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Abstract. We clarify the notion of magnetic field lines in
plasma by referring to sub-microscale (quantum mechani-
cal) particle dynamics. It is demonstrated that magnetic field
lines in a field of strengthB carry single magnetic flux quanta
80 = h/e. The radius of a field line in the given magnetic
field B is calculated. It is shown that such field lines can
merge and annihilate only over the length`‖ of their strictly
anti-parallel sections, for which case we estimate the power
generated. The length̀‖ becomes a function of the inclina-
tion angleθ of the two merging magnetic flux tubes (field
lines). Merging is possible only in the interval1

2π < θ ≤ π .
This provides a sub-microscopic basis for “component re-
connection” in classical macro-scale reconnection. We also
find that the magnetic diffusion coefficient in plasma ap-
pears in quantaDm0 = e80/me = h/me. This lets us con-
clude that the bulk perpendicular plasma resistivity is lim-
ited and cannot be less thanη0⊥ =µ0e80/me =µ0h/me ∼

10−9 Ohm m. This resistance is an invariant.

Keywords. Space plasma physics (Magnetic reconnection)

1 Introduction

Central among the concepts of space plasma physics is the
concept of magnetic field lines. It had been introduced for
practical reasons by Michael Faraday in the 1830s in his in-
genious attempt to visualise the direction of magnetic forces
in air. In Faraday’s view field lines were purely geometrical
entities, the vector direction of the magnetic field, not having
any physical substance.

Correspondence to:R. A. Treumann
(rudolf.treumann@geophysik.uni-
muenchen.de)

In space physics the field line concept has been used in
a variety of problems, most prominently in the theoretical
treatment of magnetic field transport/convection in plasma.
Here the magnetic field is considered to be tied to a plasma
volume. This convection has been attempted to be described
by Euler potentialsα(x,t),β(x,t) (cf., e.g., Stern, 1966,
1967) which are just a different representation of the mag-
netic vector potentialA(x,t) under the Coulomb gauge con-
dition ∇ ·A = 0.

Field lines are also essential in the problem of magnetic
reconnection where in addition to convective transport it is
asserted that field lines can diffuse, be cut, merge, change
topology, and exert stresses on the plasma which cause
plasma acceleration and formation of plasma jets (cf., e.g.,
Paschmann et al., 1979). Though an intuitive picture can be
drawn, it still remains unclear what physically is happening
when field lines move or merge. In order to arrive at a deeper
understanding one should ask for the sub-microscale physics
underlying the field-line concept.

In the following we provide a brief inquiry into the phys-
ical nature of magnetic field lines. For this one has to recall
some simple quantum-mechanical concepts developed long
ago1 by Landau(1930) and Aharonov and Bohm(1959).
This approach, as it turns out, is not entirely academic; it
leads to some interesting physical consequences.

2 Magnetic field lines

In order to arrive at a deeper understanding of a magnetic
field line, one has to acknowledge that the definition of a field
line as a physical entity makes sense only in magnetically

1Landau(1930) treated the quantum-mechanical motion of an
electron in a homogeneous magnetic field.Aharonov and Bohm
(1959) considered electrons moving around magnetic flux tubes.
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Fig. 1. Geometry of the Aharonov-Bohm effect. The electron (any
charged particle) moves at some angleθ around a magnetic flux
tube containing some magnetic flux8. Since outside the flux tube
the magnetic flux vanishes, the vector potential in this region re-
duces to a scalar potential which can be gauged away. However,
quantum mechanically its effect is remarkable, forcing the flux to
be quantised.

active matter, i.e. for charged particles which are sensitive to
the presence of magnetic flux, for instance.

2.1 Field lines carry just one flux quantum

Under this proposition, a clear definition of a field line can be
derived from a quantum-mechanical treatment of magnetic
fields in active matter containing electric charges which in-
teract with the magnetic field. Since all charges are attached
to masses, one considers the motion of a particle just car-
rying one elementary chargee, e.g. an electron of massme.
Its motion (which itself is not of interest here) in a magnetic
field is described by a Schrödinger equation

Hψ(x,t)= εψ(x,t) (1)

whereH is the Hamilton operator of the electron,ψ the elec-
tron wave function, andε are the energy eigenvalues of the
electron.

