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Abstract. We investigate the transformation of the distri-
bution function in the relativistic case, a problem of interest
in plasma when particles with high (relativistic) velocities
come into play as for instance in radiation belt physics, in
the electron-cyclotron maser radiation theory, in the vicin-
ity of high-Mach number shocks where particles are acceler-
ated to high speeds, and generally in solar and astrophysical
plasmas. We show that the phase-space volume element is
a Lorentz constant and construct the general particle distri-
bution function from first principles. Application to thermal
equilibrium lets us derive a modified version of the isotropic
relativistic thermal distribution, the modified Jüttner distribu-
tion corrected for the Lorentz-invariant phase-space volume
element. Finally, we discuss the relativistic modification of a
number of plasma parameters.

Keywords. Space plasma physics (Charged particle motion
and acceleration; Kinetic and MHD theory)

1 Introduction

One-particle distribution functions are defined as the proba-
bility of finding a certain numberdN α of particles of species
α at time t in a given phase-space volume elementdx3dp3

as

fα(x,p,t)=
dNα

dx3dp3
(1)

Since the above function is a probability function this expres-
sion can also be read as a normalisation condition

dx3dp3fα(x,p,t)

dNα

= 1 (2)
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saying that the product of the probability divided by the num-
ber density of particles in the phase space volume under con-
sideration must be one, thus being invariant. Under special-
relativistic conditions the definition of such a distribution
poses a non-trivial problem. In this Letter we define such
a distribution from first principles showing that of the criti-
cal points the first is to confirm that the phase-space volume
element must correctly be made Lorentz invariant. Once this
has been done, it is possible to define a distribution function
valid for the entire phase space.

2 Construction of phase-space distributions

Clearly, if the distribution function is a proper probability,
it is by its nature invariant with respect to any coordinate
transformation of the spatial and momentum space volume
elements, if the number of particles in the volume element
is kept constant. This follows from Liouville’s theorem and
the dynamics of the particles (at least as long as no parti-
cles are lost or added to the volume element under consider-
ation). However, a proper transformation of the volume ele-
ment might be in place. In the Galileian non-relativistic case
there is no problem at all. Problems arise when the particle
dynamics becomes relativistic. While the functional form of
the phase-space probability in such transformations is con-
served, its dependence on the new phase-space coordinates
x′,p′ will change during the transformation. This has been
noticed long ago (for the basic arguments see, e.g.,Landau
and Lifshitz, 1975, Sect. 10), and the transformation of the
phase-space volume becomes non-trivial. In fact, in order to
arrive at a consistent formalism and understanding one can-
not simply transform the above formula; rather one must re-
turn to the exact definition of the distribution function given
by

F(x,p) =
1

N
∑

i

δ
[
x −xi(t)

]
δ
[
p−pi(t)

]
(3)
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wherexi(t),pi(t) are the dynamical coordinates of thei-th
particle. SinceF sums up all points in phase space which
are occupied by theN particles numberedi = 1,...,N , it
is exact. Accordingly, the exact distribution of one single
particle is defined as

Fj (x,p) = δ
[
x −xj (t)

]
δ
[
p−pj (t)

]
(4)

and the exact distribution of a groupδN of particles is given
by

δFi...j (x,p) =
1

δNi...j

`=j∑
`=i

δ
[
x −x`(t)

]
δ
[
p−p`(t)

]
(5)

This all looks simple and is simple as long as one does not
include relativity. Then, however, particles are all in mo-
tion, each in its own proper frame and with its own proper
direction of velocity and momentum. The transformation
from that frame into another frame, i.e. into the observer’s
stationary frame involves the Lorentz transformation of each
particle’s frame separately. In the (primed) particle’s proper
frame (x′,p′) the particle is located at the origin and the
proper-frame distributionF 0

j Eq. (4) reads

F 0
j (x′,p′) = δ(x′)δ(p′) (6)

while Eq. (4) is the expression in another frame with re-
spect to which the particle is displaced, has momentum
pj (t) and moves with relative velocityvj (xj ,t) with re-
spect to the new frame. Taking the axes of the two frames
all parallel to each other and assuming that the particle in-
stantaneously moves alongx′, and definingβ= v/c,γ =

