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Abstract. Nonlinear “oscilliton” structures features a low-
frequency (LF) solitary envelope, the amplitude of which is
modulated violently by superimposed high-frequency (HF)
oscillations. We have studied the charge non-neutrality ef-
fects on the excitation of electrostatic ion-acoustic (IA) oscil-
litons. A two-fluid, warm plasma model is employed, and a
set of nonlinear self-similar equations is solved in a cylindri-
cal geometry. Under charge-neutrality conditions, three con-
ventional IA structures (namely, sinusoidal, sawtooth, and
spicky/bipolar) are obtained. By contrast, under charge non-
neutrality conditions, oscilliton structures are excited, where
the LF envelope is in the sound-wave (SW) mode, while the
HF ingredients include the IA mode and the ion-Langmiur
(IL) mode. The amplitudes of the SW wave are violently
modulated by the IA oscillations, whereas the upward sides
of the IA amplitudes are modulated by the IL oscillations
of smaller amplitudes, and the downward sides are modu-
lated by hybrid IA/IL oscillations. The nonlinear oscillitons
are found to be dependent not only upon the input parame-
ters (e.g., the Mach number, the Debye length, and the initial
temperature of particles), but on initial conditions as well.
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1 Introduction

For more than 70 years, a salient waveform was captured
in interplanetary spaces by numerous experiments: a low-
frequency (LF) envelope, the amplitude of which is modu-
lated violently by high-frequency (HF) oscillations. In ex-
traterrestrial spaces, for example, detections of such LF-
HF “symbiotic” packets began in the 1980s, when Gurnett
(1985) reported the first measurement by the Voyager 1 and
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2 spacecraft in the upstream of Jupiter’s bow shock. The au-
thor suggested that the extraordinary structures are related to
HF electron oscillations. In the vicinity of Io, the Galileo
spacecraft recorded similar waveforms which were thought
to be connected with ion-cyclotron (IC) waves (Kivelson et
al., 1996). In the Martian upstream region, the Mars Global
Surveyor confirmed that such structures also exist in the bow
shock where the HF signature is exactly at the local proton
IC frequency while the LF component is at about seven gy-
roperiods (see Mazelle et al., 2004, in details). In geospace,
by contrast, such coexisting wave modes were found much
earlier. A vast volume of experimental geomagnetic mi-
cropulsation data (1936–2000) exposes that the 0.4–2.2 Hz
Pc1 HF modes superimpose upon the 1–250 mHz Pc2–5 LF
ones (Alpert, 2001). In the last 10–20 years, many high-
resolution satellites have introduced various HF-LF wave-
field diagnoses beyond the scope of these frequencies in dif-
ferent plasma regions, such as Freja (Eriksson et al., 1994;
Dovner et al., 1994; Ṕecseli et al., 1996), Polar (Cattell et
al., 1998, 1999), FAST (McFadden et al., 1998; Pottelette
et al., 1999), Viking (Tjulin et al., 2003, 2004), and Cluster
(Santolik et al., 2003; Tjulin et al., 2003, 2004).

What on Earth is the Prime Mover that triggers such re-
markable structures consisting of two or more phases, rather
than respective simple waves we usually encounter? Usually,
the fully developed linear MHD wave theory is prone to be-
ing used to account for the LF-HF excitations. As a matter
of fact, linear MHD formulation does satisfactorily explain
the geomagnetic pulsations created in the magnetosphere at
frequencies of five branches Pc1–5 (see Alpert, 2001, and
references therein for details): Pc1 is of the magnetospheric
origin at the gyro-resonant IC frequency of magneto-active
plasma ions, while others are of solar origin and transferred
to the Earth’s magnetosphere by the solar wind, driven by re-
spective linear instabilities that are responsible for their gen-
eration.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


124 J. Z. G. Ma et al.: Ion acoustic “oscilliton” waves

Table 1. Some important space projects and relevant orders of typ-
ical plasma parameters measured in the ionospheric auroral F-layer
by the Geodesic rocket (Burchill et al., 2004), in the topside iono-
sphere by the Freja satellite (Eriksson et al., 1994), in the auroral
zone by the FAST satellite (Ergun, 1999), and in the magnetopause
by the Cluster satellites (Tjulin et al., 2004). See Sect. 2 for defini-
tions of parameters.

Vehicle Geodesic Freja FAST Cluster

mi/mp 16 16/1 1 1
B (mG) 500 250 100 10

n0 (cm−3) 106 103 10 1
Ti (eV) 0.1 0.2 300 10
Te (eV) 0.2 0.3 700 1
cs (km/s) 1 1.3/5.5 260 10

csB (mV/m) 50 33/140 2600 10
�i (krad/s) 0.3 0.15/2.4 1 0.1
ωpi (krad/s) 330 10/40 4.16 1.3
�e (krad/s) 8800 4400 1840 184
ωpe (krad/s) 56550 1800 180 180
ωLH (krad/s) 50 9/37 4.14 0.9

λDe (m) 0.003 0.13/0.14 62 8
ρi (m) 3.3 8.7/2.3 260 100

ξω(=ρi /λDe) 1100 67/17 4 13

Significantly, a nonlinear mechanism has been devel-
oped in the 2000s to account for the multi-frequency pul-
sations, other than Pc1–5, observed by most high-altitude
satellites. The work was pioneered by Sauer et al. (2001)
where the packets were named “oscillitons” (i.e., “oscilla-
tions” + “solitons”), followed by a series of subsequent pub-
lications, e.g., Sauer et al. (2002, 2003); Dubinin et al. (2002,
2003a, b, c, 2007); McKenzie et al. (2004); Cattaert and Ver-
heest (2005), and Sydora et al. (2007). In view of nonlin-
ear electromagnetic whistler modes, the authors found that
oscillitons are excited in multi-ion plasmas in propagations
parallel to, and supposedly also, oblique to a static, back-
ground magnetic field. The approaches integrated both an-
alytical and numerical methods, and developed algorithms
for effective simulations, aiming at case studies of instru-
mental spectra. The authors relied on multi-fluid models,
along with a Sagdeev-potential description where necessary
(e.g., Cattaert and Verheest, 2005), rather than on, inde-
pendently, either KdV/Schrödinger (see, e.g., Pécseli, 1985)
or Sagdeev-potential (see, e.g., Sagdeev and Galeev, 1969)
methods. They not only provided a reinforced understand-
ing of the existence of resonance conditions under which os-
cillitons appear (e.g., Verheest and Cattaert, 2005), but also
offer a shortcut in comparative studies among similarly ob-
served oscillitons by using data-fit modeling (e.g., Dubinin
et al., 2007; Pottelette and Berthomier, 2009, and references
therein). What is more, Kourakis and Shukla (2005) de-
veloped a generic methodological formulation for oscillitons
by taking into account either the mutual modulation effect

(due to the interaction between HF and LF modes) or the
auto-modulation one (due to the self-interaction of a carrier
mode). Both cold and warm fluid formulations are discussed
and a a multiple scale technique is applied.

Impressively, in studying large-amplitude, electromag-
netic, nonlinear waves in electron-positron plasmas, (Ver-
heest and Cattaert, 2004), Verheest et al. (2004) perceived a
sensitive quality of the whistler oscillitons through numer-
ical computations that had previously been unrecognized:
at not too large amplitudes, oscillitons are very similar to
single-frequency solitary envelopes obtained by solving the
Schr̈odinger equation, either the charge neutrality condition
is imposed as an a priori one or not. Intrigued by this study,
we are curious about the role played by this condition in
the excitation of conventional single-frequency solitary en-
velopes and multi-frequency oscilliton structures. To make it
clear is beneficial to gain a deeper insight into the physics of
the formation of the multi-frequency nonlinear structures.

As a matter of fact, the breakdown of the charge neutral-
ity condition can lead to conspicuous effects in a plasma
system: a slight divergence between positive and negative
charge densities (caused by, e.g., background density pertur-
bations, precipitating electron beams) produces a “strong”
space-charge electric field. For example, in a cylindrical
frame, a space-charge density ofnsc ∼ 10−5 times smaller
than the ambient plasma density could bring about a charac-
teristic electric fieldEc = 100 mV m−1 at a characteristic ra-
diusRc = 10 m, and thus cause anE×B drift of 2 km s−1 in
an ambient magnetic field ofB ∼ 0.5 G. This drift is higher
than the ion thermal speed which is about 1 km/s in iono-
spheric plasmas (this is why we say such a field is “strong”),
and therefore produces noneligible consequences to parti-
cle kinetics and bulk properties as studied by, e.g., Cole
(1971), Schunk and Walker (1972), St.-Maurice et al. (1976,
1994), Jørgensen (1978), St.-Maurice and Schunk (1979),
Lockwood et al. (1987), Winkler et al. (1992), Gaimard et
al. (1998), Ma and St.-Maurice (2008).

These studies show that the charge non-neutrality condi-
tion should also influence the excitation and the features of
nonlinear structures due to the fact that nonlinear processes
are determined by plasma dynamics. Encouraged by Ver-
heest et al. (2004), we uncovered the three traditional, single-
frequency, solitary packets under charge neutrality condi-
tions in both a Cartesian geometry (Ma and Hirose, 2009)
and a cylindrical one (Ma, 2010). However, this condition
may not be encountered at high altitudes above the iono-
spheric F-layer where multi-frequency waveforms are re-
ported frequently, while it is encountered at low altitudes
where though rockets are able to reach and few such wave-
forms are available. The reader is asked here to view several
typical space projects listed in Table 1 along with key plasma
parameters. The regions concerned are as follows: the iono-
spheric auroral F-layer by the GEODESIC rocket (Burchill et
al., 2004), topside ionosphere by the Freja satellite (Eriksson
et al., 1994), the auroral zone by the FAST satellite (Ergun,
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1999), and the magnetopause by the Cluster satellites (Tjulin
et al., 2004). Section 2 gives the definitions of all parameters.
The table shows that plasmas are very different in regions
above the ionospheric F-layer from those below. An obvi-
ous consequence of this is about the validity of the charge-
neutrality condition. For example, both satellite data and
simulation results exhibit that the spatial scales of nonlin-
ear waves are about several ion gyro-radii (ρi ; see, e.g., Er-
gun et al., 1998a, b). For a plasma system with an electron
Debye length (λDe), it is charge-neutralized whenρi � λDe,
or, ξω = ρi/λDe � 1, as given by the Geodesic rocket data
ξω > 1000. In this case, electron and ion densities can be
approximated asni ≈ ne (hereni andne represent ion and
electron densities, respectively). On the contrary, it is at a
charge non-neutrality state, just as given by the satellite data
ξω < 100. In this case, a space-charge densitynsc= ni −ne
exists inevitably.

