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Abstract. The quasi-linear dynamics of resonant Weibel
mode is discussed. It is found that nonlinear saturation of
Weibel mode is accompanied by substantial modification of
the distribution function in resonant region. With the growth
of the wave amplitude the parabolic bell-like form of the
electron distribution function in this region converts into flat-
ter shape, such as parabola of the fourth order. This results in
significant weakening of the resonant interaction of the wave
with particles. The latter becomes weaker and then becomes
adiabatic interaction with the bulk of the plasma. This is sim-
ilar to the case of Bernstein-Greene-Kruskal (Bernstein et al.,
1957) electrostatic waves. The mathematical similarity of the
Weibel and magnetic mirror instabilities is discussed.

Keywords. Interplanetary physics (Plasma waves and turbu-
lence)

1 Introduction

In 1959 E. Weibel showed (Weibel, 1959) that velocity space
anisotropy instability includes a growing purely aperiodic
electromagnetic mode even in the absence of an external
magnetic field. This instability generates a magnetic field
in a finite range of wave numbers. The ions in this process
form a fixed neutralizing background. Far from the instabil-
ity threshold when the temperature anisotropy is very strong
the Weibel instability transforms into the filamentation insta-
bility.

Weibel instability is quite common in laboratory and astro-
physical plasmas. It serves as one of the basic mechanisms
of conversion of the free energy stored in the inversely pop-
ulated plasma into magnetic field energy. It can be driven
in pulsar winds (Kazimura et al., 1998), gamma-ray bursts,
and in their afterglows (Medvedev and Loeb, 1999; Gedalin
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et al., 2010). Recently Schlickeiser and Shukla (2003) dis-
cussed the generation of cosmological magnetic fields by the
Weibel instability. In terms of the mathematical description
the Weibel instability is somewhat similar to the magnetic
mirror instability (Pokhotelov et al., 2010). Furthermore,
the Weibel-type instabilities can play an important role in
the plasma processes related to magnetic reconnection oc-
curring in the vicinity of the Earth’s magnetopause and in
the magnetic tail (Karimabadi et al., 2004; Ricci et al., 2004;
Daughton et al., 2004).

The paper is structured as follows: in Sect. 2 we derive
the Weibel dispersion relation for the arbitrary form of the
electron distribution function. Section 3 is devoted to the
study of quasi-linear modification of the electron distribution
function. It is shown that major modification occurs in the
resonant region. The derivation of the nonlinear instability
growth rate and estimation of the amplitude level in the satu-
rated state is given in Sect. 4. Our discussion and conclusions
are found in Sect. 5.

2 Basic equations

We consider the electron-ion plasma where ions have the
standard Maxwellian distribution and electrons take the
anisotropic bi-Maxwellian form

F0 =
n

πvTxvTz

exp

(
−

v2
x

v2
Tx

−
v2

z

v2
Tz

)
, (1)

whereF0 is the electron velocity distribution function in-
tegrated overvy, n is the plasma number density,vTx(z) =

(2Tx(z)/m)1/2 is the x- (z-) component of the thermal elec-
tron velocity,Tx(z) is the x- (z-) component of the electron
temperature andm is the electron mass. For non-Maxwellian
distribution functions the Weibel instability has been recently
analyzed by Zaheer and Murtaza (2007). The wave phase
velocity of the Weibel mode is much greater than the ion
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thermal velocity and due to that the ions do not contribute
to the Weibel mode dispersion relation.

The magnetic and electric fields are chosen to be linearly
polarized and normal to the wave vector. The Fourier com-
ponents of the electric and magnetic fieldsE andB are con-
nected through the impedance ratio (Faradey’s law)

Ex/By = ω/k with By = Bk exp(−iωt + ikz), (2)

whereω andk are the wave frequency and the wave number,
respectively.

