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Abstract. In this paper we develop the hydromagnetic wave
equations for toroidal Alfv́en waves in a background axi-
symmetric magnetic field. In the case where spatial vari-
ations are directed along the ambient magnetic field direc-
tion, the equations can be cast in a Klein-Gordon form in
which the adiabatic-geometric amplitude factor of the per-
turbations varies as

√
ρL5sin5θ along a magnetic field line

(whereθ is colatitude andL the L-shell number) and the cut-
off frequency, associated with the Klein-Gordon form, dis-
plays an astonishing variation with distance along a field line
(see Eqs.35 and37 of the text), in the case of a dipole mag-
netic field. We compute the eigenvalues and eigenfunctions
for the Earth’s dipole field which are relevant to geomagnetic
pulsations.

Keywords. Magnetospheric physics (MHD waves and in-
stabilities) – Space plasma physics (Experimental and math-
ematical techniques; Waves and instabilities)

1 Introduction

Hydromagnetic theories of geomagnetic pulsations have
been developed byRadoski(1967), McClay (1970), and fur-
ther extended bySouthwood(1974) andChen and Hasegawa
(1974). In the latter two papers the background magnetic
field geometry was simplified (straight field lines) to bring
out more clearly the physics of field line resonance which
involves coupling of a fast mode (decaying across the field
lines) to a shear Alfv́en wave. Tamao(1965) is consid-
ered the earliest work in the “conventional field line reso-
nance theory”, and he carried out the calculation in a dipole
magnetic field. However, it is also interesting to investigate
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the effects of plasma inhomogeneity and background mag-
netic field geometry as developed byAllan and Knox(1979);
Walker(1980), andTaylor and Walker(1984). These works
provide numerical solutions to the “full wave” equations in a
dipole magnetic field geometry.

In this paper, we revisit this problem for the case of
toroidal hydromagnetic waves in an axi-symmetric magnetic
field (e.g., a dipole). In the next section we derive the az-
imuthal components of the perturbed (linearized) momentum
equation and Faraday’s law of induction which provide the
wave equations for the perturbed plasma azimuthal velocity
(uφ) and magnetic field (bφ). These equations are equiv-
alent to the wave equations for the electric field given by
Cummings et al.(1969) and further developed byOrr and
Matthew(1971), andWalker (1980). For spatial variations
aligned with the background field the wave equations foruφ

andbφ can be transformed to the Klein-Gordon (KG) form.
This form elucidates two interesting features of the nature of
the waveforms. The first feature is that in obtaining the KG
form, a certain scaling of the amplitude of the perturbations
is effected which implies an adiabatic-geometric growth fac-
tor of the perturbation which varies as

√
ρL5sin5θ along a

magnetic field line (whereρ is the local plasma density, and
L is the L-shell number). The variation of the wave am-
plitude factor with latitude stems from Poynting’s theorem
which requires the divergence of the wave energy (Poynting)
flux through the cross-section of the flux tube to be balanced
by the rate of workingJ ·E. The other essential feature is
the appearance of a cut-off frequency,ωc, characteristic of
the KG form, below which waves cannot propagate. The
cut-off frequency (slightly different for velocity and mag-
netic field perturbations) displays a sensitive variation with
co-latitude exhibiting a minimum at the equator and attain-
ing a much higher value (about two orders of magnitude) at
the ionospheric foot point of the field line. These properties
are derived in Sect. 3 and illustrated in Figs.1 and2. The
eigenvalues (frequencies) and corresponding eigenfunctions
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Fig. 1. The parameterωc normalized byωc0 (with B0 = 0.31 Gauss,a = 6.4 × 10
8 cm, andne = 6.0 ×

10
4
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−3), and the adiabatic growth/decay factor as a function ofθ for variousL values (p = 3).

9

Fig. 1. The parameterωc normalized byωc0 (with B0 = 0.31
Gauss,a = 6.4×108 cm, andne = 6.0×104cm−3), and the adi-
abatic growth/decay factor as a function ofθ for variousL values
(p = 3).

are calculated and shown in Figs.3 to 7 for the fundamental,
first, second, third harmonic and a higher-order harmonic, re-
spectively. We discuss the relevance of these solutions to the
phenomenon of geomagnetic pulsations.