Because linear MHD wave mechanisms under charge-
neutrality conditions explain the production of Pc1–5 multi-
wave pulsations, we naturally consider that a nonlinear pro-
cess, induced by the charge non-neutrality condition, should
have a connection to the activation of the multi-ingredient
oscilliton waveforms. Previous authors (e.g., Verheest et al.,
2004) showed that this process is irrelevant of either elec-
trostatic or electromagnetic modes, while other authors (e.g.,
Ma, 2010) confirmed that the charge-neutrality is dedicated
only to single-wave nonlinear structures. We thus expand the
original meaning of the beautiful word, “oscillitons”, to de-
scribe a kind of nonlinear multi-frequency waveform struc-
ture of either electromagnetic or electrostatic origin. Unfor-
tunately, contrary to the extensive studies on electromagnetic
“oscillitons” mentioned above, little work has been reported
on the electrostatic “oscillitons”. We are introducing the first
part of our work in this paper.

Electrostatic nonlinear plasma theory has been develop-
ing for more than half a century (Sagdeev and Galeev, 1969;
Davidson, 1972). Important issues, such as the excitation,
propagation, and effects of nonlinear waves, have been ex-
tensively studied since the 1950s when Bernstein, Green,
and Kruskal (BGK) (1957) predicted the first non-wave, 1-
D solitary phase-space structures (see, e.g., Infeld and Row-
lands 2000). Up to now, numerous studies have been carried
out since the 1970s, with an extension to 2-D and 3-D ap-
proaches (see a recent review by Eliasson and Shukla 2006).
For instance, Shukla and Yu (1978) and Yu et al. (1980)
gave exact stationary solutions for the solitons propagat-
ing obliquely in a two-component (electron and ion), low-β

plasma (Te � Ti) in a constant magnetic field; and, observa-
tionally, Temerin et al. (1979) found three shapes of electro-
static solitary structures (namely, sinusoidal, sawtooth, and
spicky/bipolar) from the S3-3 data. In a generalized study,
Lee and Kan (1981) obtained nonlinear IA and IC waves,
and IA solitons, followed by Nakamura and Sugai (1996)’s
study on a three-component (warm ion, cold and energetic
electrons) system with a pseudo-potential method (i.e., the

“Sagdeev potential”). In such a system, Chatterjee and Roy-
choudhury (1997) found that, when the ion temperature in-
creases, the amplitude of the IA solitary waves increases
while the self-similar coordinate (denoted byξ = x−V t) de-
creases. Here,x is the 1-D coordinate,V the phase speed of
solitons, andt the time. For a system containing cold multi-
ionic components, Das et al. (2000) claimed that a power
expansion technique could lead to higher order nonlinear
IA wave equations which could yield various solitary wave
propagations, such as, spiky solitons, collapsed or explosive
ones, and double layers. Pottelette et al. (2003) studied the
excitation of IA solitons in a system composed of a cool ion
component and two thermal electron populations. Recently,
Ma and Hirose (2009) performed a parameterized study on
propagating IA solitary waves in a system which consisted
of a warm ion component and two-temperature isothermal
electrons (background electrons and energetic ones). These
studies adopted a charge-neutrality condition and no HF in-
gredients appear to superimpose upon the simple LF wave
packets.

Contrary to the single concept, “oscillitons”, appeared
in the early 2000s (Sauer et al., 2001) to describe nonlin-
ear, multi-frequency, electromagnetic structures, the single-
frequency, electrostatic envelopes were designated in litera-
ture by many nomenclatural terms. Besides well-known the-
oretical descriptions like “BGK (solitary) waves”, “solitary
(electrostatic) waves”, “phase-space (electron or ion) holes”,
Dupree (1972) described them as “clumps”, while Chiueh
and Diamond (1986) called them “density granulations” or
“space-charge holes” (either over-densed or under-densed).
Observationally, satellite projects verified these structures
via spikelet electric field measurements at numerous sites
in geospace, such as, OVO-1 in auroral regions (Heppner,
1969), IMP-7 in the neutral sheet (Scarf et al., 1974), Hawk-
eye 1 & IMP 6 near the magnetic equator (Gurnett, 1976),
Hawkeye 1 & IMP 8 in the outer radiation zone (Gurnett
and Frank, 1976), IMP-8 in the plasma sheet boundary layer
(Gurnett et al., 1976), DE-1 at the polar magnetosphere (Gur-
nett et al., 1983) and the dayside magnetopause (LaBelle et
al., 1987), Viking in auroral zones (Pottelette et al., 1988;
Hultqvist, 1989) and the entire cleft region (Dubouloz et al.,
1991), ISEE (Cattell et al., 1986), AMPTE (Baumjohann
et al., 1989), and GEOTAIL (Matsumoto et al., 1994; Ko-
jima et al., 1997) in the magnetotail; Wind/WAVES in the
dusk magnetopause (Farrell et al., 2002), FAST in the au-
roral downward current region (see Table 2 in Ergun et al.,
2003), and, Cluster in the vicinity of the polar cusp (Lin et al.,
2006). They were named “non-wave cavitons”, “broadband
electrostatic noises (BENs)”, “(non-wave) solitons”, “elec-
trostatic holes”, “kinks”, “electrostatic shocks”, “(weak or
strong) double layers”, “bipolar/tripolar electric-field struc-
tures”, etc. See the Introduction section of Ma and Hirose
(2009) for details. A common feature of data in these mea-
surements lies in a single-frequency spectrum at either ion-
cyclotron (IC) or ion-acoustic (IA) frequencies.
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By employing Verheest et al. (2004)’s approach, we pay
attention to parallel-propagating, nonlinear solitary waves to
see the impact of the charge non-neutrality condition on the
excitation and the features of the multi-frequency structures,
called “electrostatic oscillitons”. In order to provide a di-
rect comparison between the results under the present charge
non-neutrality condition and what was introduced under the
charge neutrality condition (Ma, 2010), we chose a cylindri-
cal geometry. In fact, cylindrically symmetric systems are
ubiquitously observed in geo-space by a multitude of mea-
surements from, e.g., ground-based imagers (Pimenta et al.,
2001), rockets (Earle et al., 1989; Moore et al., 1996), and
satellites (Pickett et al., 2004; Vaivads et al., 2004; De Keyser
et al., 2005).

In the cylindrical frame, whereB is along an axial z-
direction, Ma (2010) used a self-similar, two-fluid plasma
model under a charge neutrality condition to show the fea-
tures of the parallel-propagating, simple nonlinear IA waves,
from which only single-frequency waves can evolve. Numer-
ical calculations exposed that, similar to the Cartesian case,
the three types of nonlinear structures mentioned above (si-
nusoidal, sawtooth, and spiky or bipolar) still exist, whereas
Cluster satellite data (Cattell et al., 2003) can be explained
by simulated diverging and converging electric shock pack-
ets. By contrast, the initiative of the present paper is to an-
swer a fundamental question: Can nonlinear multi-frequency
“oscillitons” be excited electrostatically by the charge non-
neutrality? The work is layed out as follows: Section 2 sets
up a generalized self-similar, two-fluid model in a cylindrical
geometry for a two-component electron-ion plasma system.
Section 3 introduces basic features of IA solitary waves in
regions satisfying the charge-neutrality condition via a nu-
merical approach. Section 4 relaxes the condition to charge
non-neutrality and provides a parameterized study to show
the modulation of solitary structures to oscillitons. The in-
fluences of input parameters and initial conditions on oscil-
litons are also described. Section 5 presents a summary and
a discussion. An appendix describes briefly the linear modes
excited in a cylindrical system.

2 Two-fluid model

In order to provide the most basic picture for the modulation
of charge non-neutrality on the emergence and propagation
of electrostatic IA solitary oscillitons, and thus to gain impor-
tant insights into more complicated situations while still be-
ing able to illustrate the process clearly, we focus on regions
rockets (e.g., Geodesic) and satellites (e.g., Freja, FAST, and
Cluster) have visited frequently, such as the ionospheric au-
roral F-layer, acceleration region, bow shock, and magne-
topause. In these regions, the plasmaβ is much less than 1
and thus the waves triggered are electrostatic; however, the
ion magnetic gyrofrequency (�i) is not always much smaller

than the ion plasma frequency (ωpi) but the ratio between
them varies greatly from one region to the other.

We employed a two-fluid model in a cylindrical geometry
(r,φ,z) with B = B êz (whereB is constant,̂ez is the unit
vector along z-axis). The model takes into account isother-
mal electron and adiabatic ion fluids, withvTe � vTi , where
vTe =

√
2kBTe/me and vTi =

√
2kBTi0/mi are the electron

and ion thermal speeds, respectively, in whichkB is Boltz-
mann’s constant,Te andTi0 are the electron temperature and
ion initial temperature, respectively, andme andmi are their
masses, respectively.

2.1 Equations of electron and ion fluids

Up to the present, few studies have been performed on the
excitation of nonlinear “IA oscillitons” in a two-fluid plasma
system. We thus exclude the magnetic filed variation (i.e.,
under an electrostatic condition which is in agreement with
the lowβ condition), and neglect the electron inertia due to
me � mi , in the present article, so as to minimize external
distractions from the focus on the effect of the charge non-
neutrality condition. It should be mentioned here that, in the
case including variation and inertia, Ma and Hirose (2010)
showed that electromagnetic “lower-hybrid oscillitons” are
triggered.