1/
√

1−β2 =

√
1+p2/m2c2 with m particle mass, momen-

tum p = mcγ β, thusβ = γ −1
√

γ 2−1, and timet → ct one
has as usually for the spatial coordinates

[x′, y′, z′, t ′ ] =
[
γ (p)(x −βt), y, z, γ (p)(t −βx)

]
(7)

Inserting into Eq. (4) then yields for the transformed exact
single-particle distribution function

Fj (x,p,t) = δ
{
x −

[
γj (p)(x −βj t), y, z

]}
×

× δ
[
p−p′

j (t)
]
δ
[
t − γj (p)(t −βjx)

]
(8)

In this expressionp′

j = pj because there is only one (instan-
teneous) relative velocity between the movingj th particle’s
and the observer’s frame. However,β is a function ofγ (p),
and though the functional form of the probability distribu-
tion (represented by the product ofδ-functions) is conserved,
the dependence on phase-space coordinates becomes com-
plicated.

In considering many particles with their different proper
velocities, proper momenta and different directions of veloc-
ities, one needs to rotate the axes of all the proper frames
in performing the various Lorentz transformations. This in-
hibits the use of the exact equation Eq. (5) even in the case

of a completely isotropic angular distribution of the various
velocities. Moreover, stationarity of the distribution becomes
illusionary for several reasons, the simplest one that it is im-
possible to assign initial conditions to all particles at a fixed
time t = 0 for the obvious reason that this requires time. This
time is needed for jumping from one proper frame to the next
and, thus, is limited by relativity and the requirements of rel-
ativistic synchronisation. It can be achieved only for a small
limited number of particles.

3 Lorentz invariance of full phase-space volume
element

The only way out of this dilemma is to neglect the proper
particle motions altogether and assume that by some myste-
rious (thermodynamic) reason the particles have managed to
reach a stationary final state where their momenta are statis-
tically distributed. In this case a common phase-space vol-
ume can be attributed to them all, and each particle moves
with its (thermal) momentum with respect to thiscommon
proper frame. If the momenta are isotropically distributed
in space then the probability distribution will not depend on
the direction of velocities. It can then be considered as aver-
aged over all angles and depends just on the modulus of the
momentump.

The way to do this is to take one single particle and to
smooth it out so as to fill a certain infinitesimal but finite
proper volumed3x′

jd
3p′

j , which is actually a volume el-
ement, while defining a probability of finding the particle
in this volumefj (x

′,p′) which now is a continuous func-
tion which vanishes outside the volume element and is nor-
malised according to

1=

∫
Vj

fj (x
′

j ,p
′

j )d
′3xjd

′3pj (9)

with integration just over the infinitesimalj -th volume. It
is unity because the infinitesimal volume contains only the
onej -th particle, andfj = 0 outside it. In principle the latter
fact would allow for extending the integration over the entire
phase space volume.

Within this small volume element it can be said that pre-
scribing the initial state has been done at a fixed timet ′ = 0.
This is correct for sufficiently small volumes such that syn-
chronism is warranted. It thus becomes possible to Lorentz
transform the infinitesimal volume to the un-primed observer
frame. Since the particle velocity at fixed time is linear, one
may rotate both frames to coincide in the directions of their
axes.

Applying the spatial transformation Eq. (7) at t = 0 and
observing that only the coordinatex′ is affected by the
Lorentz transformation becoming contracted when trans-
forming to the un-primed observer frame, one immediately
finds (cf., also,Weinberg, 1973, his Eqs. 2.10.11 and 2.10.12
for the transformation of the particle 4-current density) that
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d3x′

j = γj (p)d3xj (10)

where the indexj at d3xj reminds one that the observer’s
frame has been rotated into the particle frame, andpj is the
particle momentum of the smeared out infinitesimal volume
of the particle in the observer’s frame. In the proper frame
of the particle the momentum has zero average〈p′

j 〉 = 0.
In the frame of the observer the finite infinitesimal momen-
tum space volumed3pj is located at the tip of the particu-
lar particle-momentum vectorpj . The proper Lorentz factor
γj (p) depends only on the modulus ofpj .