The pertubation of the electron distribution function for
the Weibel-type perturbations is

δFk =
ie

m

Bk

k
vx

(
∂F

vx∂vx
−

∂F

vz∂vz
+

ω

ω−kvz

∂F

vz∂vz

)
, (3)

whereF is the background electron distribution function.
The first two terms on the r.h.s. of Eq. (3) in the round

brackets describe the effect of the electron temperature
anisotropy. Recalling the case of the magnetic mirror insta-
bility (Pokhotelov et al., 2002) one finds that they are similar
to the action of the mirror force. The last term is due to the
interaction with resonant electrons.

We consider the low-frequency limitω � kvz. In this case
the third term in Eq. (3) is always small except for the parti-
cles having very smallvz velocities. We note that contribu-
tion of these particles can be comparable or even greater than
that coming from the hydromagnetic terms. The expansion
of the resonant denominator in this case reads(ω−kvz)

−1
=

−iπδ(vz)/|k|−P
(
1/kvz+ω/k2v2

z

)
, whereδ(x) is the Dirac

delta function andP stands for the Cauchy principal value.
With the help of this expansion the perturbation of the distri-
bution function takes the form

δFk =
ie

m

Bk

k
vx

[
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−
iπω

|k|
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v3
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)]
.(4)

Making use of Eq. (4) and the Amṕere’s law one obtains the
Weibel dispersion relation for the arbitrary form of the un-
perturbed distribution function

I2 − 1−
k2c2

ω2
p

−
iπω

|k|n

∫
v2

x
∂F

vz∂vz
δ(vz)dvxdvz

+
ω2

k2
I1 = 0, (5)

wherec is the velocity of light andωp is the Langmuir fre-
quency.

We took into account that contribution of the term contain-
ing P(1/kvz) in the expansion of the resonant denominator
vanishes and the expressions forI1 andI2 are given by

I1 = −n−1P(

∫
v2

x
∂F

v3
z∂vz

dvxdvz), (6)

and

I2 = −n−1
∫

v2
x

∂F

vz∂vz
dvxdvz. (7)

In contrast to the standard dispersion equation for the zero-
frequency dispersion relation Eq. (5) is quadratic equation.
Of course the addition term, containingω2, is small as
ω2/k2v2

T � 1 (wherevT is the electron characteristic ther-
mal velocity) relative to other terms. However, as it will be
shown in what follows, in the nonlinear regime it may play
an important role.

In the linear limit decomposing the wave frequency in the
dispersion relation (5) one obtains

ωR

(
π

|k|n

∫
v2

x
∂F

vz∂vz
δ(vz)dvxdvz−

2γ

k2
I1

)
' ωR

π

|k|n

∫
v2

x
∂F

vz∂vz
δ(vz)dvxdvz = 0, (8)

which shows that Weibel mode is nonpropagating zero-
frequency modeωR = 0. It becomes growing whenI2−1>

0 with the growth rate given by

γ = −
|k|n

π

(
I2−1−

k2c2

ω2
p

)
∫

v2
x

∂F
vz∂vz

δ(vz)dvxdvz
. (9)

The maximum growth rate is attained atk = kmax given by

kmax=
ωp

31/2c
(I2−1)1/2, (10)

and is

γmax=
2n

33/2π

ωp

c

(I2−1)3/2∫
v2

x (∂F/vz∂vz)δ(vz)dvxdvz
. (11)

Substituting into Eq. (11) the bi-Maxwellian velocity distri-
bution (1) one finds

γ =
|k|vTz

π1/2

Tz

Tx

(
Tx

Tz
−1−

c2k2

ω2
p

)
. (12)

The expressions for the optimal value of the wave number
k = kmax and maximum value of the growth rate in the case
of bi-Maxwellian distribution are now take the form

kmax=
ωp

31/2c

(
Tx

Tz
−1

)1/2

, (13)

and

γmax=
2

33/2
ωp

vTz

c

(
Tx

Tz
−1

)3/2

. (14)

Actually, the quantityI2−1 defines the instability threshold
for the arbitrary distribution function. In the particular case
of bi-Maxwellian electrons it reduces to the standard value
of threshold condition,Tx/Tz−1� 1.
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3 Nonlinear variation of the electron velocity distribu-
tion function