For the electron fluid considered throughout this paper,
both the momentum equation and the isothermal equation of
state provide

Ne= e8 (1)

whereNe = ne/n0 is the dimensionless electron density in
whichne andn0 are the dimensional electron density and the
uniform background plasma density, respectively, and8 =

eϕ/(kBTe) in whichϕ is the electrostatic potential satisfying
E = −∇ϕ whereE denotes the electrostatic electric field.
For ions, by usingni , {ur ,uφ,uz}, andt to denote ion density,
velocity components, and time, respectively, we write the ion
fluid equations as follows:

1. Continuity equation

∂ni

∂t
+

∂(niur)

∂r
+

∂(niuz)

∂z
= −

niur

r
(2)

2. Radial momentum equation

∂ur

∂t
+ ur

∂ur

∂r
+uz

∂ur

∂z
=

=
u2

φ

r
−v2

Ti
∂

∂r

(
ni

ni0

)
−

�i

B

∂ϕ

∂r
+�iuφ (3)

3. Azimuthal momentum equation

∂uφ

∂t
+ur

∂uφ

∂r
+uz

∂uφ

∂z
= −

uruφ

r
−�iur (4)
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4. Axial momentum equation

∂uz

∂t
+ur

∂uz

∂r
+uz

∂uz

∂z
= −v2

Ti
∂

∂z

(
ni

ni0

)
−

�i

B

∂ϕ

∂z
(5)

5. Poisson’s equation

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

∂2ϕ

∂z2
=

e(ne−ni)

ε0
(6)

where�i = eB/mi , andε0 is the vacuum permittivity.

It can be noticed that all derivative terms along theφ-
direction do not occur due to the symmetric nature of the
cylindrical system. Besides, because the adiabatic index is 2,
we have appliedpin

−2
i = Const., as well as the equation of

state,pi0 = n0kBTi0, in deriving the momentum equations.
By normalizing all variables withNi=ni/n0, R = r/ρi

(where ρi = cs/�i is the ion gyro-radius in whichcs =
√

kBTe/mi is the ion acoustic speed),Z = z/ρi , Vr = ur/cs,
Vφ = uφ/cs, Vz = uz/cs, τ = �i t , we obtain a dimensionless
set of above differential equations as follows:

∂Ni

∂τ
+

∂(NiUr)

∂R
+

∂(NiUz)

∂Z
= −

NiUr

R
(7)

∂Ur

∂τ
+Ur

∂Ur

∂R
+Uz

∂Ur

∂Z
=

U2
φ

R
−

∂Ni

∂R
−

∂8

∂R
+Uφ (8)

∂Uφ

∂τ
+Ur

∂Uφ

∂R
+Uz

∂Uφ

∂Z
= −

UrUφ

R
−Ur (9)

∂Uz

∂τ
+Ur

∂Uz

∂R
+Uz

∂Uz

∂Z
= −

1

ξT

∂Ni

∂Z
−

∂8

∂Z
(10)

1

R

∂

∂R

(
R

∂8

∂R

)
+

∂28

∂Z2
= ξ2

ω(Ne−Ni) (11)

in which ξT = c2
s/v

2
Ti = Te/(2Ti0) andξω = ωpi/�i = ρi /λDe

whereωpi is the ion plasma frequency, andλDe = cs/ωpi =√
ε0kBTe/(n0e2) is the electron Debye length. Naturally,

cskDe = ωpi where kDe = λ−1
De is the electron Debye wave

number.
In such a system, linear IA and IC waves can be excited.

By linearizing Eqs. (7)–(11), we obtain various linear wave
modes as given in Appendix A.

2.2 Generalized nonlinear self-similar equations

Superimposing upon these background linear oscillations,
there exist nonlinear solitary waves the features of which
can be obtained by solving a set of self-similar equations of
Eqs. (7)–(11) via introducing a self-similar parameterX (Lee
and Kan, 1981; Shi et al., 2001):

X =
α1

M
R+

α2

M
Z−τ (12)

whereM is the Mach number,α1 = sinθ , andα2 = cosθ in
which θ is the inclination angle between the propagation di-
rection and the magnetic field. Using this self-similar trans-
formation, we have

∂

∂τ
= −

d

dX
,

∂

∂R
=

α1

M

d

dX
,

∂

∂Z
=

α2

M

d

dX
(13)

Equations (7)–(11) become(
1−

α1Ur +α2Uz

M

)
dlnNi

dX
−

−
1

M

d(α1Ur +α2Uz)

dX
=

Ur

R
(14)

(
1−

α1Ur +α2Uz

M

)
dUr

dX
=

= −

(
Uφ

R
+1

)
Uφ +

α1

M

d(Ni +8)

dX
(15)

(
1−

α1Ur +α2Uz

M

)
dUφ

dX
=

(
Uφ

R
+1

)
Ur (16)

(
1−

α1Ur +α2Uz

M

)
dUz

dX
=

α2

M

d
(

Ni
ξT

+8
)

dX
(17)

d28

dX2
+α2

1
dlnR

dX

d8

dX
= M2ξ2

ω(Ne−Ni) (18)

We have concentrated on parallel-propagating solitary waves
in this article, i.e.,θ = 0◦. Thus,∂/∂R = 0, meaning all vari-
ables are independent ofR. Note thatR occurs in equations
as a constant to represent the radius of curvature of the flow
streamline intersecting the magnetic field lines on which the
equation is going to be solved. It provides the centrifugal and
Coriolis forces absent in rectilinear flows and behaves as an
input parameter of the system. In this case, the above set of
equations takes a much simpler form as follows:(

1−
Uz

M

)
dlnNi

dX
−

1

M

dUz

dX
=

Ur

R
(19)

(
1−

Uz

M

)
dUr

dX
= −

(
Uφ

R
+1

)
Uφ (20)

(
1−

Uz

M

)
dUφ

dX
=

(
Uφ

R
+1

)
Ur (21)

(
1−

Uz

M

)
dUz

dX
=

1

M

d
(

Ni
ξT

+8
)

dX
(22)

d28

dX2
= M2ξ2

ω(Ne−Ni) (23)
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3 Features of solitary waves under charge-neutrality
conditions

As shown in Table 1, the condition ofρi � λDe (or, equiv-
alently,�i � ωpi) is valid at lower altitudes, e.g., the iono-
spheric F-layer. Thus, the charge separation effects can be
satisfactorily neglected, and the charge quasi-neutrality con-
dition (namely,Ni ≈ Ne) is met. By usingNi ≈ Ne and
Ne= e8 in Eqs. (19)–(23), we obtain

dVr

dX
−

Vz

M

dVr

dX
= −

V 2
φ

R
−Vφ (24)

dVφ

dX
−

Vz

M

dVφ

dX
=

VrVφ

R
+Vr (25)

dVz

dX
−

Vz

M

dVz

dX
=

ζ

M

d8

dX
(26)(

1−
Vz

M

)
d8

dX
−

1

M

dVz

dX
=

Vr

R
(27)

in whichζ = 1+ξ−1
T . Considering80 = 0 atX = 0, the third

equation gives

Vz = M(1±
√

1−9) (28)

where9 = 2(ζ8/M2
+Vz0/M)−V 2

z0/M
2. Clearly, the dual

solutions ofVz means that there are two branches of propa-
gating solitary waves withVz0=0 and 2M, respectively.

3.1 Forward-propagating solitary waves

A branch of the solitary waves hasVz = M(1+
√

1−9) ≥

M. BecauseVz ≥ 0, it propagates forward along magnetic
field lines. Applying theVz expression in Eqs. (24)–(27) pro-
duce

√
1−9 dVr

dX
=

(
Vφ

R
+1

)
Vφ

√
1−9

dVφ

dX
= −

(
Vφ

R
+1

)
Vr(

M2

ζ

√
1−9 −

1
√

1−9

)
d9
dX

= −2Vr

R

(29)

We useNi ≈ e8, and introduce a dimensionless electric field
Ei determined by

Ei = −
1

M

d8

dX
= −

M

2ζ

d9

dX
(30)

in a unit ofE0 = csB. After takingTe = 10Ti0 which gives
ξT = 5 and ζ = 1.2, and using input parametersM = 1.8
andR = 0.9, we calculate Eq. (29) and expose features of
this forward-propagating branch in Fig.1. The axial speed
Vz, ion densityNi , and wave-field strengthEi are shown in
the three top-row, middle-row, and bottom-row panels, re-
spectively, while the three left-column, middle-column, and
right-column panels display solitons with a sinusoidal shape
in Ei excited by a slow-speed azimuthal flow ofVφ0 = 0.1,
that with a sawtooth shape inEi excited by a medium-speed

azimuthal flow ofVφ0 = 0.6, and that with a bipolar shape
in Ei excited by a fast-speed azimuthal flow ofVφ0 = 0.89,
respectively. Other boundary conditions are{Vr ,9} = {0,0}.

The sinusoidal, sawtooth and bipolar (or spiky) shapes in
Ei are the three well-known structures observed in space.
Corresponding to the threeEi structures, bothVz andNi have
oscillations of the same frequency. Strikingly, for a phase
speedM = 1.8, the amplitude of solitons inVz enhances from
the initial value of 3.6, higher thanM, to 3.8 in the sinu-
soidal case, 4.6 in the sawtooth case, and 5.9 in the bipolar
case, respectively, representing even higher speeds thanM;
by contrast,Ni decreases from the initial value of 1 to 0.7,
0.1, 0.002, respectively, in the three cases. It is clear that
(1) solitons exist in boundaries of density holes, or, equiv-
alently, they are spatial and temporal islands, the density of
which is higher than the surroundings; (2) soliton ions have a
slower speed in propagation but constitute violently changing
electric field strengths; (3) solitary structures are modulated
by Vφ0 in that a small-amplitude, sinusoidal mode evolves
to a medium-amplitude, sawtooth mode, and finally a high-
amplitude, bipolar mode whenVφ0 increases; (4) the wave-
lengthsXω of the periodic structures are correlated with the
amplitudes: they areXω = 6.7, 11.4, 85 (in units ofρi), re-
spectively, corresponding to the three levels of amplitudes.

In the last case, in particular, diverging shocks (Ergun et
al., 1998b) are found undoubtedly to have developed from
the middle case. They are featured by a negative electric field
followed by a positive one. In addition, calculations with a
changingM underM > 1 expose thatNi is never larger than
1, but moves to a minimum which is smaller at a faster drift as
already presented in the figure. Furthermore,Vφ0 cannot be
larger than 1. This means that the azimuthal speed is unable
to surpass the local acoustic speed for soliton solutions to be
available.

