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Abstract. We recapitulate the results of the combined the- intermediate range of frequencies and wave numbers (but see
ory of gravity-inertial-Rossby waves in a rotating, strati- Fig. 1 for a clear picture). This intuitive prediction is vindi-
fied atmosphere. The system is shown to exhibit a “local”’cated by an analysis of the local dispersion equation appro-
(JWKB) instability whenever the phase speed of the low- priate to mid-latitudes, or JWKB waves packets propagating
frequency-long wavelength westward propagating Rossbyn the body of the atmosphere (ocean), and is presented in the
wave exceeds the phase speed (“Kelvin” speed) of the higmext section.

frequency-short wavelength gravity-inertial wave. This con- Paldor(2010 claims that such an instability is “spurious”.
dition ensures that mode merging, leading to instability, takedn Sect. 3 we address his arguments and conclude that they
place in some intermediate band of frequencies and wavare not convincing. We conclude that the energy reservoir
numbers. The contention that such an instability is “spuri-which may be tapped to drive the instability resides in the
ous” is not convincing. The energy source of the instability enthalpy of the background stratified atmosphere. The grav-
resides in the background enthalpy which can be released biational buoyancy force liberates this enthalpy through the
the action of the gravitational buoyancy force, through theaction of the combined wave modes whenever the stability
combined wave modes. parametern > 1. This, apparently new, instability may play

Keywords. Meteorology and atmospheric  dynamics an important role in planetary atmospheric dynamics.

(Ocean-atmosphere interactions)

2 The dispersion equations and the instability condition

1 Summary of the problem The governing equations for small amplitude perturbations in
a stratified, rotating atmosphere (eMrKenzig 2009 2011
McKenzie (2011, 2009 showed that the mode merging of Yyield a wave equation for the system, which for Fourier plane
westward propagating gravity-inertial waves with Rossbywave solutions of the forn® (y) expi (wt — k,x —k;;) for g,
waves can lead to instability of the wave system describingthe perturbation northward, mass flux pou,), reduces to

small, (linearized), perturbations of the equations of motionthe following second order ordinary differential equation for
in a stratified, rotating atmosphere in tigeplane approx- the latitudinal structurg(y),
imation. From a wave dynamics viewpoint the instability ;2
arises if the westward phase speed of the “low frequency——5 = —K?Q. (1)
long wavelength” Rossby wave exceeds the phase speed o . o
the “high frequency-short wavelength” gravity-inertial mode N Which the square of the “wave number” is given by
so as to ensure that they interact (‘mode merging”) at some , (w?— f2k2  , k,
K'=——5—7>—ki—B— (2)
(N2—w?) x 1)
Correspondence tal. F. McKenzie Here f = fo+ By (fo=2%sindo, B = 22 cosd) in the -
BY (mckenziej@ukzn.ac.za) plane constructed tangent to the planet of radiuat latitude
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6o with y measuring distance northward. The Vaisala-Brunt,Observe that long wavelength-low frequency, Rossby waves
or bounce, frequency, follows from the condition of adiabatic propagate westward at the spgidd?/ f2, whereas westward

flow, and is given byl(ighthill, 198Q Eckart 1960 propagating high frequency-short wavelength gravity-inertial
, waves do so at spedd. A wave dynamist would immedi-
2 Po2) | g . .
Né=—g +5 (3) ately expect wave coupling (or mode merging) to take place
ro(z) ¢ at some intermediate band of frequencies and wave numbers

in which po(z) is the background atmosphere density strati- if the former exceeds the latter,

fied according to BV2 BV

dpo o >V or 7 >1 (8)
L J @ 7 7

dz
_ . . As we shall now see this is precisely the condition which
and co = v/ypo/po is the sound speed. High frequency |45 'ihe appearance of complex conjugate roots, for

acoustic waves have been filtered out of the analysis usin%q 6), corresponding to instability. With

the Boussinesq approximation in the adiabatic flow condition ™" ™" '

and continuity equation. o=’ ©)
The latitude structur@(y) is “oscillatory” if K2 > 0, and f

evanescent ik 2 < 0. Therefore either radiation or evanes-

cent conditions may be imposed “far” from tigeplane lati- and

tude to eliminate unphysical solutions. Indeed, if one wishes- Vv

artificial rigid zonal walls erected at given latitudes may be =k7 (10)

imposed which would yield wave-guide type eigenvalues for ] ) ) ] ]

K, but this is neither realistic nor illuminatingPéldor et  the normalized dispersion equation may be written

al., 2009. However if y <« fo/B so thatf and hencek,

may be regarded as nearly constant Eq.i¢ satisfied by 5 - o _ _

O(y) ccexp(Fikyy), and one obtains the “mid-latitude” dis- @; =14k, k= (ky,ky) =k(COSp,SIng) (11)

persion equationRedolsky 2003, k2 = K 2, which may cast

in the diagnostic form,

(& —@?) =mk

and the stability parameter is defined as

a)(a)z—a)iz) =,3V2kx m= ﬂf—ZCOSd). (12)
w?= fE+VAK2+KD) (5)

