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Abstract. We recapitulate the results of the combined the-
ory of gravity-inertial-Rossby waves in a rotating, strati-
fied atmosphere. The system is shown to exhibit a “local”
(JWKB) instability whenever the phase speed of the low-
frequency-long wavelength westward propagating Rossby
wave exceeds the phase speed (“Kelvin” speed) of the high
frequency-short wavelength gravity-inertial wave. This con-
dition ensures that mode merging, leading to instability, takes
place in some intermediate band of frequencies and wave
numbers. The contention that such an instability is “spuri-
ous” is not convincing. The energy source of the instability
resides in the background enthalpy which can be released by
the action of the gravitational buoyancy force, through the
combined wave modes.

Keywords. Meteorology and atmospheric dynamics
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1 Summary of the problem

McKenzie (2011, 2009) showed that the mode merging of
westward propagating gravity-inertial waves with Rossby
waves can lead to instability of the wave system describing
small, (linearized), perturbations of the equations of motion
in a stratified, rotating atmosphere in theβ-plane approx-
imation. From a wave dynamics viewpoint the instability
arises if the westward phase speed of the “low frequency-
long wavelength” Rossby wave exceeds the phase speed of
the “high frequency-short wavelength” gravity-inertial mode
so as to ensure that they interact (“mode merging”) at some
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intermediate range of frequencies and wave numbers (but see
Fig. 1 for a clear picture). This intuitive prediction is vindi-
cated by an analysis of the local dispersion equation appro-
priate to mid-latitudes, or JWKB waves packets propagating
in the body of the atmosphere (ocean), and is presented in the
next section.

Paldor(2010) claims that such an instability is “spurious”.
In Sect. 3 we address his arguments and conclude that they
are not convincing. We conclude that the energy reservoir
which may be tapped to drive the instability resides in the
enthalpy of the background stratified atmosphere. The grav-
itational buoyancy force liberates this enthalpy through the
action of the combined wave modes whenever the stability
parameterm > 1. This, apparently new, instability may play
an important role in planetary atmospheric dynamics.

2 The dispersion equations and the instability condition

The governing equations for small amplitude perturbations in
a stratified, rotating atmosphere (e.g.McKenzie, 2009, 2011)
yield a wave equation for the system, which for Fourier plane
wave solutions of the formQ(y)expi(ωt −kxx −kzz) for qy

the perturbation northward (y), mass flux (ρ0uy), reduces to
the following second order ordinary differential equation for
the latitudinal structureQ(y),

d2Q

dy2
= −K2Q, (1)

in which the square of the “wave number” is given by

K2
≡

(ω2
−f 2)k2

z

(N2−ω2)
−k2

x −β
kx

ω
(2)

Here f = f0 +βy (f0 = 2�sinθ0,β = 2�
a

cosθ0) in the β-
plane constructed tangent to the planet of radiusa, at latitude
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θ0 with y measuring distance northward. The Vaisala-Brunt,
or bounce, frequency, follows from the condition of adiabatic
flow, and is given by (Lighthill , 1980; Eckart, 1960)

N2
= −g

(
ρ′

0(z)

ρ0(z)
+

g

c2
0

)
(3)

in which ρ0(z) is the background atmosphere density strati-
fied according to

dp0

dz
= −ρ0g (4)

and c0 =
√

γp0/ρ0 is the sound speed. High frequency
acoustic waves have been filtered out of the analysis using
the Boussinesq approximation in the adiabatic flow condition
and continuity equation.

The latitude structureQ(y) is “oscillatory” if K2 > 0, and
evanescent ifK2 < 0. Therefore either radiation or evanes-
cent conditions may be imposed “far” from theβ-plane lati-
tude to eliminate unphysical solutions. Indeed, if one wishes
artificial rigid zonal walls erected at given latitudes may be
imposed which would yield wave-guide type eigenvalues for
K, but this is neither realistic nor illuminating (Paldor et
al., 2009). However if y � f0/β so thatf and henceK,
may be regarded as nearly constant Eq. (1) is satisfied by
Q(y) ∝ exp(∓ikyy), and one obtains the “mid-latitude” dis-
persion equation (Pedolsky, 2003), k2

y = K2, which may cast
in the diagnostic form,

ω(ω2
−ω2

i ) = βV 2kx

ω2
i ≡ f 2

0 +V 2(k2
x +k2

y) (5)

V 2
≡

(N2
−ω2)

k2
z

This is also the “local ” dispersion equation in whichf =

f0+βy, associated with JWKB type solutions of the form

Q(y) ∝
1

k
1/2
y

exp(±i

∫
kydy) (6)

in which k2
y = K2, which apply in the “slowly varying

medium” limit or “short wavelength” approximation. These
approximate solutions describe JWKB wave packets prop-
agating in the body of the atmosphere (“internal waves”),
located well within any boundaries and therefore boundary
terms (conditions) are surely irrelevant to their properties.
The dispersion Eq. (5) has three roots for the wave fre-
quencyω; the two “higher” frequency roots correspond to
gravity-inertial waves, which propagate both eastward and
westward, whilst the remaining “low frequency” root de-
scribes the westward (and northward) propagating Rossby
wave. The approximate dispersion equation for these roots
assume the well known forms,