3.2 Backward-propagating solitary waves

The other branch of the solitary waves hasVz = M(1−
√

1−9). Applying theVz expression in Eqs. (24)–(27) pro-
duces

√
1−9 dVr

dX
= −

(
Vφ

R
+1

)
Vφ

√
1−9

dVφ

dX
=

(
Vφ

R
+1

)
Vr(

M2

ζ

√
1−9 −

1
√

1−9

)
d9
dX

= 2Vr

R

(31)

By comparison with the forward-propagating branch, we find
that the density structures reproduce the previous cases to-
tally, as exhibited by Fig.2 under same conditions. However,
there are three different features: (1)Vz is always smaller
than zero, meaning that this is a backward-propagating
mode; (2) the amplitude ofVz is always smaller than that
of the forward-propagating mode, indicating that the propa-
gation speed is slower; (3) the solitons are converging shocks
characterized by a positive electric field followed by a nega-
tive one (McFadden et al. 2003).
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Fig. 1. Features of the forward-propagating branch of solitary waves via the axial speedVz (top-row panels), ion densityNi (middle-row
panels), and wave-field strengthEi (bottom-row panels): (1) solitons with a sinusoidal shape inEi excited by a slow-speed azimuthal flow
of Vφ0 = 0.1 (left-column panels); (2) solitons with a sawtooth shape inEi excited by a medium-speed azimuthal flow ofVφ0 = 0.6 (middle-
column panels); (3) solitons with a bipolar shape inEi excited by a fast-speed azimuthal flow ofVφ0 = 0.89 (right-column panels). Input
parameters:ζ = 1.2, M = 1.8, andR = 0.9; Boundary conditions:{Vr ,9} = {0,0}.

3.3 FFT spectra ofEi

Equations (24)–(27) describe localized, coherent solitary
waves which are excited in the two-fluid system by the bal-
ance of nonlinearity and the dispersive effect (Davidson,
1972; Drazin, 1984, and references therein). It can be noted
that it is suitable for nonlinear solitary waves driven in re-
gions where the charge quasi-neutrality is satisfied to super-
impose upon background linear waves the dispersive charac-
teristics of which can be seen from the propagation features
of nonlinear structures.

In Eqs. (24)–(27), all spatial parameters are normalized by
ρi . Thus,ξ−1

ω (or, �i/ωpi) is as a matter of fact the exact
expression of the dimensionlessλDe. Obviously, it is smaller
than 1 as observed data from 0.0009 to 0.25 shown in Ta-
ble 1. Undoubtedly,λDe � Xω, or kDe � kX = X−1

ω . As
a result, we can readily use the dimension-free expression
ω2

= ζk2
X (i.e., Eq.A9), to evaluate the dispersive IA signa-

tures which is the only mode existing in the cases discussed
above. Easily, we have

ω =

√
ζ

Xω

(32)

which providesωX = 0.163,0.096,0.013 in accordance with
the threeXω values. These should constitute the three domi-
nant oscillation frequencies of the IA mode, accompanied by
a series of harmonics due to the fact that the solitary wave-
forms cannot be described by pure sine functions, if we an-
alyze the periodicEi structures of the solitary waves in a
frequency regime.

Figure 3 demonstrate such an analysis via the FFT al-
gorithm. The upper three panels depict the spectra of the
forward-propagatingEi structures, while the lower three
panels reveal that of the backward-propagating ones: the
two left-column panels are for the sinusoidal solitons with
Vφ0 = 0.1; the two middle-column panels are for the saw-
tooth solitons withVφ0 = 0.6; and the two right-column pan-
els are the bipolar solitons withVφ0 = 0.89. The panels re-
veal the three main peaks at 0.160, 0.090, and 0.012, respec-
tively, for the threeEi structures, and confirm the harmonics
with 0.300, 0.450, 0.600,···, in the sinusoidal case; 0.175,
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Fig. 2. Same as Fig.1 but that of the backward-propagating branch of solitary-waves. Note that the density structures are totally the same as
those in the previous figure.

0.265, 0.350,···, in the sawtooth case; and 0.023, 0.035,
0.047,···, in the bipolar case, respectively.

Tiny errors betweenωX predicted theoretically by using
Eq. (32) and the FFT data can be noticed here. By adjust-
ing the simulation scales inX, we know that the longer the
lengths inX, the closer the FFT frequencies to theωX val-
ues. Thus, we realize that the difference is contributed by the
limited length in practical calculations. We would also like
to point out that (1) both forward and backward propagat-
ing solitary waves contribute to an identical frequency spec-
trum, not only in power amplitudes, but also in frequency
shifts of the noise bands; (2) all the threeEi structures of-
fer IA frequency-sweeping bands smaller than the IC fre-
quency,�i , although the bipolar noises can extend a little
above them. (3) Any extra factors considered to break up the
plasma neutrality in the two-fluid system will introduce new
oscillating modes superimposing upon the IA mode, how-
ever, disappearing increasingly with the strengthening of the
charge-neutrality condition, as will be seen below.

4 Features of solitary waves under charge
non-neutrality conditions

The non-neutrality of charges means thatρi � λDe is not
satisfied anymore. In this case, the charge neutrality con-
dition, Ni ≈ Ne, does not maintain in the two-fluid system.
Space chargesNsc= Ni −Ne are brought into into play in
Eqs. (19)–(23), while electrons continues to keepNe= e8 as
an isothermal fluid. For the ion fluid, by substitutingM −Uz

with Uz, we obtain a new set of equations from Eqs. (19)–
(23) as follows:

dNi
dX

= MNi

UrUz
R

−E

U2
z −

Ni
ξT

dUr

dX
= −M

Uφ

Uz

(
Uφ

R
+1

)
dUφ

dX
= M Ur

Uz

(
Uφ

R
+1

)
dUz
dX

= M
UzE−

NiUr
RξT

U2
z −

Ni
ξT

d8
dX

= −ME
dE
dX

= Mξ2
ωNsc


(33)

An obvious difference of this set of equations from
Eqs. (24)–(27) lies in thatVz is unable to be solved as a
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Fig. 3. FFT spectra of both the forward-propagatingEi (upper panels) and the backward-propagating one (lower panels): (1) sinusoidal
solitons withVφ0 = 0.1 (left-column panels); (2) sawtooth solitons withVφ0 = 0.6 (middle-column panels); (3) bipolar solitons withVφ0 =

0.89 (right-column panels).

function of the only8 in advance. It is involved in the cou-
pling of the fluid variables to Maxwell’s equations through
charge densities (ne, ni) and other components of the flow
velocity (ui). Numerical calculations reveal that not only no
two branches of solitary waves exist in this case, but the three
well-known solitary structures are modulated byVz other
thanVφ . More significantly, instead of the bipolar shapes,
a new type called oscillitons comes into being by solving
Eq. (33). This type of nonlinear waves features a relatively
LF propagating solitary wave, however, the amplitudes of
which are violently modulated by small-amplitude but HF
oscillations.

4.1 Linear modes

The background linear waves in this case contain three
modes in the parallel direction (θ = 0◦), depending onkz as
given by Eqs. (A7)–(A11). Figure4 illustrates these back-
ground modes in theω−k plane withξT = 5 andξω = 12.

4.1.1 Sound wave (SW) mode (kz � ξω)

This mode has a simple dispersion relation as follows: (kz �

ξω):

ω2
= k2

z ζ (34)

It reduces to the SSW mode if ions are cold withζ = 1. In
this mode,kz is so small as to be neglected compared toξω.
A threshold of 1% is adopted as commonly used in statistics.
The correspondingω threshold is 0.13. In the figure with an

Fig. 4. Background linear oscillation modes in theω−k plane with
ξT = 5 andξω = 12.

origin of (0.1,0.1), the region to indicate this mode is labeled
roughly (not in scale for an easy identification) by skewed
lines on the lower-left corner. Note that all waves withω <

0.13 (in a unit of�i) are of the SW mode.

4.1.2 Ion acoustic (IA) mode (kz < xiω)

This mode has

ω2
=

k2
z

ξT

+
k2
z ξ

2
ω

k2
z +ξ2

ω

(35)
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Fig. 5. Three different types of solitary waves under charge non-neutrality conditions withUz0 = 0.6 (left column), 0.9 (middle column), and
1.02 (right column). Represented by the electric field structures (the third row), the waves are oscillating sinusoidal-shaped (left), oscillating
sawtooth-shaped (middle), and oscilliton-shaped (right) shapes. From top to bottom: the plasma density (eitherNi or Ne), space-charge
density (Nsc= Ni -Ne), electric field (Ei ), and FFT power-density spectrum. Input parameters:M = 1.8, R = 0.8, ξT = 5, andξω = 12;
boundary conditions:Ni0 = 1, {Ur0,Uφ0} = {0,0.07,1}, 80 = 0, andE0 = 0.

which occupies a frequency band from below to above ion
gyro-oscillations in thatω is between a frequency around 0.1
and about 10. In the nonlinear regime, a series of harmonics
is the signature of this mode, due to the fact that the oscil-
lations are not in the form of pure sine waves, as discussed
previously.

4.1.3 Hybrid IA/IL mode ( kz ∼ ξω)

This mode has

ω2
∼ ξ2

ω

(
ζ −

1

2

)
(36)

If kz increases to a level close toξω, ω is independent ofkz

but depends only on the ion plasma oscillations as a complete
coupling between the IA and IL modes. In view of the spec-
trum, the high-frequency end of the IA mode should posses a
transition region where a narrow-band of noises links the IA
harmonic peaks to IL oscillation components.

4.1.4 Ion Langmuir (IL) mode (ξω < kz <∼ 10ξω)

This mode has

ω2
=

k2
z

ξT

+ξ2
ω (37)
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Fig. 6. Features of propagation velocity of a solitary wave under the
reference set of data but withVz0= 0.9. In the perpendicular plane
in velocity space,Vr andVφ form a helical motion versusX, while
Vz has only a unidirectional propagation alongX as shown in the
inserted panel. All the three velocity components have a common
IA period ofX1 = 2.63, or,ω1 = 0.3802.

In this mode, the ion oscillation is at a level of ion plasma
frequency; however,ω relies on the wavelength again, the
role of which is increasingly strengthened withkz. Although
a high-frequency branch askz becomes very high, the wave-
length of the mode is still not so short as to trigger the Landau
damping effect. However, afterkz ∼ 10ξω, or equivalently,
ω ∼ 55, Eq. (37) begins to provide a phase speed which is
in the order of the ion thermal speed. This will initiate the
damping effect, another topic beyond the scope of this study.
It is thus predictable that the two-fluid system formulated by
Eqs. (19)–(23) is unable to produce spectral signatures above
ω ∼ 55.