One may also understand the small infinitesimal momen-
tum space volume as thethermal uncertaintyof the particle
momentum that is caused by the quiver velocity of the parti-

cle. This quiver velocity is the rms velocity〈u〉j =

√
(1uj )2

of the particle’s proper motion, its thermal speed. It may be
assumed to be isotropic though this is not necessary if this
thermal speed is anisotropic due to some other reason.

With all this in mind we can proceed to the transformation
of the momentum space element. This is more involved than
the transformation of the spatial volume. It requires return-
ing to the definition of the momentumpj = mcγj (p)βj and
taking into account that the particle energy and momenta in
relativity are not independent, being related via the relation
pc = E or E = mγ (p)c2. This implies that the transforma-
tion of momentum and energy has to be done together. This
becomes[
E ′

cp′
x

]
= γ (p)

[
1 −β

−β 1

][
E

cpx

]
,

p′
y = py

p′
z = pz

(11)

The variations in energy and momentum become

dp′
x =

γ (p)

c

[
cdpx −βdE

]
(12)

dE ′
= −γ (p)

[
cβdpx −dE

]
= 0 (13)

The last expression follows because, in the particle rest
frame, the energy remains unaffected by the transformation,
yielding as usuallydE = cβdpx . Hence,

dp′
x = γ (p)dpx

(
1−β2)

=
dpx

γ (p)
(14)

which, of course, is just a special case of the well-known
transformation law

dp′
x

mcγ (p′)
=

dpx

mcγ (p)
, with γ (p′) = 1 (15)

and the single-particle phase-space volume including
Eq. (10) is an invariant under Lorentz transformation

d3x′

jd
3p′

j = d3xjd
3pj (16)

This holds for each particle separately such that one can de-
fine a single-particle distribution function in the observer’s
frame by

fj (xj ,pj )d
3xjd

3pj = fj (x
′

j ,p
′

j )d
3x′

jd
3p′

j (17)

4 Global phase-space distribution

One would wish to add up all single particle distributions
to one distribution which covers the entire phase space. This
task encounters the problem that so far the two frames, thej -
th particle frame and the observer frame, have been aligned.
In order to obtain a similar result this must be done for all
particles. Hence, simply adding the distribution functions is
inappropriate. One needs to introduce a distribution of an-
gles for the various particle moments as seen from the sta-
tionary observer frame. This can be achieved with the help
of the solid angle�p and the distribution8(�p). Then in
the stationary frame one defines the probability of finding all
N particles in the volume of phase space occupied by all the
smeared-out infinitesimal though finite volumes of the parti-
cles (assuming that they do not overlap, i.e. in the absence of
collisions)

f (x,p) d3x d3pd�p =

N∑
j=1

fj (x
′

j ,p
′

j )8(�p) d�p d ′3xj d3p′

j

=

N∑
j=1

fj [x
′

j (x,p),p′

j (p,E)]8(�p) d�p d3x d3p (18)

For an isotropic distribution of particle momenta the integral
over the solid angle gives just a factor 4π . This yields for the
probability distribution in the stationary frame the final result

f (x,p,�p) d�p =

N∑
j=1

fj [x
′

j (x,p),p′

j (p,E)]8(�p) d�p

(19)

Normalisation of this distribution must as usually be done to
the total numberN of particles respectively the average par-
ticle densityN =N /V. With this definition, the relativistic
particle phase-space distribution can indeed be written as a
single average distribution while the directions of the differ-
ent single particle velocities and thus the various rotations of
theN proper coordinate frames is taken care in the angular
dependence off (x,p,�p), which eliminates the otherwise
required dependence of the volume element on the proper
particle-speed direction as given byDebbasch et al.(2001,
and references therein).

Clearly, this angular distribution must be introduced by
hand, making a reasonable guess. This, however does not
provide any problem as it can be chosen to be inherent to
the initial model. Again, in the case of an isotropic angular
distribution it just gives, after integration, a factor of 4π .

5 Applications

The evolution of the relativistic distribution function
f (x,p,�p) in a dynamical system is subject to the relativis-
tic Vlasov equation

www.ann-geophys.net/29/1259/2011/ Ann. Geophys., 29, 1259–1265, 2011



1262 R. A. Treumann et al.: Relativistic phase-space distributions

∂f

∂t
+[[H,f ]] = 0, (withH the Hamiltonian) (20)

written in the 3+1-split non-covariant representation, where
[[...]] is the classical Poisson bracket. In fact, hereH(x,p)

is the 1-particle Hamiltonian. Under equilibrium conditions
the time dependence is dropped, and in thermal equilibrium
the left-hand side is identically zero.