There is no need to explicitly solve the Schrödinger equa-
tion of motion of an electron (or any other charged particle)
in a magnetic field as this was done more than half a century
ago byLandau(1930) for an electron moving in a homoge-
neous magnetic field. The essential result was that the energy
of the electron in a magnetic field is quantised

εL(p‖,q)=
p2

‖

2me
+ h̄ωce(q+ 1

2) q = 0,1,2,3... (2)

with quantum numberq and parallel momentump‖. Ac-
tually, only the perpendicular energy of the gyro-motion

is quantised. One easily realises that in a magnetic mir-
ror geometry where the particles oscillate between the mir-
ror points the parallel energy of the electron bounce mo-
tionp2

‖
/2me≡ εb = h̄ωb(s+

1
2) would also be quantised with

bounce frequencyωb � ωce and parallel quantum number
s = 0,1,2,3...q thus splitting the Landau energy levels. In
fact, under space conditions the lowest Landau energy level
is very small; in a magnetic field ofB = 100 nT is amounts
just toεL ≈ 10−11 eV, which is also the spacing between the
Landau levels. Classically these energies form a continuum.

The decisive step towards an understanding of magnetic
field lines is done when extending Landau’s method and con-
sider the particle motion around one singled-out magnetic
flux tube of flux8, following Aharonov and Bohm(1959).
Again choosing an elementary charge (i.e. an electron) one
asks for the electron response to the presence of the flux tube
outside the flux tube. In classical physics there is no sign of
the magnetic flux contained in the flux tube outside it. This,
however, is not true in quantum physics. For outside the flux
tube where there are no sources of the magnetic field in the
tube, the magnetic vector potential in Schrödinger’s equation
must be compensated by a gauge fieldφ, i.e. the gradient of a
scalar potential field according toA = ∇φ. This introduces a
phase factor in the state eigenfunctionψ(x,t) of the electron,
the solution of the Schrödinger equation, in the form

ψ(x,t,φ)∼ exp

(
−i
eφ

h̄

)
ψ(x,t) (3)

Clearly, this phase factor is unimportant in determining prob-
abilities|ψ |

2, which is the essence of the gauging, since only
probabilities connect to the classical world.

The physical importance of the scalar fieldφ becomes
clear, however, when returning to the motion of the free elec-
tron on some orbit near the magnetic flux tube (cf. Fig.1).
The flux, the electron feels quantum-mechanically is given
by the surface integral of the magnetic fieldB over the part
of the field-line cross section dF, respectively the line inte-
gral of the vector potentialA along the electron orbit ds

8=

∫
cross−sect

B ·dF =

∫
orbit

A ·ds =

∫
orbit

∇φ ·ds (4)

Since the orbit in the scalar potential fieldφ can be arbitrarily
deformed, one needs to consider only its projection into the
plane perpendicular to the flux tube. The value of the line
integral then depends only on the electron rotation angleθ

(see Fig.1), yielding from Eq. (4) for the potential 2πφ(θ)=
θ8. This value, after inserting forφ into the phase factor,
gives just

exp

(
−iθ

e8

2πh̄

)
(5)

which is the result derived byAharonov and Bohm(1959).
In ` gyrations the electron would possibly perform around
the flux tube, the phase factor would increase by 2π`, and
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the wave functionψ would, artificially, become discontinu-
ous. Since this is unphysical and not permitted in quantum
physics, the flux8= `80 in the encircled flux tube is a mul-
tiple of an elementary flux quantum2 (Aharonov and Bohm,
1959)

80 ≡ 2πh̄/e≈ 4.1×10−15 Wb (6)

(One may notice that this holds for any electric chargee in-
dependent on its sign.)

2.2 Field line radius

As we will show, the above expression precisely defines a
magnetic field line3 in magnetically active matter, where the
charged particle (electron) is “magnetised”, i.e. responds to
the presence of the magnetic flux.