4.2 Structures of solitary waves

Differing from the previous IA case satisfying charge quasi-
neutrality conditions, there are two more linear modes in-
volved in the initiation and propagation of solitary waves
by the introduction of the non-neutrality of charges. One is
the lower-frequency SW mode, and the other is the higher-
frequency IL mode. The two new modes play ineligible
roles through modulations of the IA mode in two aspects:
(1) faster and/or slower oscillation ingredients superimpos-
ing upon the smoothly-developed amplitudes of the well-
known IA structures; and (2) deformation of these solitary
structures into distorted or entirely unexpected shapes.

To show the extraordinary properties of the new solitary
waves by solving Eqs. (19)–(23), we continue to use the
following reference set of conditions including input pa-
rameters:M=1.8, R=0.8, ξT =5, andξω=12; and boundary
conditions:Ni0=1, {Ur0,Uφ0,Uz0} = {0,0.07,1}, 80=0, and

E0=0. UnderUz0 = 0.6,0.9,1.02, Fig.5 illustrates modified
IA solitary waves. We also useEi appearances (third row)
for classifications. From left to right, the waves are oscil-
lating sinusoidal shocks, sawtooth shocks, and a new type
of structures instead of the well-known bipolar shocks, re-
spectively. To get more insight into the features, the plasma
density (eitherNi or Ne; upper row), the space-charge den-
sity (Nsc=Ni-Ne; second row), and the FFT power spectra
(bottom row) is exposed.

The first distinctive facet lies in the change of the veloc-
ity component to initiate solitary structures. Under previ-
ous charge-neutral conditions, it was the azimuthal speed
Vφ0 that behaved as the Prime Mover for the three differ-
ent structures, as illustrated by Figs.1 and2. On the other
hand, in the present case,Vz0 replaces the role, whereasVφ0
is united withVr0 to provide initial conditions of a helical
trajectory versusX in the perpendicular plane of the velocity
space, as illustrated by Fig.6 with Vz0 = 0.9, as an exam-
ple, in which the waveform of theVz component has been
inserted. Numerous calculations indicate thatVz does not
have two branches anymore as before, but is only unidirec-
tional. Note also that the three velocity components expose
a common IA period ofX1 = 2.63, or,ω1 = 0.38. This fre-
quency occurs exactly as the dominant peak at 0.38 (the first
one from the left) in the FFT spectrum, accompanied by a
group of harmonics, in the bottom-middle panel of Fig.5.

Another striking trait is the oscillation patterns of the am-
plitudes carried by all three IA structures. TheVz0 = 0.9
case can be examined again. Through an expanded view of
the sawtooth-shapedEi structure with calculations extend-
ing from X = 0 to 100, we find that there are two high-
frequency modes of small-amplitudes parasitizing inside the
low-frequency IA mode: one has longer wavelengths of
roughlyX ∼ 0.1–0.2 at the downward edges of the sawteeth,
and the other has shorter wavelengths of aboutX ∼ 0.05–0.1
at the upward edges. The former falls atf ∼ 5–10, the hy-
brid IA/IL band, and the the latter is located atf ∼ 10–50,
the IL band. The FFT panel gives the broadband spectrum
from f = 0.01 to 100. Clearly, afterf = 50, no power den-
sity comes into being. Similar FFT spectra are also found
for both sinusoidal and oscilliton-shaped structures. In the
sinusoidal case, the hybrid IA/IL band is atf ∼ 8–20, and
the IL band is atf ∼ 20–50. In the oscilliton mode, the hy-
brid IA/IL mode shifts intof ∼ 3–7, and the IL mode oc-
cupies a broader band fromf ∼ 7 to 50. It is worth men-
tioning here that in the IL band, there are series of harmonic
narrow sub-bands peaked at∼ 7±2, 15±2, 23±2, 31±2,
39± 2, 46± 2. Between two adjoint sub-bands noises oc-
cur. These sub-band oscillations and noises come from the
upward edges of every sawtooth (the inserted panel). It is in-
teresting to note that in the last case whenVz0 = 1.02, there
is a low-frequency SW oscillation at∼0.05. This oscillation
categorizes a new type of soliton structures called as “oscil-
litons”.

www.ann-geophys.net/29/123/2011/ Ann. Geophys., 29, 123–145, 2011



134 J. Z. G. Ma et al.: Ion acoustic “oscilliton” waves

Fig. 7. An example of an oscilliton train under input parameters:
M = 1.8, R = 0.8, ξT = 5, andξω = 12; and boundary conditions:
Ni0 = 1, {Ur0,Uφ0,Uz0} = {0,0.07,1}, 80 = 0, andE0 = 0.

This is the third spectacular feature in the two-fluid system
under charge non-neutrality conditions. By taking into ac-
count the effect of space charges, no bipolar-shaped shocks
are present; instead, oscillitons are born. The carrier wave
(lowest frequency) is the SW mode, the oscillation of which
has the largest wavelength and forms a series of conspicu-
ous clusters of IA packets versusX owing to the periodic
changes in amplitudes at a SW frequency; the amplitudes of
the carried IA packets vary also periodically, but at an IA fre-
quency. Unexpectedly, through the enlarged plots as given in
the inserted panels, these IA packets behave also as carri-
ers loaded with IL oscillations on the upward edges and hy-
brid IA/IL ones on the downward edges of the sawtooth-like
amplitudes. But notice that in the FFT spectrum, the power
density of the SW frequency is so weak relative to the back-
ground IA mode that only a tiny hump is present at about
f = 0.05. If the SW wavelength is larger, the hump becomes
even more unperceptible. See Fig.7 for an example, a typi-
cal case in our calculations. The SW wavelength isX ∼ 35.
At the frequency off ∼ 0.03, the corresponding power den-
sity is 0.02935 while the background IA power density is
0.02811, a tiny difference of 4%.

4.3 Modulations of oscillitons

The new solitary structures, oscillitons, are featured by HF
IA/IL ingredients superimposing upon the LF SW wave. The
sweeping band of the spectrum extends from sound-wave fre-
quencies to classical ion plasma frequencies, peaked at IA
harmonics and the hybrid IA/IL frequencies. In response to
various shapes observed in space plasmas, it is necessary to
have a parameterized study on the modulation of the new
structures under different conditions.

As introduced in the last section, Fig.7 is a typical re-
sult in simulations. We illustrate plasma density (upper left),
space-charge density (lower left), electric field (upper right),
and FFT spectrum (lower right) in respective panels, inserted
with enlarged solitary structures. By checking data, we know
that the plasma density is 1.14 on average, fluctuating from
0.97 to 1.39. This means the oscillitons are over-densed soli-
tons. They behave as a pump to draw particles from their sur-
roundings. Certainly, close to oscilliton trains, there should
exist a transition layer of density dips before reaching the
background plasma density.

In addition to the electric and FFT features introduced in
the last Sction, the space-charge density varies from−0.3%
to 11.8% of the background densityn0, with an average of
5.2×10−6n0. Though a very small quantity, it can produce a
strong transverse DC electric field (E⊥) with a characteristic
strength of 50–500 mV/m at a characteristic radius of 10 m
in regions ofn0 ∼ 1011∼12 m−3 (say, ionosphericF ; Ma and
St.-Maurice, 2008). This field is positive and will acceler-
ate surrounding electrons. It should be mentioned that the
electric field panel gives the field alongX, i.e., the parallel
electric field of the solitons themselves, not the transverse
field mentioned.

4.3.1 Effect of input parameters

There are four input parameters in Eqs. (19)–(23): the Mach
numberM, the radial distance from the symmetric axisR,
the temperature difference between electrons and ionsξT ,
and the frequency difference between ion plasma oscillations
and ion gyrationsξω. Figure8 displays the modulational ef-
fect of these parameters on the typical oscillitons shown in
Fig. 7 underM = 1.8, R = 0.8, ξT = 5, andξω = 12. The
left column gives the result atM = 2.8 when other param-
eters maintain, while the middle left column is atR = 0.9,
the middle right column is atξT = 4, and the right column is
at ξω = 30, respectively. The plasma densityNi(or Ne) is il-
lustrated on the top row, while the space-charge densityNsc,
electric fieldEi , and FFT power spectra on the second, third,
and bottom rows, respectively.

An outstanding feature shown by all the panels is that the
solitary structures are sensitive to input parameters. See the
left column for an example. Compared to Fig.7 in which
there are roughly three typical SW oscillitons fromX = 0
to 100, the number is already two in the halfX span when
M is increased 56%. In contrast, fromX = 0 to 50 when
R changes up 12.5%, the middle left column reveal four os-
cillitons, and the whole train become flattened; whenξT de-
creases 20%, the middle right column shows that it is not
easy to identify the oscilliton traces from the uneven ampli-
tudes; whenξω goes up by 150%, the right column shows
that no oscilliton signatures exist.

Another impressive feature is that the IA and IL modes
are present in all cases, as exhibited by the FFT panels on
the bottom row: (1) a series of harmonics in the IA band,
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Fig. 8. Modulated oscillitons by input parametersM (left column),R (middle left column),ξT (middle right column), andξω (right column),
respectively, in view of plasma density (top row), space-charge density (second row), electric field (third row), and FFT power density (bottom
row), respectively.

(2) noise peaks in the IA/IL transition region, and (3) a
group of harmonic IL narrow bands at the high-frequency
end. However, the bands may be shifted more or less from
case to case. For instance, the first panel from the left says
that the dominant IA peak is atf ∼ 0.55, while the other
three panels provide∼0.35 or 0.36. It should be noted here
that in theR case, the SW oscilliton peak is evident due to
the much weaker background IA power density in the low-
frequency end.

Moreover, whatever a value of an input parameter holds,
the plasma density amplitudes and average densities are al-
most the same in all cases as those in the typical case. For
example, the average densities are from 1.13 to 1.14, and
nearly identical to the typical value, 1.13. This means that
the solitary waves in all the cases are over-densed. On the
contrary, the space-charge density does not have this prop-
erty. In the typical case, it is 5.2× 10−6, while in Fig. 8,

they are (−8.8, 0.8,−1.9, 0.7)×10−6, respectively. Con-
sequently, the resultantE⊥ are either positive or negative,
accelerating or decelerating surrounding ions accordingly.

