) must be obeyed. The corresponding resonance
speed (Eq.8) usually is much larger than the thermal speed,
i.e. | Vj (k,s) |� vj , and thus often there are no resonant par-
ticles among the thermal population. For example, for low-
frequency magnetohydrodynamic waves, such as Alfvén and
fast-mode waves (with| y‖ |� 0), the resonances (see Eq.10
again) lay out in the far tails of the distributions, where there
is only an exponentially small number of particles. Only if
s = 0 Landau resonance is possible, or fors = ±1 ands = ±n

with n larger than unity, the first- and higher-order cyclotron
resonances can occur, in which cases the parallel resonance
speed may become located within the thermal domain of the
distribution.

Let us first consider the cases of parallel propagating
left-handed (LH, minus sign below in Eq.21) Alfv én/ion-
cyclotron (AIC) mode waves and right-handed (RH, plus
sign below in Eq.21) fast-magnetoacoustic-whistler (FMW)
mode waves. Their approximate cold-plasma dispersion re-
lations give a phase speed that can be written as a function of
frequencyω as

C±(ω) = VA
√

1±x = VA
√

1± | y‖ | C±, (20)

with x = ω/�j . This equation can be solved for the positive
phase speed as a function of the parallel wave number and
yields

C±(y‖)

VA
= ±

1

2
| y‖ | +

√
1+(

1

2
y‖)2. (21)

This implies the well known result that the AIC wave slows
down to zero phase speed for large wave number(y‖ →

∞), whereas the FMW wave essentially propagates at the
Alfv én speed and then faster, where at higher wave number
the whistler dispersion relation,x = y2

‖
, is attained. Thus

whereas parallel AIC wave can resonate with the bulk ions,
the parallel FMW wave can according to Eq. (10) merely res-
onate with the tail but not core of an ion distribution. Conse-
quently, to move that cyclotron resonance into the thermal
part of an ion distribution function requires oblique wave
propagation.

Turning now to magnetoacoustic waves, we first note that
to fulfill the resonance requirement (Eq.10), one must con-
sider genuine high-frequency waves, which is to say short-
wavelength waves for whichk ≈| �j | /VA . Therefore, we
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will consider oblique slow and fast mode waves (or the
whistler wave), for which the parallel dispersion relation was
already given by theC+(y‖) of Eq. (21), and for which the
resulting phase speed varies, for 0<| y‖ |< 1, between one
to two timesVA . For oblique propagation and small plasma
betas, the phase speed is of similar size than that for parallel
propagation. As the dispersion of the fast-mode wave re-
mains still weak around the proton gyrofrequency, we shall
for the moment neglect dispersion entirely and consider (ac-
cording to our definition in Eq.8) the phase speed named
CF,S resulting from magnetohydrodynamics (Melrose and
McPhedran, 1991) for the fast and slow magnetoacoustic
waves. This speed only depends on the wave propagation
angleθ as follows:

CF,S(θ) =
ωF,S(k)

k‖

=

√
(1+ tan2θ)×√

1

2

(
C2

MS±
(
[V 2

A − C̄2
S]2+4V 2

AC̄2
Ssin2θ

)1/2
)
, (22)

with the magnetosonic speedCMS =

√
V 2

A + C̄2
S, the sound

speedC̄S, and tanθ = y⊥/y‖ = k⊥/k‖. For low beta, with the
definitionβ = (C̄S/VA)2, the fast mode will essentially travel
at the Alfvén speed in all directions, and thus the parallel
phase speedCF(θ) will with increasing angle grow strongly
beyondVA for oblique propagation. In contrast, the slow-
mode parallel phase speedCS(θ) will not change a lot with
θ but essentially stay at the sound speedC̄S, and similarly
the parallel Alfv́en phase speed simply is constant and given
by CA(θ) = VA . The resonance condition for Alfvén waves
(with ωA = VAk‖) of any propagation direction then yields
the resonant speed,

V‖(y‖) = VA

(
1−

s

y‖

)
=

VA

y‖

(
ωA

�j

−s

)
, (23)

and for the non-dispersive fast and slow waves the resonant
speed,

V‖(y‖) = CF,S(θ(y‖))−VA
s

y‖

=
VA

y‖

(
ωF,S

�j

−s

)
, (24)

with s = ±1 being the values for lowest-order cyclotron res-
onances. The angle is a function ofy‖ via the relation:
θ = arctan(y⊥/y‖). Therefore, in both cases the speedV‖

can attain any value between+∞ and−∞, if y‖ is allowed
to vary in the same parameter range. Thus for oblique prop-
agation (i.e. when boths = 1 ands = −1 have to be consid-
ered) the full resonance circle, given for instance by Eq. (13)
for Alfv én waves, becomes accessible to the ions. Disper-
sion makes the situation more complicated and will not be
considered here.

