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Abstract. When a quasi-monochromatic wave propagat-
ing in an inhomogeneous magnetoplasma has sufficiently
large amplitude, there exist phase-trapped resonant particles
whose energy increases or decreases depending on the “sign”
of inhomogeneity. The variation of energy density of such
particles can greatly exceed the wave energy density which
contradicts energy conservation under the prevalent assump-
tion that the wave serves as the energy source or sink. We
show that, in fact, the energy increase (or decrease) of phase-
trapped particles is related to energy transfer from (to) phase
untrapped particles, while the wave basically mediates the
energization process. Virtual importance of this comprehen-
sion consists in setting proper quantitative constraints on at-
tainable particle energy. The results have immediate applica-
tions to at least two fundamental problems in the magneto-
spheric physics, i.e. particle dynamics in the radiation belts
and whistler-triggered emissions.

Keywords. Space plasma physics (Charged particle motion
and acceleration; Nonlinear phenomena; Wave-particle inter-
actions)

1 Introduction

Search for and understanding of mechanisms for particle en-
ergization is a key problem in physics of the Earth’s radia-
tion belts (e.g.,Summers et al., 2007a,b; Trakhtengerts and
Rycroft, 2008, early and recent references can be found in
the latter citation). A good deal of suggested mechanisms
is related to resonant wave-particle interactions (e.g.,Albert,
2001, 2002; Shklyar and Kliem, 2006; Omura et al., 2007,
and references therein). These mechanisms may be divided
roughly into two groups. The mechanisms of the first group,
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which can be traced back to classical works byAndronov
and Trakhtengerts(1964) andKennel and Petschek(1966),
deal with wave-particle interactions in the case of a wide
wave spectrum, and are generally treated on the basis of
quasi-linear theory as applied to magnetospheric conditions.
Those mechanisms lead to particle diffusion in the phase
space, and have characteristic times of the order of minutes
or hours. The mechanisms of the second group involve reso-
nant wave-particle interactions with a quasi-monochromatic
waves. Quite a few references to the corresponding studies
can be found in a review paper byShklyar and Matsumoto
(2009) and the above-mentioned works. In this case, the con-
sideration is usually based on the analysis of particle motion
in a given wave field, with a little concern about a back in-
fluence of resonant particles upon the wave. The character-
istic time of the process is now determined by the duration
of particle crossing of the wave packet, and, in the case of
whistler-electron interactions, is of the order of seconds.

An important feature of wave-particle interaction with a
quasi-monochromatic wave in a homogeneous or weakly in-
homogeneous plasma is the existence of phase-trapped reso-
nant particles. As we will show in the next sections, in the
inhomogeneous case, the variation of energy density of the
phase-trapped particles can be larger, or even much larger
than the wave energy density. This raises the question of
the corresponding energy source or sink. The answer to this
question is given by the following consideration, which aims
to reveal the nature of energization process.

In this paper, we consider energetic electron interaction
with a whistler-mode wave, although the consideration is
readily generalized to proton interaction with ion-cyclotron
waves.
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2 Particle equations of motion

Consider a whistler-mode wave propagating along a non-
uniform ambient magnetic fieldB0. For the sake of definite-
ness, and keeping in mind applications of the following con-
sideration to the outer radiation belt, we will assume the wave
propagation along the field lineL ∼ 4. The wave electromag-
netic field(E,B) of a right-hand polarized wave propagating
along the geomagnetic field may be written in the form:

Ex = −Ecosξ ; Ey = Esinξ ; Bx = −Bsinξ ; By = −Bcosξ ;

(1)

ξ =

∫ z

k(z′)dz′
−ωt ; B =

kc

ω
E ,

wherez is the coordinate along the ambient magnetic field,
and it is assumed that the wave frequencyω and the wave
numberk(z) are connected by a local dispersion relation for
parallel propagating whistler-mode wave in a dense (ω2

p �

ω2
c ) plasma:

k(z)2c2

ω2
=

ω2
p(z)

ω[ωc(z)−ω]
, (2)

whereωp is electron plasma frequency,ωc = eB0/mc is the
magnitude of electron gyrofrequency,−e andm being the
electron charge and mass, respectively, andc is the speed of
light.

The variation of electron kinetic energyw caused by the
interaction with the wave is determined by the equation

dw

dt
= −ev ·E , (3)

wherev is electron velocity. Introducing the magnitude of
electron perpendicular velocityv⊥ and electron gyrophaseϕ
according to relations

vx = v⊥cosϕ ; vy = v⊥sinϕ , (4)

and taking into account Eqs. (1) and (4) we rewrite Eq. (3) in
the form:

dw

dt
= eEv⊥cosζ ; ζ =

∫ z

k(z′)dz′
−ωt +ϕ . (5)

In the absence of the wave, the gyrophaseϕ varies according
to equationdϕ/dt = ωc. The energy variation is most signif-
icant for resonant particles whose parallel velocityv‖ is close
to the resonance value

vR(z) =
ω−ωc(z)

k(z)
, (6)

because for such particles the total phase in the expression (5)
is varying slowly, i.e.