ω2 + ω2
i ≡ (f 2

+V 2(k2
x +k2

y)) gravity-inertial

ω + −
βV 2kx

ω2
i

=
−βkx

f 2

V 2 +k2
x +k2

y

Rossby. (7)

Observe that long wavelength-low frequency, Rossby waves
propagate westward at the speedβV 2/f 2, whereas westward
propagating high frequency-short wavelength gravity-inertial
waves do so at speedV . A wave dynamist would immedi-
ately expect wave coupling (or mode merging) to take place
at some intermediate band of frequencies and wave numbers
if the former exceeds the latter,

βV 2

f 2
> V or

βV

f 2
> 1 (8)

As we shall now see this is precisely the condition which
leads to the appearance of complex conjugate roots, forω in
Eq. (5), corresponding to instability. With

ω̄ =
ω

f
(9)

and

k̄ = k
V

f
(10)

the normalized dispersion equation may be written

ω̄(ω̄− ω̄2
i ) = mk̄

ω̄2
i = 1+ k̄2, k̄ = (k̄x,k̄y) = k̄(cosφ,sinφ) (11)

and the stability parameter is defined as

m =
βV

f 2
cosφ. (12)

It follows in a straightforward fashion (but seeMcKenzie,
2009, 2011for details) that the westward roots coalesce when
m = 1, becoming complex conjugate when

m > 1 (13)

in agreement with relation (Eq.8). The diagnostic diagram
is shown in Fig.1 for three values ofm(Q)1. The casem = 1
represents “marginal stability” in which the system is teeter-
ing on the brink, so to speak. The unstable growth ratesγ for
m > 1 have been given elsewhere (McKenzie, 2009) but are
of the order of day or so in the middle of the unstable band
for m = 1.5.

The casem = 1 is special with the (̄ω,k̄) curves and the
locus of infinite and zero group velocities all intersecting at
a common point. The equatorial case (θ0 = 0) is also spe-
cial sincef0 → 0 and a wave-guide type of the system de-
velops. The latitudinal structure can then be expressed in
Hermite polynomials, associated with which are eigenvalues-
dispersion equations (see for exampleCane and Sarachik,
1976; Moore and Philander, 1977). These eigenvalues have
precisely the same form as the “mid-latitude” or local disper-
sion equation, except that the gravity-inertial frequencyω2

i

in Eq. (5) is replaced by

ω2
i = (2n+1)βV +V 2k2

x, n= 0,1,2,.... (14)
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Fig. 1. The “mid-latitude”/JWKB dispersion (̄ω,k̄) curves for
three values of the stability parameterm : m < 1(0.5) stable,m =

1, marginally stable,m > 1(1.5) unstable in the intermediate
frequency-wave number band lying between the intersection of the
(ω̄,k̄) curves and the locus of infinite group velocityVgr = ∞.

On normalizingω to
√

βV andkx to
√

V/β the equatorial
dispersion equations take the form

ω̄(ω̄−(2n+1+ k̄2)) = k̄, n= 0,1,2,.... (15)

The dispersion curves are shown in Fig.2 (for n = 0,1,2).
Note that the fundamental,n = 0, corresponds exactly to

the mid-latitude case form = 1! The rootω̄ = −k̄, represent-
ing the westward Kelvin wave, factors out, leaving the mixed
Yanai mode

ω̄(ω̄− k̄) = 1. (16)

This special westward Kelvin mode(ω̄ = −k̄) is normally
discarded on the basis of evanescent requirements at largey.
However it is interesting and important to note that this sys-
tem is strictly speaking,marginally stable. Instability does
not arise in this case because the westward speed of any equa-
torial Rossby wave cannot exceedV . The “mid-latitude” in-
stability conditionm > 1, translates into the regions beneath
the curves in the (θ0,M) plane defined bym = 1. These are
shown in Fig.3 for various prescribed values of the latitudi-
nal wave number and also for an evanescent case (k2

y = −4).

3 The wave-energy equation

Paldor(2010) claims that the unstable solutions associated
with the “mid-latitude”/JWKB dispersion equation are “spu-
rious”. His arguments are based on an admixture of “a global
energy integral” for the system, combined with a discussion
of the eigenvalue-dispersion relation (a cubic equation), and
the existence of Poisson brackets and a Hamiltonian, for the

Fig. 2. The equatorial dispersion curves forn = 0,1,2. Note that
then = 0 curves, corresponding exactly to them = 1 curves of the
mid-latitude case, all intersect at the intersection between the locii
of zero and infinite group velocity. This case is “marginally stable”.

Fig. 3. The (θ0,M) parameter space in which the region below the
curves given bym = 1 is unstable.

system (which properties provide a “deeper meaning” of en-
ergy conservation). Paldor contends that these considerations
preclude the possibility of an instabilty.