(N2—?) It follows in a straightforward fashion (but sédcKenzig
V= %z 2009 2011for details) that the westward roots coalesce when

z m =1, becoming complex conjugate when
This is also the “local " dispersion equation in whigh=
fo+ By, associated with JWKB type solutions of the form m>1 (13)
0(y) o Wexp(:tl/kydy) (6) :2 Sat?(;svir?:r;ti vzctfh relation (E®). The;dlagnostlc dlagram
3 gl for three values of:(<)1. The casen =1

. . > 2 . . u . represents “marginal stability” in which the system is teeter-
in which k7 = K*, which apply in the "slowly varying ing on the brink, so to speak. The unstable growth ratés

medium" limit or “short wavellength” approximation. These m > 1 have been given elsewhetddKenzie 2009 but are
approximate solutions describe JWKB wave packets PrOD%¢ the order of day or so in the middle of the unstable band
agating in the body of the atmosphere (“internal waves”),

located well within any boundaries and therefore boundaryfor.l.n;:;;n _ 1 is special with thed, k) curves and the

terms (conditions) are surely irrelevant to their properties. P 5. ) .
. . locus of infinite and zero group velocities all intersecting at
The dispersion Eqg.5) has three roots for the wave fre- . ) :
a common point. The equatorial cagg £ 0) is also spe-

guencyw; the two “higher” frequency roots correspond to _. . .
L . ial since fo — 0 and a wave-guide type of the system de-
gravity-inertial waves, which propagate both eastward an . .
velops. The latitudinal structure can then be expressed in

we_stward, whilst the remaining *low frequency . oot de- Hermite polynomials, associated with which are eigenvalues-
scribes the westward (and northward) propagating Ross%ispersion equations (see for examgane and Sarachik

wave. The approximate dispersion equation for these rootigm Moore and Philandel977. These eigenvalues have
assume the well known forms, ; o ) p :
precisely the same form as the “mid-latitude” or local disper-

0® = of = (f2+ VAU, +K5)) gravity-inertial sion equation, except that the gravity-inertial frequengy
V2K Bk in Eq. ) is replaced by

a)i—ﬂ = Phy Rossby 7)
of L k24k2 w?=@n+1)BV+V2%2,  n=012.. (14)
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Fig. 1. The “mid-latitude”/JWKB dispersiond, k) curves for  Fig. 2. The equatorial dispersion curves for=0,1,2. Note that
three values of the stability parameter. m < 1(0.5) stable,m = then =0 curves, corresponding exactly to the=1 curves of the

1, marginally stable,m > 1(1.5) unstable in the intermediate Mmid-latitude case, all intersect at the intersection between the locii
frequency-wave number band lying between the intersection of thedf zero and infinite group velocity. This case is “marginally stable”.
(@,k) curves and the locus of infinite group velocltyr = co.

1.8 T T T T T T T T
On normalizingw to \/BV andk, to /V/B the equatorial 16 S — g
dispersion equations take the form 1.4 \ i
o@—n+1+k>)=k, n=0,1,2,.... (15) i

The dispersion curves are shown in Rgfor n =0,1,2).
Note that the fundamentat,= O, corresponds exactly to e
the mid-latitude case fon = 1! The rooto = —k, represent- 0
ing the westward Kelvin wave, factors out, leaving the mixed

Yanai mode

o(w—k)=1. (16)

This special westward Kelvin mod@ = —k) is normally
discarded on the basis of evanescent requirements atjarge
However it is interesting and important to note that this sys-
tem is strictly speakingnarginally stable Instability does
not arise in this case because the westward speed of any eq
torial Rossby wave cannot exce&d The “mid-latitude” in-
stability conditionm > 1, translates into the regions beneath

the curves in thegp, M) plane defined byn =1. These are - gy gtem (which properties provide a “deeper meaning” of en-
shown in Fig.3 for various prescribed values of the latitudi- g4y conservation). Paldor contends that these considerations
nal wave number and also for an evanescent d@se 4). preclude the possibility of an instabilty.

In the first place my work is not based on the shallow water
theory used by Paldétaldor(2010. There is a formal equiv-
alence between the two developments in which my “Kelvin”
Paldor (2010 claims that the unstable solutions associatedspeedV (Eq.5) may be replaced by the shallow water speed
with the “mid-latitude”/JWKB dispersion equation are “spu- +/g% in an ocean of depth. The standard set of equations of
rious”. His arguments are based on an admixture of “a globamotion which I use readily yield the wave energy-exchange
energy integral” for the system, combined with a discussioneéguation
of the eigenvalue-dispersion relation (a cubic equation), andyg Dol
the existence of Poisson brackets and a Hamiltonian, for theg +divE =

u%{g. 3. The @g, M) parameter space in which the region below the
curves given byn = 1 is unstable.