For sake of simplicity, we may now neglect they‖ depen-
dence ofθ in CF,S in Eq. (22), and can then integrate Eq. (12)
directly overy‖. Like in the previous section, the simple re-
sult is I = V‖CF,S, and thus up to an unimportant constant

the specific particle energy in the wave frame determines the
resonance plateaus, which are circles with aθ -dependent ra-
dius, and again given by the specific energy:

EF,S(V‖,V⊥,θ)=
1

2

(
V 2

⊥
+(V‖ −CF,S(θ))2

)
. (25)

We will use this equation in the subsequent section and ap-
ply it to measured ion velocity distribution functions. Con-
sidering moderately oblique, i.e. quasi-parallel propagation
0< θ < 45◦, and moderately short parallel wavelength, i.e.
y‖ < 1, then the fast mode speedCF is still close toVA . Ac-
cording to Eq. (13) for parallel and oblique Alfv́en waves and
Eq. (25) for fast waves, particles will mostly diffuse in cir-
cles centered on the Alfvén velocity. Considering only anti-
sunward (withy‖ > 0) and oblique wave propagation permits
to use Eqs. (23) and (24) to define theV‖ range, which for
s = 1 is: −∞ < V‖ ≤ 0; and fors = −1 it is: 0≤ V‖ < ∞,
wherebyy‖ is assumed to vary between zero and infinity. If
we have sunward waves as well, the reversed situation oc-
curs, however the in-situ wave and turbulence observations
(Tu and Marsch, 1995) indicate predominant outward prop-
agation of fluctuations of solar origin, which will cause an
asymmetry in the pitch-angle scattering of the particles in the
turbulent wave field. Using Eqs. (21) and (24), one can de-
termine fors = 1 the critical wavenumbery‖0 for the FMW
wave, at which the parallel speedV‖ vanishes. One finds

1

y‖0
=

1

2
y‖0+

√
1+

(
1

2
y‖0

)2

, (26)

which yieldsy‖0 ≈ 0.7 as numerical solution. This solution is
relevant for oblique propagation (i.e.y⊥ 6= 0) as well, which
permits one to consider also the cases = 1 for the FMW
wave, in addition to the cases = −1, which solely is allowed
for parallel propagation. After these theoretical preparations
we are ready to investigate the measured VDFs with respect
to possible signatures for resonant diffusion in waves.

6 Diffusion plateaus in observed velocity distributions

Ten years ago,Marsch and Tu(2001a) found the first clear
observational evidence in the Helios ion velocity distribu-
tion functions (VDFs) for the occurrence of diffusion-related
plateaus formed by the solar wind protons. The core of their
VFDs appeared to be in resonance predominantly with out-
ward (but partly also with inward) propagating left-hand po-
larized parallel ion cyclotron waves, and by wave-induced
pitch-angle scattering attain a bi-shell shape. The anisotropy
regulation and plateau formation through resonant pitch-
angle diffusion of solar wind protons was further studied
by Tu and Marsch(2002). ThenHeuer and Marsch(2007)
corroborated these results on the basis of Helios data anal-
ysis with a large statistical ensemble, encompassing many
typical proton VDFs in fast solar wind streams as measured
by Helios at various heliocentric distances. Particle-in-cell
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simulations of Alfv́en/ion-cyclotron wave scattering byGary
and Saito(2003) had previously also demonstrated the abil-
ity and effectiveness of this process in shaping proton VDFs.
Later,Marsch et al.(2004) studied in detail the temperature
anisotropy of the core part of the proton VDFs in associa-
tion with some related kinetic instabilities, andMarsch et al.
(2006) analysed the limits on the proton anisotropy as de-
fined by the fluid fire-hose and mirror instabilities for the
Helios data.

The above mentioned studies concentrated on the core part
of the VDFs of the protons, yet it had been known for some
time, see, e.g.Gary (1991), that a proton beam may inter-
act resonantly with right-hand polarized parallel fast magne-
tosonic waves, a process which can slow down and broaden
the beam observed in solar wind proton VDFs, and thus
regulate its drift speed (Dum et al., 1980; Marsch, 1991;
Daughton and Gary, 1998; Tu et al., 2002). Here we shall
also consider the proton beam and, by use of the theoretical
deliberations of the previous sections, analyse the effects of
pitch-angle scattering within the full range forV‖ (from mi-
nus to plus infinity). Our theoretical scope includes obliquely
propagating MHD waves and extends their dispersion rela-
tion into the kinetic domain, but we will consider only the
simplified wave phase speedC(k) of Eq. (22) without any
dispersive corrections. Note that in the following figures the
plasmaβ is low (ranging between 0.1 and 0.25), and thus
CF(θ) ≈ VA

√
(1+ tan2θ), which for quasi-parallel (< 45◦)

propagation is essentially equal to the Alfvén speedVA .