The magnetic flux element (quantum) corresponds to a
magnetic field of magnitude

B =80/πλ
2
m (7)

which, for a given magnetic field strengthB, defines a
(smallest possible) magnetic flux tube radius (Landau, 1930,
unaware of the flux quantum, formally arrived from different
considerations at a similar “magnetic length”, not identify-
ing it with field lines), which is the “radius of a magnetic
field line”

λm=

(
80

πB

) 1
2

=

(
2h̄

eB

) 1
2

(8)

the narrowest possible flux tube in a magnetic field of given
field strengthB. It just carries one quantum80 of magnetic
flux. One may note thatλm is independent of the mass of the
particle which helped identifying the field line. The particle
just served as a carrier of the elementary charge. It depends,
however, on the chargee because it is the charge that couples
the particle to the field (via the Lorentz force).

This radius is inversely proportional to the square root of
the magnetic field

√
B. Strong magnetic fields correspond to

narrow field lines, weak magnetic fields have broader field
lines. The field line of a weak magnetic field ofB = 1 nT
has radius of orderλm ∼ 10−3 m, which is in the detectable
meso-scale domain! The weakest magnetic fields in the Uni-
verse have strengths ofB & 0.1 nT. Their field lines have ra-
diusλm. 1 cm.

Here we have singled out just one field-line fluxtube. Of
course, magnetic fluxes may form bundles of such elemen-
tary flux quanta, but the smallest possible magnetic flux in

2This could have been inferred already from simple dimensional
reasoning observing thate8 has dimension of an action with action
quantumh.

3A first unelaborated hint had already been included by one of
us (RT) in a review on reconnection-related problems (Lui et al.,
2005).
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Fig. 2. A few of theNB = Te/h̄ωce magnetic field lines belonging
to the bundle of field lines (flux elements of diameter 2λm) that are
contained in the cross section of an electron gyration (T1 = Te in eV,
B1 =B in nT). Because flux can only annihilate in quanta, implying
that only strictly antiparallel field line segments reconnect, none
of these field lines can reconnect, however, even though they may
get in touch at some inclination angle. Reconnection requires that
at least some genuinely antiparallel external field lines are added
from the outside. This happens in colliding magnetised plasmas
with oppositely directed fields where some field lines will always
find their strictly antiparallel partners.

magnetically active matter is given by the ratio80 ≡ h/e,
the flux carried by a magnetic field line.

This fundamental result ofAharonov and Bohm(1959)
yields the precise physical definition of a magnetic field line.

One may calculate the numberNB of magnetic field lines
contained, for instance, in an electron cyclotron orbit by
comparing the area of the electron-gyration circleπr2

ce with
the cross sectionπλ2

m of a field line. For an electron of tem-
peratureTe =mv2

e/2 in a magnetic fieldB this yields the
large number

NB =
Te

h̄ωce
≈ 1013

(
Te

1 eV

)(
B

1 nT

)−1

(9)

which is the ratio of thermal electron energy to the Lan-
dau energȳhωce of an electron of cyclotron frequencyωce =

eB/me. This number increases withTe and decreases with
magnetic fieldB. In a field ofB = 1 nT and for an electron
temperature of justTe = 1 eV, this number becomes roughly
of the orderNB ∼ 1013. One electron gyration circle thus
contains a huge number of magnetic field lines (see Fig.2).
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Fig. 3. Annihilation of the strictly antiparallel sections of two con-
tacting magnetic field lines of diameter 2λm, each carrying just one
flux quantum80. Annihilation proceeds over the antiparallel length
`‖ only, thereby creating two new field lines each one, as before,
carrying just one flux quantum80. The annihilation releases the
magnetic energy stored in the common volumeV0 = 2πλ2

m`‖ of
the two contacting strictly antiparallel flux tube sections. The re-
leased energy heats the plasma locally. The strong bending of the
remaining (reconnected) parts of the field lines causes relaxation
and stretching of the newly reconnected field lines but does not ex-
ert any forces on the plasma on the narrow sub-gyroscale of one
single field line, causing them to relax as if in vacuum.