Last but not least, it is interesting to note that oscilliton
structures provide the highest space-charge density and elec-
tric field amplitudes. In the typical case,Nsc andEi of the
oscilliton waves are 5.2×10−6 and 0.5, respectively. For the
non-oscilliton structures in Fig.8, the space-charge densities
mentioned above are all smaller than the typical value; and
the electric field amplitudes are 0.35, 0.25, 0.2, respectively,
also smaller. Clearly, the induced transverse electric field
should be the strongest in oscilliton waves.

4.3.2 Effect of initial conditions

In real situations, the initial states of space plasmas cannot
always be as ideal as to satisfy the conditions required to
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Fig. 9. Same as Fig.8 but modulated by initial conditionsNi0 (left column),80 (middle left column),E0 (middle right column), andUφ0
(right column), respectively.

drive solitary waves, especially in turbulent plasmas where a
small fluctuation of all variables is always occurring because
of turbulence. We thus check the effects of a tiny deviation in
four parameters (Ni0, 80, E0, andUφ0) from their respective
initial states on the typical oscilliton waves given in Fig.7.
We setNi0 to go up by 0.1%,80 andE0 to increase from
0 to 0.01, andUφ0 from 0.07 to 0.08. Figure9 displays the
results.

First of all, the oscilliton features are found to be highly
susceptible to the initial conditions (E0 is an exception, how-
ever, changes occur afterE0 ∼ 0.04). Though slight changes
are made in the initial parameters, the low-frequency SW
mode is out of vision; still, the IA and IL modes are left
evidently. Only in theE0 case, the SW mode is left until
E0 ∼ 0.05. After that, no SW periodicity can be identified.

Secondly, just as the input parameters do, initial conditions
influence more onNsc than onNi (orNe). Looking at the first

two top rows. the average values ofNi are 1.14, 1.17, 1.14,
1.15, separately, in the four panels, within 3% of the typical
value of 1.14 given in Fig.7; whereas those ofNsc are (−6.8,
−6.1, 6.8, 1.44)×10−6, respectively, changing not only in
magnitudes up to tens of percent, but also in polarities from
positive to negative, relative to the typical average value of
Nsc, 5.2×10−6.

Lastly, initial conditions regulate wavefield strengths in a
way similar to input parameters: whenever lower-frequency
ingredients come into being in propagation, a solitary wave
will always carry strongerEi structures. See cases exceptNi0
for example. ThoughE0 changes the same as80 andUφ0
by 0.01, the solitary wave embodies an additional longer-
wavelength SW mode, while carrying shorter-wavelength
IA/IL solitons just as other waves. It is easy to see that the
amplitude ofEi is about 0.5, higher than other amplitudes.
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5 Summary and discussion

In addition to the well-known three types of nonlinear sim-
ple waves with single frequencies (namely, sinusoidal, saw-
tooth, and spiky or bipolar), many high-altitude satellites
(e.g., Freja, FAST, Polar, Cluster, and Viking) have reported
nonlinear multi-frequency oscillating solitary structures fea-
tured by a LF envelope modulated by HF oscillations os-
cillitons, called “oscillitons” (named by Sauer et al., 2001).
Two outstanding studies on them have been performed ear-
lier. One was done by Sauer et al. (2001), who found that
in a dusty plasma, the oscillitons can be triggered by the ad-
dition of an extra ion population electromagnetically. Later,
Kourakis and Shukla (2005) presented a generic methodolog-
ical formulation for oscillitons in multi-particle systems.

The other study was performed by Verheest et al. (2004).
They pointed out that the charge-neutrality condition may be
related to the excitation of electromagnetic oscillitons; how-
ever, at not too large amplitudes, the oscillitons are very sim-
ilar to single-frequency solitary envelopes, whether or not the
charge neutrality condition is satisfied. Keeping in mind that
oscillitons are often reported at high altitudes above iono-
spheric F-layer, we realized that the formation of oscillitons
should be related to the charge-neutrality condition which
is not satisfied above the F-layer as much as that below the
layer, regardless of either an electromagnetic or electrostatic
excitation. We thus focused on a normal two-fluid plasma
system containing electrons and singly charged positive ions
to investigate the electrostatic excitation of the envelopes of
nonlinear oscillitons under a charge non-neutrality condition.

First of all, a warm-up study was introduced by solv-
ing a set of nonlinear self-similar two-fluid equations un-
der a charge-neutrality condition. We exhibited features
of parallel-propagating, single-frequency IA solitary waves
driven in a cylindrically geometry. Three salient shapes of IA
solitary waves, proved by bulk of observations and simula-
tions, were reproduced. More details are given in Ma (2010).
Then, under a charge non-neutrality condition, we confirmed
that not only LF sound wave (SW) oscillations but also HF
ion Langmiur (IL) ones are excited in the system. The two
new modes superimpose upon the traditional IA carrier and
heavily modulate its amplitudes. Therefore, “electrostatic os-
cilliton” structures are excited. Furthermore, we found that
the wavepackets are dependent not only upon input parame-
ters (e.g., the Mach number, the Debye length, and the initial
temperature of the particles), but also upon the initial con-
ditions of the system. It can also be noted that the two new
modes (SW and IL) are driven by the charge non-neutrality,
regardless of frames with which a plasma system is treated.
Thus, they also exist in other coordinates. A companion pa-
per will provide results in a Cartesian frame to reveal their
similarities and differences with those presented in this pa-
per.

This study concentrated on a two-fluid system in a cylin-
drical geometry, different from Sauer et al. (2003)’s study

where a dusty plasma system is considered in a Cartesian
frame for electromagnetic processes. In that case, a magnetic
field is also involved in driving nonlinear waves. The authors
found that when an extra ion ingredient is added to a two-
fluid plasma, an additional oscillation is superimposed upon
and modulates the amplitudes of simple solitary waves. In-
terestingly, Verheest et al. (2004) discussed that these HF-LF
“symbiotic”, electromagnetic nonlinear waves should have
some link to the non-neutrality of charged particles, how-
ever, at not too large amplitudes, the effect of the charge non-
neutrality is difficult to identify.

In the electrostatic regime, by contrast, our recent work in
a Cartesian geometry (Ma and Hirose, 2009) disclosed that
if the charge neutrality condition is satisfied, conventional
single-wave IA solitary waves are driven in three frequently
observed structures. On the contrary, if the condition is not
met, just as in regions at higher altitudes in geospace, Ma
and Hirose (2010) illustrated, in the same geometry and in
the presence of the electron inertia, that the multi-frequency
“oscilliton” structures are driven, which features an LF soli-
tary envelope in the IC mode, while the HF oscillations come
from the lower-hybrid (LH) mode. In addition, the IA con-
stituent, which has a higher frequency but much smaller am-
plitude, superimposes upon the LH mode.

In the cylindrical geometry, this paper revealed that the
non-neutrality leads to two new linear modes (Appendix A),
i.e., LF sound wave (SW) mode, and HF ion Langmuir (IL)
mode. Besides, the SW mode provides oscilliton packets, the
amplitudes of which are violently modulated by the IA oscil-
lations; whereas the upward sides of the IA amplitudes are
modulated by the IL oscillations of smaller amplitudes, and,
the downward sides of the IA amplitudes are modulated by
hybrid IA/IL oscillations. Furthermore, the oscilliton struc-
tures are dependent on both input parameters and initial con-
ditions of the system. We also pointed out that the effects of
centrifugal and Coriolis forces on the nonlinear features are
reflected by the change of the geometric factor,R (the radial
distance from the cylindrically symmetric axis). The closer
the distance, the stronger the two forces, as exhibited by the
two terms,u2

φ/r anduruφ/r, in Eqs. (3), (4), respectively.
Figures 7 and 8 in Sect. 4.3 offer a comparison, whenR

changes. As already discussed in Ma (2010), these geomet-
ric effects are essential in order to exhibit nonlinear simple-
wave features and explain converging and diverging shocks
observed in space plasmas. Our studies in the present paper
expose the influence of the two forces on the characteristics
of nonlinear oscillitons.

We are discussing nonlinear oscillitons evolved from non-
linear IA solitary waves where the electron inertia is ne-
glected (e.g., Davidson, 1972; Dauxois and Peyrard, 2006).
We did not take the inertia (as well as the magnetic field vari-
ation) into consideration mainly because we hope to min-
imize external distractions as much as possible from our
focus on the effect of the charge non-neutrality condition.
Nevertheless, similar to the charge non-neutrality condition,
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inertia does play an important role for the excitation of os-
cillitons, as argued already by McKenzie, Verheest, and their
co-workers (e.g., McKenzie, 2002; Verheest, 2005, and ref-
erences therein). In a related paper, Ma and Hirose (2010)
illustrated the effect of the electron mass on the formation
of nonlinear LH oscillitons, following their work on linear
LH waves (Ma and Hirose, 2009). A noticeable result is that
the electron mass drives IA/IC solitary waves to evolve into
nonlinear LH oscillitons.

Notwithstanding the above with a “warm” two-fluid model
in our study (i.e., the model allows for finite electron and
ion temperatures which influence the solitary waves through
parameterξT ), we did not take into consideration the co-
existence of a third component, i.e., a “cold” electron pop-
ulation, which was observed in the boundaries of the Earth’s
magnetosphere. These electrons may also modulate the fea-
tures of oscillitons. In addition, we did not consider the
obliquity effect on oscillitons, i.e., the influence produced
by the inclination angle between the propagation direction
andB. This angle was verified to modulate strongly the pro-
files of waves (Mamun and Shukla, 2002). We will relax our
model by including these important factors in studies to fol-
low. More important, in view of both observations and sim-
ulations (see, e.g., Tsurutani et al., 2002), the ponderomotive
force produced by the hybrid frequencies existing in oscilli-
tons may result in a more powerful impact on ambient plasma
particles than normal solitary waves in the boundary layers of
plasma systems. Consequently, the resultant radial ambipo-
lar field may be more efficient to accelerate Maxwellian ions
to non-equilibrium states with observable energies as already
measured by, e.g., FAST, Cluster, etc. We have introduced
the initial results in Ma et al. (2009), and will show the pon-
deromotive drive in a companion paper.