2 The governing equations

We consider toroidal wave perturbations (bφ,uφ) in the mag-
netic field and fluid velocity in a background axi-symmetric
(that is azimuthal wave number m=0) magnetic fieldB0 =

(Br ,Bθ ,0). The perturbation electric fieldE is given by

E = −u×B = −uφBr θ̂ +uφBθ r̂ (1)

Theφ (toroidal) component of Faraday’s law gives

∂bφ

∂t
=

1

r

∂

∂r

(
rBruφ

)
+

1

r

∂

∂θ

(
uφBθ

)
(2)

=
Bθ

r

∂uφ

∂θ
+Br

∂uφ

∂r
+

uφ

r

(
∂Bθ

∂θ
+

∂

∂r
(rBr)

)
The equation of a background field line is

dr

dθ
=

rBr

Bθ

(3)
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Fig. 2. Same format as Figure 1 for velocity perturbations.
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Fig. 2. Same format as Fig.1 for velocity perturbations.

Therefore, if we restrict our analysis to spatial variations only
along field lines as measured by the co-latitudeθ , Eq. (2), by
using Eq. (3), may be written

∂bφ

∂t
=

2Bθ

r

∂uφ

∂θ
+

uφBθ

r

1

lb
(4)

in which,

1

lb
=

[
1

Bθ

∂Bθ

∂θ
+

1

Bθ

∂

∂r
(rBr)

]
alongB0

=
d

dθ
ln(Bθg(θ)), (5)

where[
1

Bθ

∂

∂r
(rBr)

]
alongB0

=
d

dθ
lng(θ) (6)

The functional formg(θ) is determined by the model of the
background field and will be given subsequently for a dipole.

The φ (toroidal) component of the momentum equation
may similarly be written

ρ
∂uφ

∂t
=

2Bθ

r

∂bφ

∂θ
+

bφBθ

r

1

lu
(7)

1

lu
=

d

dθ
ln(rsinθ) (8)

It is interesting to note that coupled equations of the forms
given by Eqs. (4) and (7) can be cast as a 1-D Dirac equa-
tion in a Hamiltonian form (seeAlicki , 1992, for the case of
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Fig. 3. Solution of the KG equation forL = 4,p = 3: the funda-
mental mode. Bothuφ andbφ are of arbitrary units.

MHD waves in a one-dimensional solar atmosphere). Here
we prefer to develop a Klein-Gordon form for which purpose
we note that the two coupled equations forbφ anduφ (Eqs.4
and7) yield the following wave equations for the perturba-
tions (V 2

= (2Bθ )
2/ρ)

∂2bφ

∂t2
=

V 2

r2

{
∂2bφ

∂θ2
−

1

Lb

∂bφ

∂θ
+

bφ

Mb

}
(9)

∂2uφ

∂t2
=

V 2

r2

{
∂2uφ

∂θ2
−

1

Lu

∂uφ

∂θ
+

uφ

Mu

}
(10)

in which (all evaluated alongB0)

−
1

Lb

=
d

dθ
ln

[
Bθ

ρr
(Bθg(θ)rsinθ)1/2

]
(11)

1

Mb

=
rρ

2Bθ

d

dθ

(
Bθ

ρr

1

lu

)
+

1

4

1

lb

1

lu
(12)

−
1

Lu

=
d

dθ
ln

[
Bθ

r
(Bθg(θ)rsinθ)1/2

]
(13)

1

Mu

=
r

2Bθ

d

dθ

(
Bθ

r

1

lb

)
+

1

4

1

lb

1
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(14)
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Fig. 4. Solution of the KG equation forL = 4, p = 3: the 1st harmonic.
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Fig. 4. Solution of the KG equation forL = 4,p = 3: the 1st har-
monic.
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Fig. 5. Solution of the KG equation forL = 4, p = 3: 2nd harmonic.
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Fig. 5. Solution of the KG equation forL = 4,p = 3: 2nd harmonic.
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Fig. 6. Solution of the KG equation forL = 4, p = 3: 3rd harmonic.
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Fig. 6. Solution of the KG equation forL = 4,p = 3: 3rd harmonic.