3 “Annihilating” field lines

Asking what, in principle, will be going on when two oppo-
sitely directed field lines, i.e. flux elements containing oppo-
sitely directed magnetic fluxes, encounter each other, one re-
alises that the outcome of the encounter depends sensitively
on the inclination angle under which the two flux elements,
respectively field lines, contact. In the following we distin-
guish between field-line merging and annihilation on the one
hand and macroscopic reconnection on the other. The for-
mer two apply to the microscopic process when two antipar-
allel field lines come into contact; the latter is reserved for
the macroscopic reconnection effect which involves macro-
scopic flux tubes and very large numbers of field lines.

3.1 Merging of two field lines

Magnetic flux can only be exchanged in quanta80 = h/e.
Because of this obvious and undeniable property, flux anni-
hilation takes place only when the field lines are precisely
anti-parallel a certain distancè‖ along the elementary flux
tubes. This is shown schematically in Fig.3. One should note
that because of this reason any obliquely touching field lines
(elementary flux tubes) in Fig.2 cannot annihilate! More-
over, the Lorentz force density between flux tubes is given

by fLorentz= j ×B. With the currentj = 2B/µ0λm “sur-
rounding” one elementary flux tube this force becomes

fLorentz=µ
−1
0

(
2eB4/h̄

) 1
2

(10)

For parallel flux tubes (field lines) this force is repulsive
keeping the parallel field lines at the largest possible mutual
distance, an effect well-known from the tendency of mag-
netic fields to expand into field-free space, while anti-parallel
flux tubes attract each other.

The implication is that, in elementary field-line merging
events in which two anti-parallel sections of field lines at-
tract and touch each other, the amount of 280 of magnetic
flux will be annihilated. The annihilated amount of flux is
exactly 280 because each field line carries just one flux quan-
tum, and because flux quanta cannot be divided into half or
any fraction such that there is no half flux quantum available
which could be added to another half in order to annihilate
180. Conversely, since field lines are composed of one flux
quantum only they contribute 180 to annihilation in merg-
ing, not more and not less. This annihilation happens in a
certain time1t . Thus the elementary flux annihilation cor-
responds to the generation of an induced electromotive force
(emf)

|U | = d8/dt ≈ 280/1t (11)

Multiplying with the elementary charge, the “equivalent cur-
rent density”j surrounding the flux element (which is paral-
lel to the emf), and the total volumeV0 ≈ 2πλ2

m`‖ of the an-
tiparallel sections of the two contacting field lines, we obtain
the total power that is generated in such a field-line merging
event

P0 ∼
2Bh

µ0e
`‖ ∼ 10−17(B`‖) W (12)

whereB is measured in nT, and̀‖ in m. It is assumed this
total power is converted into kinetic energy of the plasma.
Two annihilating field lines of anti-parallel lengths`‖ ∼ 1 m
and magnetic fieldB ∼ 1 nT thus provide a power that is just
of the order of∼ 10−17 W.

It is of interest to ask how much time the annihilation
of two anti-parallel field lines needs. Previously the corre-
sponding amount of energye|U | was stored in the volume
V0 of contacting antiparallel field lines. It thus corresponds
to the magnetic energyV0B

2/2µ0 stored in the two field-line
elements such that we find for the annihilation time of two
contacting strictly antiparallel flux elements from Eq. (11)

1t ∼
h

e|U |
≈
eµ0

B`‖
∼ 10−17(B`‖)

−1 s (13)

where againB is in nT and`‖ in m. This time is extremely
short, i.e. flux elements annihilate instantaneously if and only
if they come into antiparallel contact. Microscopically, from
the point of view of field lines (or contacting elementary
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flux elements), the question of reconnection thus reduces to
two problems: (a) how many flux quanta in an approaching
plasma volume element can be turned antiparallel over a cer-
tain length`‖, and (b) how can they be brought into close
contact? These questions cannot be answered on the basis of
considering the fluid motion of a magnetised plasma volume.