dζ

dt
' k(v‖ −vR) (7)

is close to zero. It is important that the resonance velocity
vR varies along the field line due to variations of the quan-
tities ωc andk. Since for whistler-mode wavesω < ωc, the
quantityvR < 0, so that the wave and resonant particles move
in opposite directions. As has been demonstrated by many
authors (e.g.,Nunn, 1974; Karpman et al., 1975), and can
easily be checked with the help of expressions (1), for reso-
nant particles, the variation of transversal adiabatic invariant
µ = mv2

⊥
/2ωc is connected with the variation of kinetic en-

ergyw by the following integral of motion:

w−ωµ ≡ C2
= const. (C2 >

mv2
R

2
) . (8)

Since the variation ofw andµ is determined by the variation
of the total phaseζ , its behaviour constitutes the essence of
the problem of resonance wave-particle interaction. Equation
for the phaseζ has the form (e.g.,Nunn, 1974; Karpman et
al., 1975):

d2ζ

dt2
=

1

τ2
cosζ −α , (9)

where nonlinear timeτ and inhomogeneity parameterα are
determined by the expressions:

1

τ2
= hkv⊥Rωc ; h ≡

B

B0
;

(10)

α =
k

2

(
dv2

R

dz
+

v2
⊥R

ωc

dωc

dz

)
,

with

v2
⊥R =

ωc

ωc −ω

(
2

m
C2

−v2
R

)
. (11)

It is easy to see that forv‖ = vR, the quantityv⊥R coincides
with particle perpendicular velocityv⊥, which explains its
physical meaning. Equation (9) that can also be written as a
set of two first order equations is not a closed one since, in
general, the quantitiesτ andα are slowly varying functions
of the coordinatez. However, since this dependence caused
by plasma inhomogeneity is slow, and since we are interested
only in resonant particles, we may write missing equation as:

dz

dt
= vR(z) . (12)

Solution to this equation which depends on an arbitrary con-
stantzi may be written in the form

t =

∫ z

zi

dz′

vR(z′)
. (13)

For a given value of the parameterzi , relation (13) defines the
coordinatez as a one-to-one function of time:z = z(t ; zi).
This function should now be substituted into Eq. (9) making
it dependent on two parametersC2 andzi (see Eqs.10, 11).
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These parameters will further be assumed, although not writ-
ten explicitly. We should mention that sincet andz are biu-
nique functions, either may be used as an independent vari-
able in particle equations of motion.

Equation (9) describes particle motion in effective poten-
tial

P = αζ −
1

τ2
sinζ . (14)

To avoid misunderstanding we should underline thatP repre-
sents a valid potential related to the variables(ζ, ζ̇ ), and con-
servation of the corresponding effective energyε (see Eq.29
below), which takes place in the approximation of constantτ

andα, by no means imply conservation of particle kinetic en-
ergy in laboratory frame of reference. Nevertheless, consid-
eration of particle dynamics in variables(ζ, ζ̇ ) is most conve-
nient and permits to find variations of particle kinetic energy
and transversal adiabatic invariant in the most efficient way.
Following the basic idea first formulated byO’Neil (1965),
we will perform this consideration in the approximation of a
given field, which is valid under condition

γ τ � 1 , (15)

whereγ is the wave growth (damping) rate. In this approx-
imation, particle dynamics is considered in the given wave
field, while the back influence of particles upon the wave is
estimated from energy conservation. As we will see below,
although the approximation of a given field requires slow
variation of the wave amplitude, finite values ofγ are es-
sential for visible effect of particle energization.

For ατ2 < 1, the potentialP (Eq. 14) has potential wells
and, hence, there are phase-trapped particles (hereinafter
“trapped particles”). Since for such particles the coordinate
ζ varies in a limited interval, the quantitydζ/dt is zero on
average; thus, particle parallel velocity oscillates around res-
onance valuevR (see Eq.7). As in an inhomogeneous plasma
the quantityvR varies in space monotonically, the same is
true for the average value of trapped particle parallel veloc-
ity while it moves along the geomagnetic field line inside the
wave packet:

v‖ = vR(z) . (16)

Two Eqs. (8) and (16) permit to determine kinetic energy of
a trapped particle as a function of coordinate and the integral
of motionC2

= const, namely:

w = C2
+

ω

ωc(z)−ω

[
C2

−
mv2

R(z)

2

]
. (17)

The rate of energy variation for a trapped particle that fol-
lows from Eq. (17) with the account ofdz/dt = vR and defi-
nition (10) is equal to

dwT

dt
=

mω

k2
α , (18)

thus, the energy variation of trapped particles has the sign of
α. As we will see below, for reasonable behaviour of cold
plasma density along the geomagnetic field line, the quan-
tity v2