3 The Klein-Gordon form

3.1 General case

Equations of the form (i.e., Eqs.9 and10)

∂28

∂t2
=

V 2

r2

[
∂28

∂θ2
−

1

L
∂8

∂θ
+

1

M
8

]
(15)

where

1

L
= −

d

dθ
ln(F (θ)) (16)

can be transformed into the Klein-Gordon form through the
substitution

8 = φexp
∫

dθ

2L
(17)

to yield

∂2φ

∂t2
+ω2

cφ =
V 2

r2

∂2φ

∂θ2
(18)

in which

ω2
c =

V 2

r2

[
1

2L2
(1+L′)−

1

M

]
(19)

and the amplitude factor in Eq. (17) becomes

exp
∫

dθ

2L
=

1

F 1/2(θ)
(20)
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Fig. 7. Solution of the KG equation forL = 4, p = 3: higher-order harmonic.
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Fig. 7. Solution of the KG equation forL = 4,p = 3: higher-order
harmonic.

This factor arises from the adiabatic-geometric growth or
decay corresponding to conservation of wave energy flux
through a flux tube as given by Poynting’s theorem (but see
below). The quantityωc, given by Eq. (19), in Eq. (18) is
a cut-off frequency as is readily seen by taking a harmonic
time variation∝ exp(iωt) for then Eq. (18) becomes

d2φ

r2dθ2
= −

(ω2
−ω2

c )

V 2
φ ≡ −k2φ (21)

An equation of this form possesses propagating-type solu-
tions, providedω > ωc and evanescent solutions forω < ωc.
If a slowly varying background is assumed, JWKB solutions
yield good approximations to the propagating and evanescent
behavior. The imposition of boundary conditions (e.g., at the
end points of one field line) yield an eigenvalue problem for
k (and henceω).

3.2 Dipole field

We now evaluate the adiabatic factorF−
1
2 (θ) and the cut-off

frequencyωc for the case of a background dipole magnetic
field, given by

B0/B0 = 2
(a

r

)3
cosθ r̂ +

(a

r

)3
sinθ θ̂ (22)
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wherea is the radius of the Earth, andB0 is the equatorial
value at the surface of the Earth. The equation of a field line
becomes

dr

dθ
=

rBr

Bθ

= 2rcotθ (23)

which yields

r = Lasin2θ (24)

whereLa is the radius at which a given field line cuts the
equator (L-shell). Then from Eqs. (5), (6), and (8), we find
that

g(θ) = 1/sin4θ (25)
1

lb
=

d

dθ
ln

(
1

sin9θ

)
(26)

1

lu
=

d

dθ
ln(sin3θ) (27)

Substituting these factors into Eqs. (11–14) gives

−
1

Lb

=
d

dθ
ln

(
1

ρsin10θ

)
= −10cotθ −

1

ρ

dρ

dθ
(28)

−
1

Lu

=
d

dθ
ln

(
1

sin10θ

)
= −10cotθ (29)

1

Mu

=
9

2sin2θ

(
11

2
cos2θ +1

)
(30)

1

Mb

= −
1

2sin2θ

(
69

2
cos2θ +3+3cosθ sinθ

d lnρ

dθ

)
(31)

The adiabatic (growth-decay) amplitude factor (from Eqs.16
and11) becomes

1

F 1/2(θ)
=

√√√√ρL5a1/2

B
3/2
0

sin5θ (32)

The corresponding cut-off frequency from Eq. (19) becomes

ω2
c =

2B2
0

ρL8a2sin14θ

[(
10cosθ

sinθ
+

d lnρ

dθ

)2

+
26+69cos2θ

2sin2θ

+
3cosθ

sinθ

d lnρ

dθ
−

d2lnρ

dθ2

]
(33)

If one assumes that the plasma densityρ varies on a field
line according to an inverse radial power law∝ r−p then

ρ = ρe(a/r)p = ρeL
−psin−2pθ, (34)

whereρe is the plasma density at the Earth’s ionosphere (L =

1).
Subsequently, we have used Eqs. (28) and (31) for L and

M to obtain the cut-off frequency in the form

ω2
c=

ω2
c0

2L8−psin(16−2p)θ

[
(269−92p+8p2)cos2θ+26−4p

]
,

(35)

with ω2
c0 = 2(B2

0/ρe)/a
2. This equation displays an aston-

ishing variation ofω2
c with sinθ along a given field line (L)

with θ going fromπ/2 at the equator to sin−1(
√

1/L) at the
Earth’s surface (ionosphere).