3.2 Maximum available power

Nothing is known about the length̀‖ of the antiparallel sec-
tions of two field lines. Assuming that the field lines would
be antiparallel over the ion inertial lengthλi , the largest pos-
sible length`‖ ' λi in macroscopic collisionless reconnec-
tion (i.e. the total linear extension of the ion-inertial region,
see, e.g.,Sonnerup, 1979), this number would become the
order ofP0(λi)∼ 2.5×10−12(B

√
N)W, with densityN in

cm−3. If all the magnetic field lines in one electron gyro-
radius would reconnect simultaneously over this length we
would multiply by the number of field linesNB , obtaining
(with Te in eV)

P0(λi,NB)∼ 10
(
Te

√
N

)
W (14)

In the rather extreme case when all the electrons in the ion
inertial volume would indeed annihilate their field lines, one
had to multiply by the number of electrons4π

3 Nλ
3
i in the ion

inertial volume, and the total power would amount to

Ptot ∼ 109
(
TeN

3
)

W (15)

During a substorm of duration1t ∼ 103 s this corresponds to
a released energy of

Esubstorm∼ 1012 J (16)

some orders of magnitude higher than measured. Clearly,
this is an extreme upper limit of what can be obtained in
macroscopic reconnection in the magnetospheric tail under
the (rather unreasonable) assumption that it is the total num-
ber of electrons which (inside the “ion diffusion region”
z<λi , i.e. in thin current sheets) are responsible for and con-
tribute to reconnection. The energy increases with electron
number densityN and temperatureTe. Apparently, it is inde-
pendent of the magnetic fieldB, but this is not so because the
elementary magnetic flux80 is contained in the fundamental
expression Eq. (12).

3.3 Sub-micro-scale “component reconnection”

Our claim used so far that the field lines can annihilate only
over their antiparallel sections could be challenged on the
observation that macroscopic reconnection has been found
to depend on the mutual inclination angle of the interacting
magnetic fields. In that case one speaks of “component re-
connection” referring to the components of the magnetic field
involved. In principle something similar applies also to the

merging of two field lines with the decisive difference that
field lines are very narrow entities of diameterd = 2λm.

Nevertheless, assume that two field lines meet under an
angleθ =π and cosθ = −1 over a distancè‖ then the field
lines are exactly anti-parallel and once contacting will merge
and annihilate their flux elements over the length in ques-
tion. When the angle isθ =

1
2π , however, we have cosθ = 0

the field lines are exactly perpendicular, and merging will be
inhibited. The field lines in this case touch in a point, and
there is no anti-parallel flux component to annihilate. For
angles between12π < θ ≤π , on the other hand, a small anti-
parallel component exists as the antiparallel length shrinks
rapidly. The calculation is a little more complicated in this
case than in the macro-scale component reconnection case
where one assumes that the whole thing happens in an in-
finitely extended plane. Here, in our case of sub-microscale
merging, the two field lines have, however, a transverse ex-
tension of only 2λm.

During symmetric rotation by an angleθ around the cen-
tre of the anti-parallel contact length̀‖ the line of contact
shrinks quite fast according to

`‖(θ)=
λmcosθ

[λm/`‖(π)] cosθ+

√
1−λ2

m/`
2
‖
(π) sinθ

(17)

as can easily be shown. Whenθ =
1
2π , the length of con-

tact is zero while forθ = π one recovers the full length
`‖(π) ≡ `‖ of contact. Each time the amount of 280 of
flux annihilates in the merging while the available power
P0(θ)=P0`‖(θ) decreases rapidly with angle. So the condi-
tion of anti-parallelity is still satisfied but has been modified
according to the finite rotation angleθ .

This indeed resembles “component reconnection” but ap-
plies here to two single touching field lines thus providing
the notion of “component reconnection” a sub-microscopic
justification.

3.4 Field line relaxation after merging

Another point of discussion refers to the strongly kinked
magnetic field line produced in the process of merging and
annihilation of flux over the length̀‖. This kink in the mag-
netic field line is of course not stable. It will relax after merg-
ing has ceased and the field line will stretch itself to reach a
new equilibrium with minimum curvature. Surely this will
happen if only the field line is allowed to stretch. It could thus
be claimed that this would be the most important effect on the
plasma of the entire merging process similar to that what is
known from macroscopic reconnection where the relaxation
of the kinked magnetic field lines accelerates the plasma into
the famous reconnection jets (first observed byPaschmann et
al., 1979) which emanate from the reconnection sites.