R increases with increasingωc and vice versa. Equa-
tions (17), (18) then shows that kinetic energy of a trapped
particle increases when it moves from a pole toward the equa-
tor (α > 0) and decreases when it moves from the equator to
another pole. (We remind the reader that in the case of par-
allel propagation considered here, a whistler-mode wave and
resonant particles always move in opposite directions.) The
absolute value of the corresponding energy variation is deter-
mined by the variations ofωc andv2

R in the region where the
particle remains trapped by the wave. As has been mentioned
above, phase trapping is possible only forατ2 < 1. However,
for ατ2

= 1, the phase volume of trapped particles is equal to
zero; it gradually increases with decreasing ofατ2. We will
define trapping region by the inequality:

ατ2 < 1/3 . (19)

As the estimations show (see below), forατ2
= 1/3, the

phase volume of trapped particles is equal to one half of its
maximum value which is achieved atα = 0. Clearly, the trap-
ping region is centered on the equator whereα = 0. For rea-
sonable wave amplitudes, quadratic approximation for elec-
tron cyclotron frequency (Trakhtengerts and Rycroft, 2008,
e.g.,):

ωc = ωc eq

[
1+

9

2

(
z

LRE

)2
]

(20)

may be used throughout the trapping region. HereL is McIl-
wain’s parameter,RE is the Earth’s radius, and subscript “eq”
denotes the equatorial value. Relation (20) shows that the
inhomogeneity scale lengths of the problem is equal toLRE.

Assuming the relation between electron plasma and cy-
clotron frequencies in the form

ωp ∝ ωη
c , (0< η

∼
< 1/2) ,

which includes both gyrotropic distribution of cold plasma
density along a field line (η = 1/2) and constant density
(η = 0) (e.g.,Trakhtengerts and Rycroft, 2008), and using
the definitions (10), (6), together with the dispersion rela-
tion (2) and the expansion (20), we rewrite the trapping con-
ditions (19) in the form:

|z| < zm ≡
2

27

hv⊥Rωc(LRE)
2

(v2
⊥R

+bv2
R)

∣∣∣∣∣
eq

, (21)

where equatorial values are taken for all quantities that de-
pend on coordinatez, and

b =
3ωc eq

ωc eq−ω
−η . (22)

The consideration above is by no means a novelty (see, e.g.,
Karpman et al., 1975; Karpman and Shklyar, 1977; Trakht-
engerts and Rycroft, 2008, and references therein), but it is
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necessary for deriving results that we aim at. To run a few
steps forward we will mention that recently, in the investiga-
tions of particle acceleration in the field of a whistler wave
in the magnetosphere, the main focus was on trapped parti-
cles, because the variation of their energy is much larger than
for untrapped ones. Due to this fact, and since the analysis
was usually made for a given wave field, it was somehow as-
sumed that the energy for particle acceleration is provided by
the wave. The fallacy of this conception, which does not take
into account that the number of untrapped particles greatly
exceeds the number of trapped ones, can be understood from
the following consideration. If the energy balance would be
between the wave and trapped particles, then the sign of the
growth rate would be opposite to the sign of inhomogene-
ity (see Eq.18), while, in fact, it depends mainly on resonant
particle distribution, as well as on inhomogeneity (e.g.,Karp-
man et al., 1975, see Sect.4 for details).

3 Energy constraints on particle energization

Let us estimate the energy variation of a trapped particle
while it moves inside the wave packet over the trapping re-
gion fromzm to the equator. From Eq. (17), (8) we get

1wT = −
ω

ωc eq−ω

(
µ1ωc+

m

2
1v2

R

)
(23)

= −
m

2

ω

ωc eq−ω

(
v2
⊥R eq+bv2

R eq

)1ωc

ωc eq
.

As follows from Eq. (23), energy increase of trapped parti-
cles is accompanied by decrease of magnitude of their par-
allel velocity. This process is often called “acceleration”, al-
though the term “energization” that we use seems to be more
apt. Nevertheless, referring to earlier works, we retain the
original term “acceleration”. Using Eqs. (20), (21) we obtain
from (23):

1wT =
m

81

ω

ωc−ω

h2v2
⊥R

ω2
c(LRE)

2

(v2
⊥R

+bv2
R)

∣∣∣∣∣
eq

. (24)

To get the energy density variation of trapped particles,1WT,
we should multiply Eq. (24) by the trapped particle density
nT that may be estimated as:

nT ∼ nE
1v‖T

vE
, (25)

wherenE is the density of energetic electrons,vE is their
thermal velocity,1v‖T is an effective width, on the axis of
parallel velocities, occupied by trapped particles, and it is
assumed that the resonance velocity is of the order of thermal
velocity of energetic electrons. Using

1v‖T =
1

2

(
1v‖T

)
max

=
4

πkτ
, (26)

(see Eq.36 and the comments after it) withτ determined in
Eq. (10), we get

1WT ≡ nT1wT =
4nE

πkτvE
1wT , (27)

where1wT is given by Eq. (24). Estimation (27) is valid if
the wave amplitudeB changes slowly in the trapping region
that may assume the energy relationU >1WT, where