In the first place my work is not based on the shallow water
theory used by PaldorPaldor(2010). There is a formal equiv-
alence between the two developments in which my “Kelvin”
speedV (Eq.5) may be replaced by the shallow water speed
√

gh in an ocean of depthh. The standard set of equations of
motion which I use readily yield the wave energy-exchange
equation

∂E

∂t
+divF =

peuz

H
(17)
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in which E =
1
2(ρ0u

2
+V 2

s ρ2
e /ρ0), andF = peu are respec-

tively the wave energy density per unit volume and the wave
energy flux. Hereu = (ux,uy,uz) is the perturbed fluid ve-
locity, pe andρe are the associated pressure and density per-
turbations, andV 2

s = g2/N2 so that the second term inE is
the thermobaric wave energy (Eckart, 1960) and the first the
kinetic energy. The term on the right hand side represents
an “exchange” with the inhomogeneous background whose
density has a scale heightH((ρ′

0/ρ0)
−1). (A similar term of

the formρ0uxuydV0/dy appears on the right hand side in
the case of a zonal flowV0(y) sheared latitudinally, and this,
of course, may give rise to Kelvin-Helmholtz instabilities.)
This exchange term is absent in Paldor’s shallow water treat-
ment in which the medium is assumed strictly incompress-
ible. However, I am not convinced that these are crucial dif-
ferences except, of course, that shallow water theory cannot
account for the static instability which arises whenN2 < 0.
Equation (17), although of obvious physical interest, is re-
dundant since it follows from the equations of motion of the
system and is not an independent equation. It is also a rather
“ignorant” equation in that it is “oblivious” to the important
dynamical action of the Coriolis force (which is perpendicu-
lar to u) and the crucialβ-effect. However the wave energy-
exchange equation is obviously true at every point of the fluid
at all times. Its integral version over an arbitrary surface en-
closing a volume is merely the wave perturbation form of
the general energy theorem which states that “the total en-
ergy of a volume of fluid increases at a rate equal to that at
which work is being done on the bounding surface by prea-
sure from without” (Lamb Sir, 1932). Therefore in principle
the wave energy equation (either in its differential or integral
form) permits the wave energy to change with time and may
admit unstable solutions which grow in time contrary to Pal-
dor’s claim (Paldor, 2010). In its integral form Paldor applies
“suitable bundary conditions” (rigid, free, radiation, evanes-
cent? located where?) to argue away all terms other than
the volume integral so as to conclude that

∫
v
Edτ = const.,

thereby “proving” that the system cannot possess unstable
solutions! As already noted above the wave energy Eq. (17)
does not preclude growing solutions. Moreover, as we have
have already noted, since the wave energy equation is “obliv-
ious” of the action of Coriolis force, it provides precious little
insight into the wave dynamics. Finally as far as the system
being in possession of a Poisson bracket and a Hamiltonian is
concerned, these properties cannot in any way be interpreted
as inconsistent with the predictions of the original equations
of motion from which they derive. Therefore Paldor’s argu-
ments are not entirely convincing. We emphasize that from
the viewpoint of wave dynamics it is well known that if two
modes merge or couple in the fashion depicted in them > 1
curves of Fig.1, convective instability ensuesAkhiezer et al.
(1967).

4 Conclusions

In the absence of an obvious source of energy such as the
kinetic energy of a sheared zonal flow, it is nevertheless of
interest to enquire into the possible energy reservoir which
may be tapped to feed this instability. The hydrostatic back-
ground state Eq. (4) may be cast in the form

w0(ρ0)+gz = const (18)

wherew0 is the enthalpy given by

w0 =

∫
dp0

ρ0
. (19)

The precise form ofw0(ρ0) depends on the heating/cooling
process in the atmosphere, as well as its composition and
equation of state. However it is obvious that there exists a
negative enthalpy gradient in a similar way that exists in a
prescribed temperature gradient which can drive a thermal-
convective instability in a fluid heated from below (Chan-
drasekhar, 1968). Hence enthalpy released by gravitational
bouyancy is available to drive an instability provided the sys-
tem admits of wave modes capable of releasing this latent
background energy. In fact the wave dynamic argument lead-
ing to the instability condition,m > 1, may be framed, in
terms of the two underlying frequencies of problem, as

N > 2�

(
2sin2θ0

cosθ0

)
kza

cosφ
(20)

This shows that the Vaisala-Brunt frequency, which mea-
sures the strength of the buoyancy force , must be sufficiently
greater than the rotational frequency so as to ensure that
the wave modes are capable of releasing the latent enthalpy
through the action of the gravitational buoyancy force.

This instability is an apparently new and interesting result.
Its nonlinear development may play an important role in the
atmospheric dynamics of planetary atmospheres. However
we emphasize that the instability is of a local nature and that
JWKB type solutions may not provide an acceptable solution
of the “global” problem. This point requires further study.
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