5.1 Relativistic thermal equilibrium distribution

The stationary thermal equilibrium distribution assumes the
form of a relativistic variant of the Maxwell-Boltzmann dis-
tribution. Its determination poses a nontrivial problem (cf.,
e.g.Dunkel et al., 2007, and references therein) as the ther-
mal equilibrium under relativistic conditions is defined more
subtly, yielding different forms of the so-called Maxwell-
Jüttner distribution. Its functional form must in fact be de-
rived from putting the Boltzmann collision term

0 =

∫
d3p′σcoll d�coll

[
(f ′f )∗ −f ′f

]
×

×

√
(p′

·p)2+m4c4
[
γ 2(p′)γ 2(p)−1

]
/mcγ (p′) (21)

to zero which, in the above equation, has been taken to van-
ish identically. Hereσcoll is the collisional cross section,
andd�coll the solid collisional deflection angle, and primed
and un-primed quantities refer to the two colliding particles,
while the asterisk refers to quantities after collision. This
then yields[(f ′f )∗ −f ′f ] = 0 and, ultimately, the famous
exponential Boltzmann-Gibbs dependence on energy:

f = 3 exp

[
−20mc2γ (p)−

3∑
i=1

2icp
i

]
(22)

The Lagrangean multipliers3,20,2i must be determined
as usual from particle number and global energy-momentum
conservation; the 4-vector components2ν have dimension
of inverse energy which suggests that they relate to a partic-
ular inverse-temperature 4-vector. Consistency with the col-
lisionless part of the Vlasov equation yields that3 = const
does not depend on space, while2ν could become a linear
4-vector function of space. Under isotropic conditions, how-
ever, only the average energy comes into play, and one may
put all2i = 0,i = 1,2,3, keeping only the constant20 6= 0.

5.1.1 General form of distribution

This approach then leads to the canonical form of the
isotropic relativistic distribution function

frel[γ (p)] =3 exp
[
−20mc2γ (p)

]
(23)

with the only remaining problem to determine the two La-
grangean multipliers3 and 20. The latter can simply be
guessed from the requirement that the argument of the ex-
ponential should be dimensionless, which yields20 = 1/T

(for rigorous argument, cf.Israel, 1963) identifying it with
the inverse of temperatureT of the macroscopic system of
particles. Determination of3 requires solving for the nor-
malisation of the distribution. Here the different approaches
diverge, and there has no unambiguous consensus be found.

It is argued (Dunkel et al., 2007) that, if rigorous Lorentz
invariance is imposed (as has been used in our strict defi-
nition of the general non-stationary distribution function1)
the correct (non-angular-dependent part of the) relativistic
thermal-equilibrium distribution should become themodi-
fied-Jüttner distribution. (The ordinary Maxwell-Jüttner dis-
tribution function was derived by F.Jüttner, 1911, who ob-
tained it imposing translational invariance in momentum
space only.)

Dunkel et al.(2007) chose a general approach starting
from the maximum-entropy principle for the Boltzmann-
Shannon (relative) entropy density (actually the entropy den-
sity per particle)s0 as a functional of the distribution function

s0[f (p|`(p)] =−

∫
Vp

ddp f (p)log
[
(mc)df (p)

]
(24)

where`(p) = (mc)−d is the constant momentum space den-
sity needed for normalising the argument of the logarithm,
andVp the momentum space volume. This is subject to the
constraints

1=

∫
Vp

ddpf (p), E =

∫
Vp

dd f (p)ε(p) (25)

whereE is the average energy density, i.e. the scalar pres-
sure which is the trace of the energy-momentum tensorT µν ,
andε(p) = mc2γ (p) the relativistic particle energy. Defin-
ing the Haar measure to momentum space, they propose the
modified-J̈uttner distribution for arbitrary dimensionsd. Un-
fortunately, however, Lorentz invariance is applied only to
momentum space.

On using the Boltzmann collision-integral approach,
Chaćon-Acosta et al.(2010, and references therein) obtain
another form in arbitrary dimensionsd which, ford = 3, re-
duces to the original Maxwell-Jüttner function (already given
earlier byIsrael, 1963).