We would like to finalize this paper by discussing a few
interesting issues concerning the two-fluid model used in the
text. One question may arise regarding the reasons why a
cylindrical geometry has been selected for the model. The
motivation to tackle such a geometry is that different scales
of space plasmas are observed to have a cylindrical symme-
try, similar to fusion plasmas (e.g., Vandenplas and Gould,
1964; Roig and Schoutens, 1986; Date and Shimozuma,
2001; Takahashi et al., 2004). On larger scales, for example,
convection vortices about 100–1000 km in size have been re-
ported and studied by a number of authors (e.g., Vogelsang et
al., 1993; Huang et al., 1998). Smaller cylindrical regions are
also known to exist in 1–100 km in diameter, such as auroral
rays (e.g., Pietrowski et al., 1999; Danielides and Kozlovsky,
2001). The smallest ionospheric cylindrical structures that
we are aware of are described as lower-hybrid cavities, only
10 to a few hundreds of meters in size (e.g., Schuck et al.,
2003; Knudsen et al., 2004). The difference between a cylin-
drical system and a Cartesian one lies in the situation that
particles in the former experience extra acceleration through
centrifugal and Coriolis forces determined by the geometri-
cal parameter (i.e., the radial distance,R; note that the forces

becomes zero forR → ∞, and, the closer the distance from
the origin of a cylindrically symmetric flow, the stronger the
effects of the centrifugal and Coriolis forces).

Taking these effects into account proved useful in gaining
unexpected physical insights into plasma kinetics (e.g., Ma
and St.-Maurice, 2008) to explain satellite measurements of
co-existing converging and diverging shocks in space (e.g.,
Ma, 2010). Therefore, being aware of the fact that there
have been very few instances where serious attempts were
made to investigate the effects of the charge non-neutrality
condition on the development of nonlinear processes in a
cylindrical geometry, we concentrated on such a subject to
see how the geometrical factorR is able to affect the oscil-
liton structures (see Figs. 7 and 8 and the text for a com-
parison in Sect. 4.3). It ought to be mentioned here that
we assumed homogeneous plasma models in these studies,
while we are aware that a cylindrical model may lead to an
inhomogeneous density configuration, a consequence as dis-
cussed in Ma and St.-Maurice (2008). How much deforma-
tion can be produced exactly by this nonuniformity is inter-
esting but beyond the scope of the present study. We will
consider this question and answer it in another paper. An
initial result was already given in Ma (2009): the nonuni-
formity is time-dependent, and in periodic oscillations with
a quasi-gyro-frequency (�q), either or not the charge non-
neutrality behaves as a local phenomenon or extends to in-
finity. This tells us that, at least for much lower-frequency
nonlinear structures than�q, the inhomogeneity can still be
considered as a “quasi-homogeneity” on temporal averages
on different scales.

The second concern is about the fact that the infinites-
imally small space-charge density (say, a normalized one,
5.2× 10−6, as supposed in Sect. 4.3.1) can give rise to a
bewildering array of spectacularly different nonlinear wave-
forms (as illustrated in, e.g., Figs.8 and9). Here, we pro-
vide more clarifications. Since Cole (1971)’s first study,
many authors have discussed the behavior of plasma parti-
cles in the presence of a “strong” external electric field (E),
e.g., Schunk and Walker (1972), St.-Maurice et al. (1976),
Jørgensen (1978), St.-Maurice and Schunk (1979), Lock-
wood et al. (1987), Gaimard et al. (1998), see a detailed in-
troduction in Ma (2009). Here, the “strongE” means that the
E ×B drift is in the order or higher than the thermal speed
of particles, and thus the system deviates more or less from
a thermal equilibrium. Many mechanisms can bring about
a strongE. Such a field existing in space plasmas is usu-
ally excited by charge non-neutrality conditions (caused via,
e.g., background density perturbations, precipitating elec-
tron beams), although the corresponding space-charge den-
sity nsc is so small that it does not break up the charge quasi-
neutrality condition. In th Introduction, we gave an exam-
ple of a strong characteristic field produced by a smallnsc.
Reasonably, a slight charge non-neutrality density produces
conspicuous consequences, as discussed by e.g., Ma and St.-
Maurice (2008) which was enlightened by e.g., Cole (1971),
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Winkler et al. (1992), and St.-Maurice et al. (1994). These
studies have made us realize that the charge non-neutrality
condition should have a similar importance in nonlinear wave
propagations. Encouraged by Verheest et al. (2004), we fo-
cused on the action of this condition, and finally exhibited
its astonishing role played in driving the nonlinear oscilliton
strucutures.

Thirdly, we discuss the difference and similarity between
the model introduced in this paper and the “Sauer model”
explained in, e.g., Sauer et al. (2001, 2003). The former
rests in the intrinsical dissimilarity in treating the magnetic
field. We introduced an electrostatic model where no oscillat-
ing magnetic field components are considered, and obtained
nonlinear waves which are purely longitudinal. The reason
for choosing this simpler model is that we hoped to exclude
other factors in elucidating the impact of the charge non-
neutrality condition on the excitation of electrostatic “oscilli-
tons” as much as possible. In contrast, the Sauer model con-
sidered electromagnetic processes and described electromag-
netic “oscillitons”. Notwithstanding their incongruity, the
two models provided locally stationary nonlinear solutions
which look like each other. This is evident when compar-
ing results by using the ingenious Sauer model (e.g., Sauer
et al., 2003) with those illustrated in this paper. In that work,
the authors reported that an addition of a second ion pop-
ulation leads to a significant modification to the structure
of electromagnetic stationary waves in a single-ion plasma
(e.g., Baumg̈artel et al., 1997): the single-frequency “bright”
or “dark” solitary structures now contain embedded “small-
wave” oscillations (see Sect. 4 of the referred paper in de-
tails). this new profile, called an “oscilliton”, is characterized
by a “normal” soliton structure modulated by oscillations, in-
dicating the coexistence of both the classical soliton proper-
ties and oscillating phases. Similarly, though using an elec-
trostatic formulation, our model also produces a LF envelope
superimposed upon by HF oscillating components internally,
while both the envelope and the ingredients appear to con-
stitute one global nonlinear “oscilliton” structure, just as that
contributed by Sauer model. By realizing this similarity, we
would like to expand the definition of “oscillitons” in follow-
ing papers by depicting those nonlinear structures composed
of HF-LF oscillation components driven either electrostat-
ically or electromagnetically, while being aware that we are
excluding pulsations (e.g., Pc1–5) related to linear MHD pro-
cesses existing in geospace and/or interplanetary spaces.

Last but not least, we have discussed the validity of the
two-fluid model itself in studying nonlinear waves. This
model has been used for tens of years in nonlinear plasma
studies since the very early stage when nonlinear processes
became a hot-spot in plasma physics, pioneered by, e.g.,
Shukla and Yu (1978); Yu et al. (1980), after the BGK
work in 1950s (Bernstein et al., 1957). This topic is clas-
sical as exhibited by many plasma textbooks (e.g., Bernstein,
1964; Gartenhaus, 1964; Davidson, 1972, 2001; Schunk and
Nagy, 2000; Boyd and Sanderson, 2003; Goedbloed and

Poedts, 2004; Bellan, 2006; Dauxois and Peyrard, 2006).
From them, we know that the two/multi-fluid model can be
adopted widely to describe plasma systems and directly ob-
tain the bulk properties (such as flow speed, temperature, and
heat flow), instead of using a kinetic model which needs
complicated analytical/numerical solutions for distribution
functions of charged particles. Specifically, there are four
points to be aware of in applications: (1) the single-fluid
MHD model is only dedicated to large-scale systems in both
time (i.e., the wave frequency is much less than the gyrofre-
quency) and space (i.e., the characteristic size is much larger
than the Debye length) (see, e.g., Chapter 3 in Goedbloed
and Poedts, 2004; Chapter 2 in Bellan, 2006); (2) both the
kinetic and the two/multi-fluid models provide details of the
plasma properties that can evolve on very short wave lengths
(e.g., Debye length, cyclotron radius), and very high frequen-
cies (e.g., electron plasma frequency, cyclotron frequency)
(see, e.g., Chapter 2 in Goedbloed and Poedts, 2004; Chap-
ter 12 in Boyd and Sanderson, 2003); (3) the kinetic model
and the two/multi-fluid model are equivalent to each other;
however, the former is expressed by a microscopic parame-
ter (i.e., the distribution function), and by contrast, the latter
deals with macroscopic quantities (see, e.g., Bernstein, 1964;
Gartenhaus, 1964); (4) when dealing with physical properties
that depend on microscopic details relating not only to spa-
tial and temporal variables, but also to the velocity variable
of particles in a fluid element (such as cases where there exist
particle trapping, reflection, the Landau damping, or speed-
related collisions, etc.), the kinetic model must be used; oth-
erwise, the simpler, direct two/multi-fluid model provides a
much easier tool for use. Note that this model becomes a
single-fluid MHD model for large-scale systems (see, e.g.,
Chapter 7 in Boyd and Sanderson, 2003). It should be noted
her that the above descriptions are irrelevant of either elec-
trostatic or electromagnetic cases, in either transverse or par-
allel directions, no matter the system is either charge neutral
or non-neutral.

In planetary atmospheres and ionospheres, the dominant
physical property, particle velocity vector (v), is an irrota-
tional vector in velocity space, and thus,∇v ·as = 0 (where
as is the acceleration vector of a species; see, Schunk and
Nagy, 2000). Thus, in collision-free cases or collisional cases
where additional properties (such as the collision frequency)
are not related to velocity, we can use either the kinetic or
two/multi-fluid model to solve problems, as firstly discussed
by Grad (1949). In the nonlinear regime, the fluid mod-
els have been applied to many fields in addition to plasma
physics, such as, solid states, atomic physics, biological pro-
cesses, etc. (e.g., Dauxois and Peyrard, 2006). To exhibit a
double-check, Ma and St-Maurice (2008) applied the kinetic
model to the auroral ionospheric F-region under collision-
free conditions, as an example, where extraordinary stud-
ies have been done jointly by satellites, rockets, and radars
for more than half a century. Then, they demonstrated that
all the transport properties were reproduced exactly by a
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two-fluid model (Chapter 6, Ma, 2009), after reproducing
the 13-moment transport equations (p. 59, Schunk and Nagy,
2000) from the classical kinetic theory described by Grad
(1949). Evidently, the two-fluid model is much simpler than
the kinetic model in solving a same problem, and numerous
studies have applied the model to solve problems in nonlin-
ear studies (see references of this paper). The work pre-
sented here was inspired by the studies with the efficient,
two/multi-fluid model in, e.g., Sauer et al. (2001), Verheest
et al. (2004), Kourakis and Shukla (2005) in space plasmas
in the presence of charge non-neutrality for either electro-
magnetic cases (e.g., Sauer et al., 2001) or electrostatic ones
(e.g., Kourakis and Shukla, 2005). Thus, either from text-
books and also from numerous papers, we can see that it is
valid to adopt the fluid model in dealing with plasma systems,
if the processes (as considered in the above mentioned model
papers, as well as the present manuscript) are not related to
microscopic velocity distributions in fluid elements.