U =
B2

8π

ωc

ωc−ω
(28)

is the wave energy density. However, in fact, the opposite
strong inequality holds that can be proved by numerical esti-
mations. Using the values of parameters typical ofL = 4 (cf.
Gurnett et al., 2001; Katoh and Omura, 2004):

ωc eq = 8.5×104 rad s−1

ωp eq = 7.9×105 rad s−1
; nc = 195 cm−3

;

nE = 0.2 cm−3
; vE = 2.7×109 cm s−1 ,

wave frequencyω = 3.14× 104 rad s−1 (f = 5 kHz), and
wave amplitudeB = 3×10−7 gauss (30 pT), we find:

U = 5.7×10−15 erg cm−3
; 1WT = 2.3×10−13 erg cm−3 ,

while the total energy density of trapped particles
WT ∼ 3×10−12 erg cm−3. We should mention that increas-
ing the wave amplitude does not “improve” the situation, be-
causeU ∝ B2, while the quantity1WT, as it follows from
Eqs. (27), (10), and (24) is proportional toB5/2.

For convenience of further estimations, we give character-
istic values of some essential parameters that are secondary
to those given above, namely: the index of refractionN ≡

kc/ω ' 19, wave electric fieldE ' 1.6×10−8 statvolt cm−1

(0.5 mV m−1), trapping lengthzm ' 2000 km, trapping time,
i.e. the time during which a particle remains trapped by the
wave: zm/|vR| ' 0.075c, and nonlinear timeτ ' 0.002c.
Definition (19) then gives the maximum value of inhomo-
geneity parameter in the trapping regionαm ' 9.5×104 c−2.

Concerning the energy estimations presented above, the
question arises as to where the energy increase of trapped
particles comes from. The answer to this question consists
in the following. Along with the trapped particles, there
are untrapped resonant particles whose contribution to wave-
particle interaction is equally important as that of trapped
ones. While trapped particles remain in resonance with the
wave for a long time and undergo significant energy varia-
tion, phase volume of untrapped particles is continuously re-
newing. This can easily be seen from the sketch of effective
potential (14) shown in Fig. 1. The rate of this renewing is
proportional to the magnitude of the inhomogeneity param-
eterα. Energy variation of an untrapped particle during the
time of resonant interaction with the wave is much smaller
than for trapped particles. In return, the total number of un-
trapped resonant particles is much larger, while the rates of
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energy variation and the phase volumes of trapped and un-
trapped particles interacting with the wave at a given instant
of time are of the same order.

A peculiarity of resonance interaction in an inhomoge-
neous plasma is that, on the average, the energy variation
has different sign for trapped and untrapped particles. A hint
to understand this feature consists in that the phase volumes
of trapped and untrapped particles are not symmetrical with
respect to the phaseζ , while the energy variation is propor-
tional to cosζ/ατ2 (see Eq.5). For illustration, the quantity
cosζ/ατ2 is plotted in Fig. 1 by dotted line. Moreover, it
appears that the average energy variation for untrapped parti-
cles is proportional to the phase volume of trapped particles,
while the rate of untrapped particle phase volume renewing
is proportional to|α|, i.e. to the rate of energy variation of
trapped particles (see Eq.18). Eventually, the net energy flux
to the wave and, thus, the wave growth rate is determined,
along with inhomogeneity parameter, by the difference in
distribution functions of trapped and untrapped particles (see
Sect.4). As this difference is much smaller than the distribu-
tion function itself, the wave energy variation appears to be
much smaller than energy variations of each group (trapped
and untrapped) of particles. This very feature permits to treat
wave-particle interaction in the approximations of a given
field (O’Neil, 1965), i.e. to consider particle dynamics in the
field of a given wave, and then find the variation of wave en-
ergy density from energy conservation, using the method of
successive approximations.

To prove the statements expressed above, let us calculate
average energy variation of an untrapped particle in the time
of its resonant interaction with the wave. Since this variation
is most significant close to reflection pointdζ/dt = 0 (see
Fig. 1) where resonance conditions (7) are fulfilled exactly,
we may replace the quantitiesτ andα by their values at this
point. Equation (9) then has the integral of motion:

ε =
1

2

(
dζ

dt

)2

+αζ −
1

τ2
sinζ . (29)

We now integrate Eq. (5) over the time of resonant in-
teraction centered on the reflection time, making use of
dt = dζ/

√
2(ε−αζ +sinζ/τ2) (see Eq.29) that gives:

1wUT =

√
2mω

k2τ2
8(ε) ,

(30)

8(ε) =

∫ ζr (ε)

−α∞

signα cosζ dζ√
ε−αζ +sinζ/τ2

,

where the reflection point ζr(ε) satisfies
ε−αζr +sinζr/τ

2
= 0. In deriving Eq. (30), we have

used the relations (1), (10) and have taken into account a
fast convergence of the integral in non-resonant region. The
function8(ε) defined in Eq. (30) is the essential factor that
determines the quantity1wUT. It is easy to see that8(ε) is