5.1.2 J̈uttner-like thermal distribution

However, all these approaches only consider the momentum-
space part of the volume element neglecting the transfor-
mation of the spatial coordinates, thus keeping the factor
p0

= mcγ (p) in the denominator of the momentum-space
volume element. This is either not justified at all or it is ar-
gued that the particles are all confined to a fixed box which

1It is important to note that this is the only case which accounts
for the required general Lorentz invariance of the complete phase-
space volume element, and only under the condition of its validity
is it possible to define a global phase-space distribution function.
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is unaffected by the Lorentz transformation and invariance.
However, the momentum and configuration space volume
elements the product of which forms the phase-space vol-
ume element, are not independent, as we have demonstrated
above. Even in this case of a fixed outer box, the particle’s
proper spaces experience linear Lorentz contractions when
seen from the stationary frame of the observer, i.e. from the
box-frame perspective. The consequence is that the extra
proper Lorentz factorγ (p) in the phase-space volume ele-
ment cancels thereby guaranteeing and restoring Lorentz in-
variance. The correct form of the normalisation condition is
thus

Nν
=

∫
d3ppνfrel[γ (p)], T µν

=

∫
d3ppµpνfrel[γ (p)]

(26)

whereNν is the particle-current density 4-vector, andT µν

the average energy-momentum tensor. When taking into ac-
count the functional dependence of the relativistic distribu-
tion Eq. (23) on2, both can be derived from the Integral

I =

∫
d3pfrel[γ (p)] (27)

by differentiation with respect to2. For instance, withp0
=

mcγ , one has for the average particle density in the observer
frame (the stationary box)

N ≡ N0
= −

3

c

∂I
∂20

(28)

Calculation of the integral is straightforward. Following
earlier work (Jüttner, 1911; Israel, 1963; Chaćon-Acosta
et al., 2010) one introduces spherical-harmonic coordinates
in momentum space and uses the usual representation of the
Lorentz factor by hyperbolic functions as

p0
= mc coshξ

pi
= mc sinhξ (sinθ cosφ,sinθ sinφ,cosθ) (29)

with i = 1,2,3 and 0< ξ < ∞. This yields

I =

∫
d3p e−20mc2coshξ

= 4π(mc)3
∫

dξ sinh2ξ coshξe−20mc2coshξ (30)

If one chosesx = coshξ as dummy integration variable, the
boundaries of the integral become 1≤ x < ∞. Performing
the integration yields

I = 4π(mc)3K2(mc220)

mc220
, 20 =

1

T
(31)

an expression in which the second order modified Bessel
functionK2(z) appears instead ofK1(z). This result is dif-
ferent from those obtained without taking into account the

correct Lorentz invariance of the full phase-space volume el-
ement, including the configuration space.

Taking the derivative as prescribed above we find

3 =
N0

4πm2T 2

[
3K2

(
mc2

T

)
+

mc2

T
K1

(
mc2

T

)]−1

(32)

This is slightly more complicated than Jüttner’s normalisa-
tion but takes into account the correct Lorentz invariance
of the phase-space volume element as required by relativity.
In any application it is therefore preferable over the former.
Equations (23), (32), and (31) define the correct relativistic
isotropic thermal equilibrium distribution.

Like the conventional J̈uttner distribution, the modified
Jüttner distribution given here refers to thermal equilibria
being just the relativistic version of the Boltzmann energy
distribution when taking into account Lorentz invariance of
the phase-space volume element. Observations of high en-
ergy particles, for instance Cosmic Ray spectra or spectra
of energetic particles in the solar wind and in the vicinity
of shocks, frequently deviate quite strongly from such dis-
tributions exhibiting long non-thermal power law tails in en-
ergy and velocity. The physics of generation of such tails
is still a problem of intense research. Clearly such distri-
butions are not described by thermal equilibria; it is usually
assumed that highly non-linear wave particle interactions in
non-equilibrium systems, i.e. mostly in the presence of col-
lisionless shock waves, or else plasma turbulence, would be
capable of generating particle spectra and distributions with
extended tails. Since in most cases those tails reach far into
the relativistic domain one would from the beginning as-
sume that the non-linear problem of tail generation should
be treated relativistically working with relativistic thermal
distributions as initial equilibrium conditions which, when
exposed to turbulence or non-linear processes, finally evolve
relativistic tails. These questions are particularly important
in astrophysical applications to energetic particle spectra.