However, this is not the case in the sub-microscale merg-
ing process. On the sub-microscopic scale the relaxation of
the magnetic field lines has no effect at all on the plasma
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as long as the curvature radius, whose initial value is of the
order ofλm, remains much smaller than the electron gyro-
radiusrce. The plasma is affected only when the field has
stretched so much that the curvature radius exceeds the elec-
tron gyro-radius. Until this happens the electrons remain
non-magnetic and the relaxation of the kinked field proceeds
in the same way as any magnetic field relaxes in vacuum, i.e.
it proceeds at the velocity of light,c.

When, after a while, the time-scale of relaxation becomes
comparable to the time-scale of plasma oscillations1tωe∼ 1
and the curvature radius becomes comparable to the Debye-
length, the relaxing fields start feeling the dielectric prop-
erties of the plasma; the relaxation then takes place in a
medium of dielectric functionε(ω)= 1−ω2

e/ω
2 with the ef-

fect that in this phase the curvature radius of the relaxing field
rapidly increases to reach the electron gyro-radius, while the
expansion velocity slows drastically down.

These consequences can be concluded from inspection of
the relevant dispersion relation

k2c2
=ω2

−ω2
e (18)

For kc∼ cλ−1
m one hasω∼1t−1

�ωe, and the plasma fre-
quency plays no role; the relaxing field is a high-frequency
electromagnetic mode which relaxes with velocityc. With
increasing curvature one hask→ 0 andω→ωe from above,
i.e. the relaxation time1t ∼ ω−1 increases. Ultimately for
k∼ rce the electrons become magnetised in the field and start
feeling its relaxation. Then the above dispersion relation
ceases to hold. This has two drastic consequences: firstly,
the electron inertia causes a rapid mass loading of the field
which retards the further relaxation while, secondly, the re-
laxing field accelerates the local fraction of electrons up to
the electron-Alfv́en velocity. Further slow relaxation of the
field proceeds until the curvature radius meets the ion gyro-
radius. Then the expansion of the field is slowed down even
further and the ions become accelerated up to the ion-Alfvén
velocity generating the famous reconnection jets.

In these last steps, however, many field lines have already
become involved and the merging has made the transition
from sub-microscopic field-line merging and flux annihila-
tion to reconnection at macroscopic scales. The remaining
problem is thus reduced to the understanding of how many a
very large number of antiparallel or inclined magnetic field
lines, i.e. elementary flux tubes, can be brought into close
contact because once they contact each other flux annihila-
tion, magnetic merging, topological change and re-ordering
of the magnetic field is inevitable. This is, however, a ma-
jor problem central to reconnection which lies far outside the
scope of this communication.

4 Magnetic diffusivity

Before proceeding to the conclusions we briefly note that the
existence of a magnetic flux quantum implies as well a small-

est quantumDm0 of the magnetic diffusivity such that the dif-
fusion coefficient in a magnetic field of flux8= `80 can be
written as

Dm` ∼ `Dm0 , `∈ N (19)

This can be realised when multiplying80 by the ratioe/me
of elementary charge to electron mass yielding

Dm0 ∼
e

me
80 =

h

me
≈ 10−4 m2 s−1 (20)

which has the correct dimension of a diffusion coefficient:
[Dm] = m2 s−1. Thus, diffusion in a magnetic field proceeds
in steps or elementary jumps from field line to field line.,
which is quite an intuitive picture of the diffusion process.