The subsequent Helios data (taken on day 105 of the
year 1976) analysis will focus on some of the very non-
thermal VDFs which are typical for the fast solar wind
near the Helios perihelion at 0.3 AU, which reveals (Marsch
et al., 1982) the most pronounced proton core temperature
anisotropies and fastest and hottest beams. The data analy-
sis procedures and methods to construct the distribution have
been amply described in the above references and need not be
repeated here. The VDFs shown below are not contaminated
by alpha particles, which were simultaneously measured by
the Helios plasma experiment (Rosenbauer et al., 1977) but
could reliably be separated from the protons in the VDFs pre-
sented subsequently.

The VDFs in the following figures are plotted as isoden-
sity contours (as continuous lines) at values of 80, 60, 40,
and 20 % of the maximum value of a given VDF and then
(as dotted lines) at values of 10, 3.3, 1, 0.33, 0.1 %. The cuts
through the three-dimensional VDFs are provided in planes
defined by the proton bulk velocities (Vx-axis, roughly corre-
sponding to the radial direction) and the local magnetic field
vector. TheVy-axis is just orthogonal to theVx-axis in that
plane. The field direction is along the line connecting the
maximum of a VDF with the Alfv́en point (in the tail) indi-
cated respectively by a fat dot.

The contours were obtained by interpolation of the VDF
between the actually measured points in phase space. Some

of these contours appear to be abruptly cut by wavy lines,
which is an artifact due to the limited angular resolution of
the plasma instrument which cannot always cover the VDF
fully. Superposed on the phase space density are concentric
circles, which all have a common center that is the position
of the Alfvén velocity, corresponding to a point located away
from the maximum on the straight thick line that represents
the local magnetic field direction and axis of gyro-symmetry.
The spacing of those circles has been chosen to match the
spacing of the measured contour lines at the sunward (nega-
tive V‖) side of the velocity plane.

The four VFDs displayed in Fig.1 in panels (a)–(d) re-
veal the striking characteristics of diffusion, which has the
effect that the isocontours follow the concentric circles pre-
scribed by proton pitch-angle scattering in weakly disper-
sive waves that propagate along the mean field with a paral-
lel phase speedC(k) = VA , like parallel or oblique Alfv́enic
fluctuations do. In particular their core parts are not simply
elliptically shaped but slightly bent, such that the contours
are smoothly nested to the curvature and embedded in the
bending of the larger circles. This matching of the core has
been described before and analysed in detail in the papers of
Marsch and Tu(2001a); Tu and Marsch(2002); Heuer and
Marsch(2007), in which parallel wave propagation was as-
sumed. In contrast, here we will also allow for oblique prop-
agation of Alfv́en and slow-mode waves and consider their
scattering effects.

At this point it is important to mention that diffusive par-
ticle scattering by waves may already take place in the inner
solar wind and outer corona, where major spectral character-
istics of radio scattering and scintillation inferred from the
density structure function has leadHarmon and Coles(2005)
to conclude from their radio measurements that “The high-
frequency flattening of the plasma density fluctuation spec-
trum can be explained simply by the enhanced compressibil-
ity of the linear, obliquely propagating Alfvén wave in the
ion cyclotron regime”.