There have also been attempts to describe power law
tail distribution, calledκ-distributions, as some intermediate
thermodnamic equilibrium in non-linear or turbulent interac-
tion. Such attempts have so far been fairly artificial and aca-
demic being either based on a modification of Boltzmann’s
collision integral or on the proposition of some special form
for the thermodynamic entropy depending on some free pa-
rameter likeκ. Distributions of this kind fit fairly well ob-
servations. In how far they obey a thermodynamic state has,
however, not been clarified from basic principles. It has also
not been shown, how the free parameterκ can be related to
internal non-linear plasma processes on which it must nec-
essarily depend if being real. In principle, of course, one
could extend formally the derivation of an equivalent to the
Jüttner function also for such distributions. However, as long
as there is no thermodynamic basis for them this remains a
purely academic problem.

www.ann-geophys.net/29/1259/2011/ Ann. Geophys., 29, 1259–1265, 2011
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5.2 Various plasma quantities

The Lorentz-invariant property of the phase-space volume el-
ement has consequences for the definition of a number of
phase-space averages of plasma parameters. These come
into play via the relativistic variation of the particle mass
m → mγ (p) which depends on the single particle momen-
tum. Hence, in presence of large particle numbers the collec-
tive averages of some quantities imply the phase-space inte-
gration over all contributing particles.

5.2.1 Plasma frequency

The square of the plasma frequency of particles of rest mass
m0α and chargeqα is defined asω2

α = q2
αNα/ε0mα, where

mα = m0αγ (p) andN is the particle density which follows
from the zeroth moment of the relativistic distribution func-
tion. Under relativistic conditions with the single particles
having proper Lorentz factorsγ (p), this becomes

〈ω2
α〉 =

q2
α

ε0m0α

∫
d3xd3p

γ (p)
fα(p) → ω2

0α

∫
d3p

γ (p)
fα(p) (33)

The extra Lorentz factor in the denominator of the integrand
arises from the relativistic mass-dependence on the proper
γ (p). When introducing the rest-frame densityN0

α and as-
suming that the relativistic distribution is homogeneous in
configuration space the integration over space can be per-
formed leading to the second form in the above equation,
whereω2

0α = q2
αN0α/ε0m0α is the square of the nonrelativis-

tic plasma frequency. The above expression takes into ac-
count that each particle has its own relativistic mass which
depends on its proper momentum.

So far we assumed that the plasma in the observer’s frame
is at rest, in which case only the proper motions of the par-
ticles count. If there is a bulk flow with bulk momentum
p0, then the un-primed frame can be considered as the rest
frame of the plasma as a whole, and a new observer frame
can be defined in which the plasma moves with bulk Lorentz
factor 0(p0). In this case the average density and mass
transform likeN → N0(p0) and〈mα〉 → 〈mα〉0(p0), where
from Eq. (33)

〈mα〉 =m0α

{∫ d3p

γ (p)
fα(p)

}−1
(34)

yielding that the ratio ofN0(p0)/〈mα〉0(p0) remains in-
dependent of0(p0). Thus, for bulk relativistic flows the
bulk Lorentz factor0(p0) drops out of the plasma frequency,
making it independent of any relativistic bulk flows.

5.2.2 Relativistic length scales

The above definition of the plasma frequency leads to the
relativistic redefinition of some lengths which depend on the
plasma frequency. These are the Debye length and the in-
ertial scales. The Debye lengthλD does not depend on the

particle mass. Because of this reason it remains invariant as
long as no bulk flow is considered. In a medium flowing
with bulk momentump0 having a bulk Lorentz factor0(p0)

its density dependence causes a weak dependence

λD → λD0/
√

0(p0) (35)

As for the inertial scalesλα = c/ωα, on the other hand, it
is clear that the dependence of the plasma frequency makes
them sensitive to the internal Lorentz factor as contained in
the definition Eq. (33) of the plasma frequency. It is obtained
by averaging the inverse inertial length taking into account
thatfα is normalised〈

c2

λ2
α

〉
= 〈ω2

α〉 =
c2

〈λ2
α〉

(36)

which retains the functional form of the inertial length even
in the relativistic case yielding for the root.mean-square of
the inertial length ofα-th particle speciesλrel

α =
√

〈λ2
α〉 =

c/
√

〈ω2
α〉, simply replacing the non-relativistic plasma fre-

quency with its relativistic average. This form remains un-
changed even in the case when the plasma moves at bulk
Lorentz factor0(p0), for the reasons explained above.