In order to incorporate the effect of quasi-linear (QL) modifi-
cation of the distribution function we assume that the coeffi-
cients in Eq. (3) are not fixed but slowly vary under the action
of the QL effects. The equation that controls the QL modifi-
cation can easily be obtained by making the space averaging
of Vlasov equation and is

∂F

∂t
=

e

m

∑
k

(
E∗

k +v×B∗

k
) ∂δFk

∂v
, (15)

where asterix denotes the complex conjugate.
Substituting Eq. (3) into Eq. (15) one finds

∂F

∂t
=

e2

m2
v2
x

∑
k

γk
|Bk |

2

k2

∂

∂vz

(
1

v2
z

∂F

∂vz

)
. (16)

We took into account that Weibel instability is the zero-
frequency mode and thus the frequencyωk , entering Eq. (3),
can be replaced byiγk , whereγk the wave amplitude growth
rate. Furthermore, the major change in the distribution func-
tion occurs in the region of smallvz velocities. This allows us
in the right-hand side of Eq. (16) to retain only the strongest
term responsible for the parallel (alongvz) quasi-linear dif-
fusion.

Making use of the relation

∂|Bk |
2

∂t
= 2γk |Bk |

2, (17)

Eq. (16) reduces to

∂F

∂h
=

v2
x

2

∂

∂vz

(
1

v2
z

∂F

∂vz

)
, (18)

where the quantityh is given by

h =
e2

m2

∑
k

|Bk |
2

k2
. (19)

We separate the variablesh and vz writing F as F =

8(h)9(vz). Then one obtains

2∂ ln8

v2
x∂h

=
1

9

∂

∂vz

(
1

v2
z

∂9
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)
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where eigenvalueλ is an unspecified parameter. From
Eq. (20) one finds

8 = 80e
−2λ2v2

xh, (21)

and

∂

∂vz

(
1

v2
z

∂9

∂vz

)
+4λ29 = 0. (22)

Here Eq. (22) is written in the Sturm-Liouville form. The
value ofλ is not specified in this equation. Finding the value
of λ for which there exists a non-trivial solution of Eq. (22)

satisfying the boundary conditions is a part of the Sturm-
Liouville problem.

Such values ofλ when they exist are called the eigenval-
ues of the boundary value problem defined by Eq. (22) and
prescribed set of boundary conditions. The corresponding
solutions (for such aλ) are the eigenfunctions of this prob-
lem and are

9λ = |vz|
3/2
[
C1J−3/4(λv2

z)+C2J3/4(λv2
z)
]
. (23)

The solution of Eq. (22) must be bounded atvz = 0. This
assumes thatC2 = 0. Thus, the particular solution of Eq. (22)
is

Fλ ∝ |vz|
3/2e−4λ2v2

xheJ−3/4(λv2
z). (24)

The general solution of Eq. (18) can be written in the form
of Fourier-Bessel integral

F(vx,vz,h) = A|vz|
3/2

∞∫
0

e−2λ2v2
xhλJ−3/4(λv2

z)

×
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−

ξ
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where

A =
n

πvTxvTz

exp

(
−

v2
x

v2
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)
. (26)

With the help of the relation
∞∫

0

λJ−3/4(λv2
z)J−3/4(λξ)dλ =

δ(ξ −v2
z)

v2
z

. (27)

one easily verifies that the initial conditionF(h = 0) = F0 is
satisfied.