−2 −1 0 1 2 3 4 5 6 7
−4

−2

0

2
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8
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P
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)
   

   
  

   
   

  

 ζ
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ζ’
a

          
          
          

ζ
a
+2π

            

a 

a+2πα
            

Fig. 1. Effective potential (14) for α > 0, with trapped and un-
trapped particles. It is clearly seen that sign(cosζ ) = − signα for
the majority of reflection coordinates of untrapped resonant parti-
cles, which ensures that the energy variations for trapped and un-
trapped particles have opposite signs.

a periodic function ofε with the period 2π |α| and, thus, has
the Fourier expansion of the form

8(ε) = b0+

∞∑
n=1

bncos
nε

|α|
+cnsin

nε

|α|
, (31)

where

b0 =
1

2π |α|

∫ a+2π |α|

a

dε

∫ ζr (ε)

−α∞

signα cosζ dζ√
ε−αζ +sinζ/τ2

. (32)

Changing the order of integrals and performing integration
with respect toε we obtain

b0 = −
τ2

π
signα

∫ ζ ′
a

ζa

√
a−αζ +sinζ/τ2dζ , (33)

where the meaning of the quantitiesa,ζa, and ζ ′
a is clear

from Fig. 1. In particular, forα > 0 and for the period of
potentialP(ζ ) (Eq. 14) that includesζ = 0, which is shown
in Fig. 1, the corresponding quantities are equal to:

ζa = −acos(ατ2) ; a = −α ·acos(ατ2)+
√

τ−4−α2 , (34)

andζ ′
a is the second point in this interval of periodicity where

the potential is equal toa: P(ζa) = P(ζ ′
a) = a.

The coefficientb0 (Eq.33) is uniquely related to the phase
volume of trapped particles�T, or, equivalently, to average
width, over parallel velocities, of trapped particle region de-
fined as:

1v‖T ≡
�T

2πk
;

(35)

�T ≡

∫
�T

∫
dζdζ̇ = 23/2

∫ ζ ′
a

ζa

√
a−αζ +sinζ/τ2dζ ,
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Fig. 2. Effective width (over parallel velocities) of trapped particle
region, normalized to its maximum value 8/πkτ , as the function of
dimensionless parameterατ2.

and, thus,
√

2b0 = −signα ·τ2�T/2π ≡ −signα ·τ2k1v‖T .

From (35) it follows that the maximum value of1v‖T is
achieved atατ2

→ 0 and is equal to(
1v‖T

)
max

= 8/πkτ . (36)

The graph of1v‖T for arbitraryατ2 < 1 is shown in Fig. 2.
It shows that atατ2

= 1/3, 1v‖T ' (1/2)
(
1v‖T

)
max

. These
relations were used in Eq. (26). Using Eqs. (30)–(35) we can
rewrite the expression for1wUT in the form:

1wUT = −signα
mω

k
1v‖T (37)

that proves in fact the statements made above.
Concerning the wave growth rateγ , it has earlier been cal-

culated from the resonant particle current (Karpman et al.,
1975), although the consequences of the expression forγ

have not been discussed in detail. The above consideration
permits to derive the corresponding expression in a simple
and visual way. We give this derivation since the results we
arrive at are essential for further analysis.

4 Whistler wave growth rate in an inhomogeneous
plasma in the presence of trapped particles

The averaged energy variations of trapped and untrapped
particles calculated above permit an estimation of the wave
growth rate that sets in far enough from the wave packet front
and depends on averaged distribution functions of trapped
and untrapped particles. The wave growth rateγ is deter-

mined by the well known relation which expresses energy
conservation in the system “wave- resonant particles”:

dU

dt
≡ 2γU = −< j RE > , (38)

where the wave energy densityU is determined by Eq. (28),
j R is resonant particle current:

j R = −e

∫
vfRdv , (39)

and< ... > stands for averaging over the wave period. The
integral in Eq. (39) is extended over the resonance region.
Using Eq. (39) and taking into account that−evE is the rate
of particle kinetic energy variation we obtain from Eq. (38)

γ = −
1

2U

〈∫
dwR

dt
fRdv

〉
. (40)

As was mentioned above, we are interested in asymptotic
value of the growth rate related to energization processes and
determined by averaged particle distribution functions. Since
the resonance region of untrapped particles is continuously
renewing, their averaged distribution function is close to un-
perturbed oneF0:

f̄UT = F0(w, µ)w=mv2
R/2+µωc

, (41)

and it is assumed thatF0 depends on particle invariants of
motion in the absence of wave field, i.e. kinetic energyw

and transversal adiabatic invariantµ. For trapped particles,
the averaged distribution function is equal, by the Liouville’s
theorem, to unperturbed distribution function corresponding
to initial valuesw0 and µ0 at which a particle has been
trapped by the wave:

f̄T = F0(w0, µ0) . (42)

According to Eqs. (18), (8)

w−w0 = ω(µ−µ0) =
mω

k2

∫ z

z0

α(z′)
dz′

vR(z′)
, (43)

where the integral is taken over the trapping region, with the
account ofdt = dz/vR(z) > 0 which holds for trapped par-
ticles, andz0 is the coordinate at which a particle has been
trapped by the wave. If the sign ofα does not change along
the integration region, i.e. if the wave packet is situated from
one side of the equator, which will further be assumed, then
the integral on the right-hand side of Eq. (43) has always the
same sign asα(z). We should stress that the quantityz0, as
well asα,τ and1v‖T depends onµ as a parameter, which we
omit for the sake of shortness.