3 The wave-energy equation

(17)
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in which E = 3 (pou?+ V2p?/po), andF = p.u are respec- 4 Conclusions

tively the wave energy density per unit volume and the wave

energy flux. Herew = (uy,uy,u;) is the perturbed fluid ve- In the absence of an obvious source of energy such as the
locity, p. andp, are the associated pressure and density perkinetiC energy of a sheared zonal flow, it is nevertheless of
turbations, and/sz =g2/N? so that the second term ifi is interest to enquire into the possible energy reservoir which
the thermobaric wave energickart 1960 and the firstthe ~may be tapped to feed this instability. The hydrostatic back-
kinetic energy. The term on the right hand side representground state Eq4j may be cast in the form

an “exchange” with the inhomogeneous background whose
density has a scale height((p)/00)~1). (A similar term of wo(po) + gz = const (18)
the form pou.u,dVo/dy appears on thg right hand sidg in wherewy is the enthalpy given by

the case of a zonal flowlp(y) sheared latitudinally, and this,

of course, may give rise to Kelvin-Helmholtz instabilities.) wo = dpo (19)
This exchange term is absent in Paldor’s shallow water treat- o0

ment in which the medium is assumed strictly incompress—_l_h ise f £ d q the heatina/cooli
ible. However, | am not convinced that these are crucial dif- e precise form oiuo(po) depends on the heating/cooling

ferences except, of course, that shallow water theory canndg'ocess I the atmosphere, as well_as Its composmo_n and
account for the static instability which arises wh&R < 0. equat!on of state. Hovv_ever_ Itis (_)b\_nous that there_exs_ts a
Equation (7), although of obvious physical interest, is re- negative enthalpy gradient in a similar way that exists in a

dundant since it follows from the equations of motion of the prescribed temperature gradient which can drive a thermal-
onvective instability in a fluid heated from belo@H{an-

system and is not an independent equation. Itis also a ratheﬁ' N
y P g rasekhar1968. Hence enthalpy released by gravitational

‘ignorant” equation in that it is “oblivious™ to the important bouyancy is available to drive an instability provided the sys
dynamical action of the Coriolis force (which is perpendicu- yancy y prov ne sy
tem admits of wave modes capable of releasing this latent

lar to U) and the cruciaB-effect. However the wave energy- backaround enerav. In fact the wave dvnamic arqument lead-
exchange equation is obviously true at every point of the fluid. grou gy. wave dy Icargu

at all times. Its integral version over an arbitrary surface en-'tngnfo t?fhmtsvtvab”:% Cr?r;g't'?rnm >n1’i ma;; bre glrarr:ed, n
closing a volume is merely the wave perturbation form of erms ot the two underlying frequencies ot problem, as

the general energy theorem which states that “the total en- 2sirfo\ k.a
ergy of a volume of fluid increases at a rate equal to that atv > 29( s ) < (20)
which work is being done on the bounding surface by prea- coso / cosp

sure from without” Lamb Sir 1932. Therefore in principle This shows that the Vaisala-Brunt frequency, which mea-

]Ehe wave energﬁl equation (either |nh|ts d'“er?r?“?" or m:jegral sures the strength of the buoyancy force , must be sufficiently
orm) permits the wave energy to change with time an maygreater than the rotational frequency so as to ensure that

30"?” le_stablel dsol;t(l)cins \lNh![Ch gtrow ||nft|mepcc1|3trary tcl)_ Pal- the wave modes are capable of releasing the latent enthalpy
or’s claim Paldor Q. Inits integral form Paldor applies through the action of the gravitational buoyancy force.

suitable bundary conditions” (rigid, free, radiation, evanes- This instability is an apparently new and interesting result.

? ? . . .
tcr:ant. llocatgc: whel're.) tot argue Ia\(/jva); aI[EE(lamls othetr tharI’ts nonlinear development may play an important role in the
the VzuTe I eg"ra;hs? t%s 0 c?nc ude tf? T =const, ¢ bIatmospheric dynamics of planetary atmospheres. However
ereby “proving" that the system cannot possess unstablg,, emphasize that the instability is of a local nature and that

i | . . .
solutions! As already noted above the wave energy E4). ( JWKB type solutions may not provide an acceptable solution

does not preclude growing solutions. Moreover, as We haY%f the “global” problem. This point requires further study.
have already noted, since the wave energy equation is “obliv-
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