The internal integral can be easily calculated and we find

F(vx,vz,h)=
A21/40(3/4)

π
1
2 v2

Tz

|vz|
3/2

∞∫
0

e−2λ2v2
xhλ1/4J−3/4(λv2

z)(
λ2+v−4

Tz

)3/4
dλ, (28)

where0(x) is the Gamma function.
The plot of F as the function ofvz for different values

of h and a given value ofvx can be made in a similar way
as for the case of magnetic mirror mode (see Fig. 1 from
Pokhotelov et al., 2010). One sees that QL diffusion leads
to substantial flattening of the distribution function at small
vz. Instead of initial dependence∝ exp(−v2

z/v2
Tz

) the veloc-

ity distribution function now scales as∝ exp(−v4
z/v4

Tz
) and

thus the term containing theδ(vz) function as well as that
containingP(1/vz) vanish and thus the next term in the ex-
pansion of the denominator(ω−kvz)

−1 start to play a major
role. This term is responsible for the weaker adiabatic inter-
action of electrons with the Weibel mode.
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4 Nonlinear growth rate

Using expression (28) one can calculate the quantitiesI1 and
I2.

I1 = −n−1P(

∫
v2

x
∂F

v3
z∂vz

dvxdvz) = β
v

3/2
Tx

v3
Tz

h1/4
, (29)

whereβ = −(3/32)0(−3/4)0(1/4) ' 1.6.
Our small parameter now becomesω/k1v∗, where1v∗ '

h1/4v
1/2
Tx

. This is connected with the flattening of the distribu-
tion function and occurrence of the “plateau” in the resonant
region, i.e. whenvz is small.

Furthermore, we find
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Tx

Tz
−α

(
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Tz

)5/4
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v
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Tz

, (30)

where

α = −
3

2

0(3/4)0(−1/4)

02(1/4)
' 0.68. (31)

Substituting expressions forI1 and I2 into dispersion rela-
tion (5) one finds the instability growth rate
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v
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For the most growing mode defined by Eq. (5) one obtains

γmax =
2|k|v

3/2
Tz
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(
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Tz
−1
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2
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. (33)

One sees that QL saturation of this mode is attained at rela-
tively small amplitude when

h = v2
Tz

(
3

2

)4 1

α4

(
Tz

Tx

)5(
Tx

Tz
−1

)4

. (34)

A further nonlinear evolution of the Weibel mode will be
controlled by the effects that were neglected in the course of
our analysis such as the mode coupling and nonlinear varia-
tions of the skin depth. Similar effects play an important role,
for example, in the nonlinear evolution of mirror instability
(Pokhotelov et al., 2008; Califano et al., 2008; Balikhin et al.,
2009, 2010; Hellinger et al., 2009). However, detailed con-
sideration of these effects is outside the scope of the present
study.

5 Discussion and conclusions

The present paper describes QL stabilization of the Weibel
instability associated with fast modification of the electron
velocity distribution function in resonant region. In the
course of the instability saturation the resonant term (the
Landau term) is rapidly out of the game and its role is then
passed to the adiabatic interaction of the mode with the bulk
of the plasma. In terms of mathematical description this
scenario has much in common with nonlinear evolution of
magnetic mirror instability (Pokhotelov et al., 2002, 2010)
which is controlled by similar physical processes. The corre-
sponding nonlinear growth rate (Eq.33) was calculated and
estimation of the level of the turbulent pulsations has been
made (Eq.34). The description of further nonlinear evolu-
tion is controlled by wave-wave interactions (e.g. Brodin and
Stenflo, 1989) and requires the use of numerical simulations.
Some aspects of this nonlinear dynamics were presented by
Palodhi et al. (2009).
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P. L., and Tŕavnǐcek, P. M.: Nonlinear mirror mode dynam-
ics: Simulations and modelling, J. Geophys. Res., 113, A08219,
doi:10.1029/2007JA012898, 2008.

Daughton, W., Lapenta, G., and Ricci, P.: Nonlinear evolution of the
lower-hybrid drift instability in current sheet, Phys. Rev. Lett.,
93, 105004,doi:10.1103/PhysRevLett.93.105004, 2004.

Gedalin, M., Medvedev, M., Spitkovsky, A., Krasnoselskikh, V.,
Balikhin, M., Vaivads, A., and Perri, S.: Growth of filaments
and saturation of the filamentation instability, Phys. Plasmas, 17,
032108,doi:10.1063/1.3345824, 2010.

Hellinger, P., Kuznetsov, E. A., Passot, T., Sulem, P. L., and
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