We now transform the variables of integration in Eq. (40)
to ζ,ζ̇ ,µ, divide the integral into contributions from trapped
and untrapped particles, and make use of Eqs. (42) and (41).
As the result we obtain:

γ ≡ γT +γUT = −
ωc

2mkU

[∫
dµf̄T

∫
�T

∫
dwT

dt
dζ̇ dζ

+

∫
dµf̄UT

∫
�UT

∫
dwUT

dt
dζ̇ dζ

]
, (44)
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where�T and�UT are elementary (corresponding to1ζ =

2π) phase volumes on the(ζ,ζ̇ )-plane of trapped and un-
trapped particles, respectively. Here and further, the integral
with respect toµ is taken over the domain ofµ where�T and
1v‖T are greater than zero.

The quantitydwT/dt is determined by Eq. (18), so that the
contribution of trapped particles to the wave growth rate is
equal to:

γT = −
πωωc

k2U

∫
dµf̄T α(z)1v‖T , (45)

with v‖T being determined in Eq. (35).
To find the contribution of untrapped particles we notice

that far from resonance, the quantityζ̇ varies according to
dζ̇ /dt ' −α. Due to phase volume conservation, the phase
volume (per interval1ζ = 2π ) of particles which enter the
resonance region on the(ζ,ζ̇ )-plane during a time interval
1t is equal to 2π |α|1t , each particle experiencing an aver-
age energy variation determined by Eq. (37), thus∫

�UT

∫
dwUT

dt
dζ̇ dζ = −

2πmω

k
α(z)1v‖T , (46)

giving

γUT =
πωωc

k2U

∫
dµf̄UT α(z)1v‖T . (47)

Combining Eqs. (45) and (47) we finally obtain:

γ =
πωωc

k2U

∫
dµ(f̄UT − f̄T)α(z)1v‖T . (48)

Formula (48) gives the required asymptotic expression for
growth rate of whistler-mode wave propagating along a non-
uniform magnetic field in an inhomogeneous plasma, in the
presence of phase trapped particles. Equivalent expression
has earlier been obtained in a different way byKarpman et
al. (1975). For numerical estimations, it is useful to bear
in mind that the integral

∫
dµf̄T1v‖T is proportional to total

density of trapped particles, namely:∫
dµf̄T1v‖T =

m

2πωc

nT .

5 Analysis of the expression forγ – formation of
“beams” and “holes”

For coordinatesz inside the wave packet, such that the quan-
tity (w−w0) determined by Eq. (43) is small as compared to
thermal energy of resonant particles, the differencef̄UT − f̄T

in Eq. (48) may be expanded to the first order in(w0 −w)

and(µ0−µ), which gives, with the account of (43):

f̄UT − f̄T = F ′

0(µ) ·
m

k2

∫ z

z0

α(z′)
dz′

vR(z′)
;

(49)

F ′

0(µ) ≡

(
∂F0

∂µ
+ω

∂F0

∂w

)
w=mv2

R/2+µωc

.

Substituting Eq. (49) into Eq. (48) we get:

γ =
πmωωc

k4U

∫
dµF ′

0(µ)α(z)1v‖T

∫ z

z0

α(z′)
dz′

vR(z′)
. (50)

Expressions (48), (50) show that in an inhomogeneous
plasma, and in the presence of trapped particles, the wave
growth rate is nonlocal, i.e., the growth rate at a given point
z depends on the position of wave packet along the geomag-
netic field line, especially with respect to the equator. In par-
ticular, if the whole wave packet is situated at one side from
the equator, then the sign ofγ does not depend on the sign
of inhomogeneity parameterα, but is determined by the sign
of the combined derivativeF ′

0(µ) (Eq. 49), similar to linear
growth rate (Sagdeev and Shafranov, 1961):

γL = ω
π2e2B2ω2

c

m2k3c2U

∫
∞

0
dµF ′

0(µ)µ . (51)

Since the wave energy densityU is proportional toB2, the
linear growth rate does not depend on wave amplitude, of
course. In contrast to this, in the case under discussion
the growth rate is essentially nonlinear, the corresponding
expressions being valid only under conditionsγ τ � 1 and
ατ2 < 1 (cf. Eqs.15 and19) that prevents transition to the
linear case.