Note that diffusion, which is due to weakly dispersive
Alfv én/ion-cyclotron waves propagating downstream away
from the Sun, can only affect protons with negativeV‖. Pro-
tons in the core with positiveV‖ require upstream waves
which cannot have come from the Sun directly but are gener-
ated locally. The work byJian et al.(2010) has clearly shown
their existence in the inner heliosphere at 0.3 AU from data
of the Messenger mission, and near Earth orbit at 1 AU from
STEREO data (Jian et al., 2009). The paper byBourouaine et
al. (2010) has revealed the close correlation of the waves with
the proton core temperature anisotropy in the Helios data.
According toHeuer and Marsch(2007) it is clear that disper-
sive upstream waves are needed to shape the positive-speed
half of the proton core distribution. Yet to study this is not
the aim of the present paper. Here we will concentrate on the
extended bulge and beam occurring at larger speeds, even be-
yond the Alfv́en speed (located at the center of the circular
ring system).
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Fig. 1. Proton velocity distribution functions in fast solar wind, with the corresponding Alfvén speed and wind speed indicated, together
with the plasma beta. Dark continuous isodensity contours relate to 80, 60, 40, and 20 % of the maximum, and the respective dotted contours
to 10, 3.3, 1, 0.33, and 0.1 %. The local magnetic field is the symmetry axis for these gyrotropic VDFs. The transverse straight line in
the perpendiuclar direction to the field corresponds to a parallel speed ofV‖ = 0, which defines the solar wind frame centered about in the
maximum of the core protons. The location of the Alfvén speed is indicated by a dark dot, which is the center of the circular diffusion
lines along which protons pitch-angle scatter in oblique Alfvén waves. The spacings of the concentric circles are determined by the variable
spacings (radii) of the measured contour lines, and given by their intersections with the negative and positiveV‖ axis, i.e. the magnetic field
direction. The abrupt cutoffs of some contours are artifacts induced by the finite resolution of the plasma instrument in velocity space. The
measurements of the VDFs were made on 14 April 1976 at the times (hours:minutes:seconds):(a) 22:43:08,(b) 23:07:26,(c) 23:20:56, and
(d) 23:42:32. All data correspond to a heliocentric distance of 0.3 AU.

Close inspection of the four panels (a)–(d) of Fig.1 shows
that the measured (dotted lines) contours near and below the
10 % level largely coincide, at the positive speeds beyond
the Alfvén speed, with the circles, and in fact are nicely fit-
ted by them. A note of caution is in order, though, that the
dotted contours might be less reliable statistically, as the cor-
responding counts in the plasma detector are comparatively
low, yet still above the critical one-count level. However,
a fortuitous coincidence seems unlikely, as the trends ap-
pearing in the comparison between measured contours and

predicted plateaus are systematic and lasting. For example,
in panel (a) the beam or heat-flux carrying tail of the pro-
ton VDF is formed by the widely spaced contours encircling
the local Alfvén speed of 155 km s−1. Similarly, in the pan-
els (b)–(d) the proton tail is very broad and appears to be
formed by the wide pitch-angle scattering contours. This
broad tail has a much higher intrinsic temperature (kineti-
cally defined by the limited partial second moment with re-
spect to the wave frame of reference) than the cooler core
part. Furthermore, the kinematics of pitch-angle scattering
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Fig. 2. Proton velocity distribution functions in fast solar wind, presented in the same format as in the previous figure. Note, however,
the stronger and more pronounced beams and their higher temperatures, which are apparent by the wide almost circular bulges. The mea-
surements of the VDFs were made on 14 April 1976 at the times (hours:minutes:seconds):(a) 20:38:13,(b) 22:02:35,(c) 23:09:27, and
(d) 23:10:08. All data correspond to a heliocentric distance of 0.3 AU.

automatically enhances the magnetic moment of a proton,
and as a net result this mechanism produces a temperature
anisotropy withT⊥ > T‖.

In Fig. 2 we present four other examples of proton VDFs,
now with a more distinct field-aligned tail or beam and a less
bent core component. Whereas the proton beam is broad and
roundish in the cases (c)–(d), where the circles closely em-
brace the beam plateau, the cases (a)–(b) reveal a significant
enhancement along the magnetic field, which corresponds to
a narrower beam of the kind predicted by simulation of the
parametric decay of Alfv́en waves according toAraneda et
al. (2008) andAraneda et al.(2009). Such a distinct proton
tail may develop due to Landau damping by acoustic daugh-
ter waves (or preexisting slow mode waves) on the core pro-
tons withV‖ > 0. But also here the cyclotron damping of

protons, undergoing pitch-angle scattering at speedV‖ > VA
by Alfv én/ion-cyclotron daughter waves, is quite obvious in
the perpendicularly stretched contours.

Such perpendicular heating of the beam is quite common
and was in fact early noticed in the ion data by the Helios
plasma experiment team (Rosenbauer et al., 1981), who al-
ready suggested to explain the nonthermal proton features in
terms of wave-particle interactions. Here we corroborate this
early finding quantitatively, but moreover interpret it con-
vincingly by quasi-linear pitch-angle scattering.