Relation (35) shows the considerable variation ofω2
c along

a field line from its equatorial value to a much higher value
in the ionosphere (L > 1). This variation ofω2

c , as a function
of θ (for variousL shell values), along with the adiabatic
growth factor, is shown in Fig.1.

For wave frequenciesω in excess of (less than) the cut-off
frequency the time harmonic Klein-Gordon Eq. (21) yields
propagating (evanescent) modes. Thus for a given frequency
ω (eigenvalue) less than its ionosphere value we expect prop-
agating modes equatorward of whereω = ωc, and evanescent
in ω <ωc towards the ionosphere. The adiabatic-growth am-
plitude factor also varies considerably, for example, by a fac-
tor of about 4 (30 in Fig.2) in case ofL = 4.

The corresponding cut-off frequency for the velocity per-
turbation is

ω2
c =

B2
0

ρL8a2sin16θ

(
101cos2θ +2

)
(36)

For a varying density profile given by Eq. (34), the above
equation yields

ω2
c =

ω2
c0

2L8−psin(16−2p)θ

(
101cos2θ +2

)
(37)

Note that the cut-off frequencies for the velocity (Eq.37) and
magnetic (Eq.35) perturbations are not precisely the same
since the underlying wave Eqs. (9) and (10) are not identical.
It is a common feature of wave propagation in inhomoge-
neous media that different perturbations satisfy slightly dif-
ferent wave equations. A similar plot with the same format as
Fig.1 for the corresponding toroidal velocity perturbations is
shown in Fig.2. In this case, the corresponding growth-decay
factor is

1

F 1/2(θ)
=

√√√√L5a1/2

B
3/2
0

sin5θ (38)

The adiabatic-geometric factors are closely related to the
conservation of wave energy in an inhomogeneous plasma
embedded in a dipole magnetic field, where the rate of work-
ing of J ·E, namely,

µ0J ·E = Bθuφ

1

rsinθ

∂

∂θ
(sinθbφ)+Bruφ

1

r

∂

∂r
(rbφ) (39)

is balanced by the divergence of the Poynting flux(E ×B),
according to (after time averaging)

〈J ·E〉 =−∇ ·〈E×B〉/µ0 (40)
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4 Numerical results and discussion

The Eqs. (9) and (10) were solved, in turn, in the KG form
of Eq. (21), subject to boundary conditions. One physical
boundary condition for an ionosphere of infinite conductiv-
ity is such thatE ≡ 0 at both ends of a field line (L-shell).
This indicates thatuφ ≡ 0 at both ends according to Eq. (1).
We solve Eq. (21) for uφ first, subject to these boundary con-
ditions, with an additional one,∂uφ/∂θ = d, at one end of
the field line, necessary for determining the unknown param-
eterω. Note that this latter boundary condition will yield a
physical unit foruφ given the value ofd from measurements.
In the present study, such a value is given arbitrarily, so that
the quantities,uφ andbφ remain of arbitrary units. Once the
KG equation foruφ is solved with a determined eigenvalue
ω, we solve the KG equation forbφ with the sameω, subject
to boundary conditionsbφ ≡ 0 at both ends of a field line. Al-
ternatively, the KG equation forbφ can be solved first subject
to boundary conditions if in practice those are more readily
available. We will investigate other solutions subject to dif-
ferent boundary conditions provided by actual observations
in future work.

A set of solutions corresponding to different eigenval-
ues,ω (normalized byωc0), and corresponding eigenfunc-
tions, were obtained by selecting different initial guesses
of solution. They are shown in Figs.3–7 for the funda-
mental, first, second, third harmonic, and a higher-order
harmonic, respectively. These eigen-modes with distinct
and discrete eigen-frequencies are representative of resonant
plasma waves along magetospheric field lines. They seem
to correspond to ultra-low-frequency waves, e.g., Pc and Pi
pulsations observed in space and on ground, with frequencies
ranging from mHz to a few Hz (Kivelson and Russell, 1995).
In reality, there probably should be a mixture of such wave
modes in space and time.
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