The above consideration that divides the wave growth rate
into contributions from trapped and untrapped particles gives
the conditions under which the wave energy variation is
much smaller than the rate of energy variation of trapped as
well as untrapped particles. Clearly, these conditions have
the form:

|f̄UT − f̄T| ∼

∣∣∣∣F ′

0(µ) ·
m

k2

∫ z

z0

α(z′)
dz′

vR(z′)

∣∣∣∣� |f̄UT| ,|f̄T| , (52)

i.e., the difference between distribution functions of trapped
and untrapped particles should be small as compared to the
distribution functions themselves. The fact that the wave en-
ergy variation determined by growth (or damping) rateγ

is indeed much smaller than the rate of energy variation of
each group of particles, which is necessary for the inequality
U � 1WT demonstrated above to be fulfilled, indicates that
conditions (52) are fulfilled in real situation, at least with the
parameters used. It means that, under conditions (52), energy
exchange between trapped and untrapped particles is much
more significant than between wave and particles. Thus, if
the energy of trapped particles increases, the source of en-
ergy is not the wave, as was habitually assumed, but the un-
trapped particles, while the wave only mediates the energy
transfer.

It is easy to see that in the process of energy exchange be-
tween trapped and untrapped particles the energy is always
transferred from more energetic to less energetic particles,
because, on the average, the energy variations of trapped and
untrapped particles are differently directed, while at exact
resonance their energies are equal. These arguments apply
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to particles with the same value of the integral of motion
C2 (Eq.8). Consistent with this is the above-mentioned fact
that the sign of growth rate is not determined by the sign of
inhomogeneity, but depends on the features of distribution
function.

An inevitable result of particle dynamics described above
consists in formation of “beams” or “holes” on particle dis-
tribution function. (In analysing this effect, we assume that
the unperturbed distribution function depends onC2 andw

which permits to express its variation through the variation of
particle kinetic energyw.) Indeed, according to Liouville’s
theorem, distribution function is conserved along phase tra-
jectories, thus the distribution function of trapped particles
is typical of the region of the phase space where the par-
ticles become trapped by the wave. At the same time, the
distribution function of untrapped particles is, on average,
close to the unperturbed one since the phase space of un-
trapped particles is continuously renewing. As the result,
there appear sharp gradients of the distribution function in
the resonant region of the phase space. This effect depends
on both the inhomogeneity and the shape of unperturbed dis-
tribution. If, for example, the wave packet moves toward a
pole and is located at one side from the equator, then trapped
particle carry over their distribution function from lower en-
ergy region of the phase space, where they have been trapped
by the wave at the packet front, to higher energy region. If
the unperturbed distribution function decreases with increas-
ing energy, then at the trailing edge of the wave packet a
“beam” in the resonance region of the distribution function
will be formed. If, on the contrary, the unperturbed distribu-
tion function increases with increasing energy, which corre-
sponds to an unstable distribution, then at the trailing edge of
the wave packet a “hole” in the resonance region of the phase
space will be formed. For a wave packet moving toward the
equator the situation will be opposite to that described above,
namely, a “hole” and a “beam” will be formed in the cases
of stable and unstable distributions, respectively. An impor-
tant consequence of the inequality (52) consists in that no
strongly pronounced beams or holes on the distribution func-
tion, which assume significant difference betweenf̄UT and
f̄T, may be formed without essential variation of the wave
energy.

As has already been emphasised, our consideration is not
valid for large growth rates. Since the differencef̄UT − f̄T is
only one factor in the expression forγ , the inequality (52)
is not sufficient condition for the employed approximation
of a given field (15) to be valid. To find the corresponding
conditions, we rewrite the expression (50) for γ with the help
of Eq. (51) that gives:

γ ∼ γL

〈
α(z)τ3

∫ z

z0

α(z′)
dz′

vR(z′)

〉
, (53)

where< ...> stands for averaged (with respect toµ) value of
the corresponding expression calculated with the weighting

function F ′

0(µ)µ. Using the estimation forγ (Eq. 53) and
relations (49) we obtain from Eq. (15):

τ

∫ z

z0

α(z′)
dz′

vR(z′)
�

1

(γLτ)(ατ2)
, (54)

or, equivalently,

|f̄UT − f̄T| �F ′

0 ·
m

k2τ
·

1

(γLτ)(ατ2)
. (55)

In Eqs. (54), (55), which have a character of estimations, av-
erage values of quantities that depend onµ are assumed. An
essential quantity which enters into these inequalities is the
linear growth rateγL determined by the expression (51). To
find an explicit expression forγL, we will use a distribution
of energetic electrons with a loss-cone of the Dory-Guest-
Harris type (Dory et al., 1965):

f0(w,µ) =

( m

2π

)3/2 nEω
j
cµj

0(j +1)w
j+3/2
E

e−w/wE , (56)

wherenE is the energetic electron density,wE is a character-
istic thermal energy of energetic electrons equal tomv2

E/2,
j is a positive quantity determining the loss cone, and0

is the Gamma-function. Evaluation of the linear growth
rate (Eq.51) with the help of Eq. (56) gives:

γL =
4π3/2nEe2ωωc

mk3c2vE
e−v2

R/v2
E

[
j −

ω

ωc

(j +1)

](
1−

ω

ωc

)
.(57)

Numerical estimation ofγL with the help of parameters listed
in Sect.3 and j = 1.1 givesγL ' 11.6 c−1 , which permits
to estimate the value of nonlinear growth rate (Eq.53) as
γ ' 10, so thatγ τ ' 0.02 which justifies the approximation
of a given field (15) used in the present study. We remind the
reader that inequalities (54) and (55) are different forms of
the condition (15).