It should be noted that the observed VDFs can, at their
negative-speed halves, well be interpreted if the diffusion of
the protons (particularly of those that already have a substan-
tial magnetic moment) is caused by dispersion-less parallel
Alfv én waves. This is obvious in all of the VDFs shown

Ann. Geophys., 29, 2089–2099, 2011 www.ann-geophys.net/29/2089/2011/



E. Marsch and S. Bourouaine: Proton diffusion 2097

Vx (km/s)

V
y

(k
m

/s
)

!"#$ !%#$

Vx (km/s)

Fig. 3. Proton velocity distribution functions in fast solar wind, presented in the same format as in the previous two figures. Close inspection
shows, however, the more strongly deformed cores (continuous contours), which are bent around and nestled to the circular diffusion
lines and reach out to the positive half of velocity space. The measurements of the VDFs were made on 14 April 1976 at the times
(hours:minutes:seconds):(a) 21:59:53 and(b) 22:24:14. The data correspond to a heliocentric distance of 0.3 AU.

in Figs. 1 and 2. Moreover, these low-frequency waves
when being oblique can also resonate with protons at posi-
tive speeds according to Eq. (23). As mentioned before, the
fast-mode dispersion branch extends in frequency well above
the proton cyclotron frequency. Thus the oblique fast mode
waves can have much higher phase speeds than the Alfvén
speed, and therefore after Eq. (24) oblique fast waves can
also resonate with protons at positiveV‖.

However, a system of concentric circles surrounding the
corresponding phase speed only fits the measurements well
if the associated fast-mode phase speed remains close to
the Alfvén speed (see again Eq.21). This is of course en-
sured for waves withk < �p/VA , i.e. if y‖0 < 0.7 according
to Eq. (26), which means for waves belonging still to the
MHD turbulence domain in the solar wind (Tu and Marsch,
1995). Similarly, the KAWs which we discussed extensively
in the previous sections will normally also have a phase speed
which is clearly above the local Alfv́en speed (see again
Eq. 14 for y⊥ > 1). So, this wave mode also is unlikely to
shape the VDFs of solar wind protons, however it may have
an effect on the suprathermal electrons.

In conclusion, oblique wave propagation is essential in
enabling the protons to diffuse across the lineV‖ = 0, i.e.
from negative fors = 1 to positive fors = −1 parallel reso-
nant speed according to Eq. (23), for the oblique left-handed
Alfv én/ion-cyclotron wave. Similarly, this transition across
the lineV‖ = 0 is enabled by an oblique fast-mode wave, i.e.
from negative (fors = 1) to positive (fors = −1) parallel res-
onant speed according to Eq. (23), assuming that the wave
frequenciesωA andωF are positive and smaller than�p, con-
sistent with the phase speed being near the Alfvén speed.

Two exemplary VDFs, which clearly indicate that such
diffusion from negative to positive resonant speeds does oc-
cur, are shown in Fig.3, with both panels (a)–(b) being set up
in the same format as the ones shown before. Here the per-
pendicular (in the direction of the temperature anisotropy)
line indicates the location ofV‖ = 0, which about coincides
with the position of the maxima of the VDFs. Note that the
dotted contours are clearly bent around and largely follow the
circular plateau lines, which demonstrates that the diffusion
process does not stop atV‖ = 0 but goes well beyond that
border. This is even more remarkable as the measured con-
tours are sparsely interpolated but their derived curvatures
are fairly close to being circular. We recall that dispersion
of the waves (most relevant in the core) would lead to other
shapes of the VDFs, as was shown previously byHeuer and
Marsch(2007). Apparently, wave dispersion effects are of
minor importance in the tails of the distributions (given by
the dotted contours). However, for this to be the case oblique
propagation of the waves at work is essential, because only
then can diffusion occur over wide segments of the plateau
circles that are centered at the Alfvén speed.

7 Conclusions

We have analysed the effects that wave diffusion can have
on the shape of the proton velocity distribution functions
in the fast solar wind. The basic predictions of quasilin-
ear theory for wave-particle interactions have been largely
validated through a detailed comparison with the in-situ
plasma measurements made by the Helios spacecraft. The
results obtained agree favourably with the physical picture
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of resonant diffusion of the protons in obliquely propagating
Alfv én/ion-cyclotron waves below and fast magneto-acoustic
waves around the proton cyclotron frequency.

As the measured contours not always fully match the sim-
ple circular plateaus for non-dispersive waves, we may con-
clude that the wave-scattering of the protons is partly inelas-
tic and thus associated with weak absorption or emission
of the waves involved, processes which are important for
the dissipation of magnetohydrodynamic turbulence in the
fast solar wind where Alfv́enic fluctuations are the prevail-
ing component. Also, dispersion effects may be important
even in the tails of the VDFs, but certainly they matter in the
core of the VDFs as was shown in our previous work cited
above. Like it, the present study showed that the solar wind
plasma while carrying large-amplitude turbulent fluctuations
cannot remain Maxwellian. In a self consistent way the pro-
ton diffusion in the wave field strongly distorts the VDFs and
gives them their observed nonthermal shape, typically with a
bi-shell anisotropic core and substantial beam along the mag-
netic field.
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