We would also like to clarify a doubt about the correlation
between the kinetic model and the non-neutrality conditions.
As discussed above, the kinetic effects must be taken into ac-
count when physical properties are related not only to space
and time, but also to velocity (e.g., Chapter 7, Boyd and
Sanderson, 2003), regardless of the charge neutrality. Even if
a system is completely charge-neutral, we must consider the
kinetic effects if physical properties are dependent on mi-
croscopic velocity distributions (e.g., Grad, 1949; Bernstein,
1964). An extreme example is the spinodal decomposition in
non-ionized binary gases (e.g., Bastea and Lebowitz, 1997),
where the system is purely charge neutral, but the kinetic
model must be used. By contrast, another extreme example
is a non-neutral plasma system (see, e.g., Davidson, 2001).
In such a system when all physical properties are indepen-
dent of speeds, the fluid model is sufficient in applications,
although the system is absolutely non-neutral. As a result,
there is not a correlation between the kinetic model and the
non-neutral condition. They are not coupled with each other.

Finally, thanks to an anonymous referee’s important com-
ments, we would like to point out a caveat about the fluid
model used in this paper and other contributions from other
authors in studying nonlinear plasma waves: under some cir-
cumstances, this model may be invalid. For example, for a
simple 1-D-case where a parallel potential energyeφ(z) ex-
ist. If it is not too small, i.e.,eφ(z) � kBTe is invalid (or,
equivalently,ne � n0 is not valid in Eq. 1), the parallel dis-
tribution functionf is a non-Maxwellian. Though the distri-
butions at both ends far away from the origin of the potential
structure can be readily described by a Maxwellian function,
particles are absent in the central region of the velocity space.
At the originz = 0, f is a non-Gaussian, hole-type distribu-
tion function, leading to non-linear kinetic effects (such as
particle trapping or electron/ion holes) which breaks down
the fluid approximation.

In our results, the fluid approximation is valid when the
ratio ofne/n0 is nearly constant, like cases in the left panels

of Fig. 1 (V0 = 0.1). On the contrary, kinetic effects must
be taken into account when this ratio varies a lot, e.g., in the
right panels of the figure (V0 = 0.89). This can be intuitively
understood because the electric field may be strong enough
to trap electrons to keep the density profile; or otherwise
the profile will be smeared out by the electron thermal mo-
tion. This means that there may have particles which can be
trapped in the potential well, or, equivalently, not all of which
are “passing” ones due to some non-Maxwellian distribution
functions. In this case, any departures from a Maxwellian in
the presence of the electromagnetic forces should be taken
into consideration (see a detailed discussion in, e.g., St.-
Maurice and Schunk, 1979). Nevertheless, even when the
fluid approximation is not reasonably valid, our results pro-
vided here can still be considered as a starting point for a
kinetic approach to the zeroth-order approximation. Conse-
quently, it becomes important to evaluate the validity of the
fluid model in data-fit modelling when non-linear kinetic ef-
fects (such as particle trapping or electron/ion holes) cannot
be readily omitted.

Appendix A

Linear wave modes

The linear IA and IC waves excited in the cylindrical geome-
try can be obtained by linearizing Eqs. (7)–(11). The disper-
sion relation is as follows:
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in which ω andk are the wave frequency and amplitude of
the wave vector (k), in units of�i andρ−1

i , respectively;θ is
the inclination angle betweenkz andk, determined by either
kr = kα1 (whereα1 = sinθ ) or kz = kα2 (whereα2 = cosθ),
the radial and axial components ofk, respectively.

In the perpendicular plane (θ = 90◦), Eq. (A1) provides
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or, in the dimensional form for convenience,
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which is evidentally the hybrid IC/IA dispersion relation. It
leads to two modes whenkr goes to extremes.

On one hand, in the long-wavelength limit,kr � kDe, it
produces a modified IC branch:
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in which the second term appears as a correction to the first
term due to the smallkr . If kr � kDe, this branch reduces to
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ion gyro-oscillations:ω2
= �2

i ; for cold ions, it becomes a
slow mode:
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s (A5)

On the other hand, at short wavelengths,kr � kDe, it evolves
to the Upper-hybrid (UH) mode:

ω2
= ω2

UH +k2
r v

2
T (A6)

in which ω2
UH=�2

i +ω2
pi. If ions are cold, this wave reduces

to simple ion upper-hybrid oscillations. At much shorter
wavelengths,kr �� kDe, the wave reduces toω2

= k2
r v

2
T,

the group speed of which is comparable to the phase veloc-
ity vph = ω/kr . The plasma waves can then accelerate ions
that are moving with speed in the order ofvph. But the re-
lated process often leads to Landau damping and the fluid
description used in the present study gives its way to kinetic
formulations.

In the parallel direction (θ = 0◦), Eq. (A1) gives
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or, in the dimensional form,
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Clearly, this is the familiar ion-acoustic (IA) dispersion rela-
tion. It leads to two modes under extreme limits ofkz.

In the long wavelength limit,kz � kDe, it reproduces the
sound-wave (SW) branch:

ω2
= k2

z

(
v2

T +c2
s

)
(A9)

If ions are cold relative to electrons, a slow sound wave
(SSW) mode is reached:

ω2
= k2

zc
2
s (A10)

In the short wavelength limit,kz � kDe, it becomes an ion
Langmuir (IL) wave with a dispersion like the electron coun-
terpart:

ω2
= k2

zv
2
T +ω2

pi (A11)

If the ions are cold, this wave becomes a simple ion plasma
oscillation mode. At shorter wavelengths,kz �� kDe, the
waves become

ω2
= k2

zv
2
T (A12)

the group speed of which is comparable to the phase velocity
vph = ω/kz. As discussed above in the perpendicular case,
the Landau damping comes into play to break the fluid de-
scription. Hence, ion-acoustic waves propagate like sound
waves at long wavelengths, whileas they become ion Lang-
muir waves at short wavelengths.
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land, S. E., Vaivads, A., Paschmann, G., Lundin, R., and Rezeau,
L.: Magnetopause and Boundary Layer, Space Sci. Rev., 118,
231–320, 2005.

Dovner, P. O., Eriksson, A. I., Boström, R., and Holback, B.: Freja
multiprobe observations of electrostatic solitary structures, Geo-
phys. Res. Lett., 21, 1827–1830, 1994.

Dubinin, E., Sauer, K., and McKenzie, J. F.: Solitons and oscillitons
in cold bi-ion plasmas: A parameter study, J. Plasma Phys., 68,
27–52, 2002.

Dubinin, E., Sauer, K., and McKenzie, J. F.: Nonlinear station-
ary whistler waves and whistler solitons (oscillitons). Exact so-
lutions, J. Plasma Phys., 69, 305–330, 2003a.

Dubinin, E., Sauer, K., and McKenzie, J. F.: Solitons, oscillitons
and stationary waves in a coldp−α plasma, J. Geophys. Res.,
107, 1295, doi:10.1029/2002JA009571, 2003b.

Dubinin, E., Sauer, K., and McKenzie, J. F.: Solitons, oscillitons
and stationary waves in a warmp−α plasma, J. Geophys. Res.,
107, 1296, doi:10.1029/2002JA009572, 2003c.

Dubinin, E. M., Maksimovic, M., Cornilleau-Wehrlin, N., Fontaine,
D., Travnicek, P., Mangeney, A., Alexandrova, O., Sauer, K.,
Fraenz, M., Dandouras, I., Lucek, E., Fazakerley, A., Balogh,
A., and Andre, M.: Coherent whistler emissions in the magne-
tosphere – Cluster observations, Ann. Geophys., 25, 303–315,
doi:10.5194/angeo-25-303-2007, 2007.

Dubouloz, N., Pottelette, R., Malingre, M., Holmgren, G., and
Lindqvist, P.: Detailed analysis of broadband electrostatic noise
in the dayside auroral zone, J. Geophys. Res., 96, 3565–3579,
1991.

Dupree, T. H.: Theory of phase space density granulation in plasma,

Phys. Fluids, 15, 334–344, 1972.
Earle, G. D., Kelley, M. C., and Ganguli, G.: Large Velocity Shears

and Associated Electrostatic Waves and Turbulence in the Auro-
ral F Region, J. Geophys. Res., 94, 15321–15333, 1989.

Eliasson, B. and Shukla, P. K.: Formation and dynamics of coherent
structures involving phase-space vortices in plasmas, Phys. Rep.,
42, 225–290, 2006.

Ergun, R. E.: Magnetic-field-aligned electric fields associated with
Debye-scale plasma structures, Plasma Phys. Control. Fusion,
41, A61–73, 1999.

Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., De-
lory, G. T., Peria, W., Chaston, C. C., Temerin, M., Elphic, R.,
Strangeway, R., Pfaff, R., Cattell, C. A., Klumpar, D., Shelley,
E., Peterson, W., Moebius, E., and Kistler, L.: FAST satellite
observations of electric field structures in the auroral zone, Geo-
phys. Res. Lett., 25, 2025–2028, 1998a.

Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., De-
lory, G. T., Peria, W., Chaston, C. C., Temerin, M., Roth, I.,
Muschietti, L., Elphic, R., Strangeway, R., Pfaff, R., Cattell, C.
A., Klumpar, D., Shelley, E., Peterson, W., Moebius, E., and
Kistler, L.: FAST satellite observations of large-amplitude soli-
tary structures, Geophys. Res. Lett., 25, 2041–2044, 1998b.

Ergun, R. E., Carlson, C. W., McFadden, J. P., and Strangeway, R.
J.: Fast auroral snapshot satellite observations of very low fre-
quency saucers, Phys. Plasmas, 10, 454, doi:10.1063/1.1530160,
2003.

Eriksson, A. I., Holback, B., Dovner, P. O., Boström, R., Holmgren,
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