An obvious consequence of the energization process de-
scribed above is the appearance of highly energetic electrons
in the Earth’s radiation belts. Another one is related to excita-
tion of whistler-triggered emissions (Helliwell, 1969; Omura
et al., 1991; Nunn, 2003). These emissions may be generated
due to described above specific features of the distribution
function at the trailing edge of the main wave packet (see,
e.g., Istomin et al., 1976; Omura et al., 1991; Nunn, 2003;
Trakhtengerts and Rycroft, 2008, and references therein).

Before concluding this section, one remark is in order.
Imagine that the unperturbed distributionF0 is “flat” in the
sense that the combined derivativeF ′

0(µ) (Eq.49) is zero in
the whole resonance region. All features described above,
namely, energy transfer between trapped and untrapped par-
ticles mediated by the wave, whose energy does not change
at all in this case, remain in effect, but do not produce ob-
servable consequences as both wave and particle distribution
function remain unchanged. Thus, an essential characteristic
of energization process is the variation in distribution func-
tion which is produced. As we have seen above, in the frame
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of present consideration, which uses the approximation of a
given field, this variation is limited by the condition (55) that
follows from Eq. (15).

6 Concluding remarks

A systematic investigation of resonant wave-particle inter-
action in an inhomogeneous plasma has been undertaken in
1970s, and the idea of electron acceleration caused by in-
teraction with quasimonochromatic whistler-mode waves in
the magnetosphere can be traced back to the corresponding
works from this period. We will refer to a review paper by
Matsumoto(1979) where the references to the most impor-
tant studies on this subject fulfilled by that time can be found.
Recently, the interest to this issue has been recommenced in
connection with the problem of spacecraft safe functioning in
the Earth’s radiation belts. The idea of electron acceleration
by whistler-mode waves has been developed and enriched
by including relativistic effects into consideration (e.g.,De-
mekhov et al., 2006; Omura et al., 2007), and by consider-
ing electron acceleration by whistler-mode waves of varying
frequency (e.g.,Demekhov et al., 2006; Trakhtengerts and
Rycroft, 2008). Most works devoted to particle acceleration,
at least analytical ones, used the approximation of a given
wave field and treated electron acceleration as an accelera-
tion by a wave, which may assume that electron energy is
derived from the wave energy.

The notion originating from the present study may be sum-
marized as follows. The interacting system under considera-
tion consists of the wave with energy densityU that includes
oscillation energy of “cold” (non-resonant) particles, reso-
nant trapped particles with kinetic energy densityWT, and
resonant untrapped particles with kinetic energy densityWUT.
The energy conservation requires that the variations of these
quantities satisfy the equation:

1U +1WT +1WUT = 0; (58)

There are only two possibilities to satisfy this equation: ei-
ther all three quantities are of the same order, or one is much
smaller than other two, which are close in magnitude, but
have different signs. The question is, which of these two
possibilities is in point of fact. This is not an idle question,
and the answer to it is not obvious. Since energy variation
for an untrapped particle is much smaller than for a trapped
particle, one may think that in the Eq. (58), 1WUT � 1WT

and, thus,1U ' −1WT, so that the energy balance is basi-
cally between wave and trapped particles. We have shown
that this assumption is incorrect since it does not take into
account that, in an inhomogeneous plasma, the number of
untrapped resonant particles which interact with the wave on
a time scale greater thanτ is much larger than the number of
trapped particles. It appears that, in fact,1U � 1WT , WUT,
while 1WUT ' −1WT. Thus, in resonant wave-particle inter-
action in an inhomogeneous plasma, the energy increase (de-

crease) of trapped particles, for the most part, comes from
(goes to) untrapped particles, while the wave mainly medi-
ates the energy transfer. It implies, among other things, that
in the case of a lack of untrapped particles, the accelerating
(decelerating) trapped particles will strongly damp (enhance)
the wave, because, as has been shown above, the wave en-
ergy density is usually much smaller than the energy density
increase (decrease) of trapped particles. On the contrary, in
the case of an abundance of untrapped particles (or, which
is the same, a lack of trapped particles that is equivalent to
a “hole” in the phase space), the situation will be opposite
to that described above, namely: accelerating trapped parti-
cles will enhance the wave and vice versa. The outcome of
this work is important not only for understanding the nature
of energization process, but also for setting proper quantita-
tive constraints on attainable electron energy increase (under
appropriate conditions of course) that can be orders of mag-
nitude larger than it would be expected if the energy source
were the wave energy. The results obtained have immediate
applications to particle dynamics in the radiation belts and to
generation of whistler triggered emissions.
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