Correspondingly, the diffusion timeτmD over a certain
lengthL (measured in meters) is then given by

τmD = 104(L2/`) s `= 1,2,3... (21)

The expression4 Eq. (20) can be derived in two ways. First
assuming with Bohm that the maximum perpendicular dis-
placement within one electron-gyration time during the ele-
mentary diffusion process is just of the order of one field-line
diameter

Dm∼ 4λ2
mωce/2π (22)

This yields immediately for

Dm'
4h̄

πme
(23)

Otherwise one may use the definition of the diffusion coeffi-
cient through energy

Dm∼ 4πε0⊥/meωce (24)

whereε0⊥ =
1
2h̄ωce is the perpendicular Landau zero point

electron energy (quantum numberq = 0). This yields

Dm'
2πh̄

me
(25)

Both expressions agree withDm0 up to a numerical factor of
orderO(1).

Since otherwise the magnetic diffusivity is defined through
resistivityη, one also has

Dm0 =
η⊥

µ0
(26)

an equation which immediately shows that the perpendicu-
lar ordinary resistivity in a magnetised plasma is itself quan-
tised,η`⊥ = `η0⊥, and cannot be less than its quantum

η0⊥ ≡
µ0e

me
80 =

µ0h

me
≈ 10−9 Ohm m (27)

4Its independence on chargee and magnetic fieldB identifies it
as a general quantum of diffusivity valid for stream lines in a fluid.
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This fact restricts the ordinary perpendicular conductivity
σ⊥ = σ0⊥/` in a plasma to values

σ0⊥<109 S m−1 (28)

Though this upper bound on the plasma conductivity is still
high it shows that magnetised plasmas retain a small resis-
tance which is an invariant the origin of which is to be found
in the quantum nature of the magnetic flux.

5 Conclusions

Summarising, we have clarified the notion of magnetic field
lines in plasmas. It turns out that the existence of a magnetic
flux quantum also implies the existence in any magnetic field
of strengthB of a physically narrowest magnetic flux tube,
which is a magnetic field line.

Magnetic field lines carry just one flux quantum80, while
their radius depends on the local field strengthB and shrinks
with increasingB.

There have been two debatable points in our argument on
field-line merging and flux annihilation. The first concerns
the question of what strictly antiparallel means. We have
clarified this by permitting the flux tubes to be mutually in-
clined by an angleθ . Two field lines, that is elementary
flux tubes carrying one flux quantum80 can merge only
when they are strictly anti-parallel over a section of length
`‖ along the flux tubes as shown for the ideal case in Fig.3.
This is required because flux quanta cannot be divided but
have to be exchanged in integer numbers. If two bent field
lines are mutually inclined while getting into contact at some
point in space the projections of one field line onto the other
yields a certain length̀‖ which, depending on the direction
of the field line can be parallel or anti-parallel. This is the
length`‖(θ) in question. It involves the angle of inclination
θ . Merging and annihilation of flux in integer numbers of
quanta becomes possible only when the angle of contact is
θ > 1

2π , implying cosθ < 0. This simple condition yields a
precise boundary for the mutually necessary inclination of
field lines in order to allow for efficient merging.

Carrying out the calculation of the contact length`‖(θ)
confirms that, as required, maximum merging power is ob-
tained at inclination angleθ = π , while merging ceases at
θ =

1
2π . The decrease in power with increasing obliquity is

drastical because of the narrow width of the contacting field
lines. However, though the energy release depends onθ , in
each case the constant amount of 280 in flux will still be
annihilated.

The second point concerned the strong kink in the mag-
netic field which evolved after merging. This kink might lead
to suspect that it would be the main ingredient in the merg-
ing process in close similarity to reconnection. However, on
the sub-microscale the merging takes place in vacuum. This
has been discussed at length leading to the insight that the re-
laxing field lines become mass-loaded and start affecting the

plasma when their radius of curvature exceeds the electron
gyro-radius.

This takes place in the late evolution of the stretching and
relaxation of the field line when many field lines become in-
volved. In this way the sub-microscale physics makes the
transition into classical physics at the macro-physical scales.

We have also shown that the existence of flux quanta im-
plies that the diffusivity in a plasma is quantised. The diffu-
sion process can be understood as the particle jumping from
field line to field line. This fact implies, in addition, an up-
per (quantum) bound on the conductivity in a plasma which
itself is a constant of nature.
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