5.2.3 Alfvén speed, Mach number, magnetisation
parameter

As a last quantity we consider the relativistic Alfvén veloc-
ity. The Alfvén speed is defined asVA = B/

√
µ0mN show-

ing that it depends on the average particle mass densitymN .
SinceN is given as the zero moment of the distribution func-
tion, one generalises the mass density as

〈mαNα〉 =

∫
d3p γ (p)fα(p) (37)

One may note that particles of high internal momentum con-
tribute substantially to the relativistic mass density by be-
coming relativistically heavier. Moreover, if the plasma ex-
hibits a bulk flow with Lorentz factor0(p0), then the mass
density increases as02.

Calculation of the relativistic Alfv́en velocity can be done
in analogy to calculating the inertial scale by takingV 2

A and
averaging its inverse over the phase space. This yields

V rel
A =

√
〈V 2

A〉 =
B

√
µ0〈mαNα〉

(38)

Here the relativistic particles reduce the Alfvén speed due
to their increasing mass effect. This also implies that the
Mach numberM= V/VA will increase, if the plasma flows
with bulk velocity V = c0−1

√
02−1, in which case the

Mach number becomes proportional toMrel
≈M0

√
02−1,

whereM0 is the non-relativistic Mach number.
Finally, a comment on the magnetisation parameter (in-

verse plasma-β) is in place. This is defined as the ratio of the
magnetic to kinetic energy densities
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σm =
B2

2µ0NK
(39)

whereK = T +Ekin is the sum of thermal and kinetic plasma
energies, the latter playing a role only in plasma in bulk mo-
tion. A plasma not in bulk motion has thus constant mag-
netisation parameterσm = const. However, when the plasma
is in bulk relativistic motion, one hasN → N0(p0), and the
magnetisation parameter decreases. Moreover, if the bulk
energy is substantially larger than the thermal energy, as is
the case in ultra-relativistic cool flows which are important
in astrophysics, one hasEkin ∝ 0(p0) � T and thus

σm =
B2

2µ0NK
∝

1

02(p0)
� 1 (40)

which usually is very small and in this form is commonly
used in ultra-relativistic astrophysical flows.

Under this condition a flow can be considered as very
weakly magnetised unless it becomes capable of generating
its own strong equi-partition magnetic field. This is the case
when the Weibel instability (Weibel, 1959; Fried, 1959) takes
over under some well defined conditions.

6 Conclusions

In summary, we have given here an argument for the Lorentz
invariance of the phase-space volume element and con-
structed the corresponding relativistic distribution function.
This has consequences for the calculation of some relevant
plasma parameters in the relativistic domain. Application of
such parameters can be found in the cyclotron-maser theory
as for instance in the aurora or solar physics as well as in as-
trophysics, and to radiation belt problems where relativistic
particles come into play.

We have also shown that theisotropic thermal equilibrium
distribution function in a relativistic plasma Eq. (23) can be
given analytically (see Eq.32); it has the form of a modi-
fied J̈uttner distribution. Calculation of the anisotropic ther-
mal distribution which has been argued is more correct than
the isothermal (Israel, 1963; van Kampen, 1968; Nakamura,
2009) in the relativistic case would be more involved and
becomes possible only when the 4-vector of inverse temper-
ature is properly taken into account. Since these questions
have not yet been clarified even in basic relativistic thermo-
dynamics, we have not invested any effort into the determi-
nation of the general relativistic distribution in that case.

The normalisation condition changes when the exact Lorentz
invariance of the phase space volume is taken into account.
This has consequences for the relativistic ideal gas laws,
which have not been explored in this letter. The interesting
temperature-4-vector as well as anisotropic cases pose fur-
ther hurdles and have not been considered here.
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