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Inertial-range spectrum of whistler turbulence
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Abstract. We develop a theoretical model of an inertial-
range energy spectrum for homogeneous whistler turbulence.
The theory is a generalization of the Iroshnikov-Kraichnan
concept of the inertial-range magnetohydrodynamic turbu-
lence. In the model the dispersion relation is used to derive
scaling laws for whistler waves at highly oblique propagation
with respect to the mean magnetic field. The model predicts
an energy spectrum for such whistler waves with a spectral
index−2.5 in the perpendicular component of the wave vec-
tor and thus provides an interpretation about recent discover-
ies of the second inertial-range of magnetic energy spectra at
high frequencies in the solar wind.

Keywords. Interplanetary physics (Plasma waves and tur-
bulence) – Space plasma physics (Turbulence; Wave-wave
interactions)

1 Introduction

Whistler turbulence is widely observed not only in the
Earth’s magnetosphere (Santolik and Gurnett, 2002) but also
in planetary plasma environments such as Venus (Scarf et al.,
1980), Jupiter (Gurnett et al., 1979), Neptune (Gurnett et al.,
1990) and in the solar wind (Lengyel-Frey et al., 1996). At
relatively low frequencies, inertial-range turbulence in the
solar wind typically exhibits magnetic field fluctuation spec-
tra which scale as frequency to the−5/3 power, but beyond
a spectral breakpoint near 0.2–0.5 Hz such spectra become
steeper at higher frequencies (Leamon et al., 1998; Sahraoui
et al., 2009). On small scales (scales shorter than the proton
gyro-radius or inertial length) the one-fluid approximation of
magnetohydrodynamics (MHD) is no longer valid and the
behavior of the plasma and electromagnetic fields should be
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described by an electron-magnetohydrodynamics (EMHD)
model, or preferably via a kinetic treatment. In this high-
frequency, short-wavelength regime, two hypotheses have
been put forward to describe the modes which may consti-
tute this turbulence. One school of thought advocates ki-
netic Alfvén waves at frequencies below the proton cyclotron
frequency as the fundamental mode of this regime (Leamon
et al., 1998; Bale et al., 2005; Sahraoui et al., 2009). An-
other point of view is that whistler fluctuations at frequencies
above the proton cyclotron frequency are the more important
constituent of this regime (Stawicki et al., 2001). Taking the
latter point of view,Saito et al.(2008) presented particle-in-
cell (PIC) simulations showing whistler turbulence tends to
transport fluctuation energy toward the perpendicular direc-
tion to the mean magnetic field.

Here we develop a theoretical model of whistler turbu-
lence which is a generalization of scaling laws for magne-
tohydrodynamic turbulence proposed byIroshnikov (1964)
and Kraichnan(1965). While the theory of MHD turbu-
lence is based on interactions of counter-propagating Alfvén
waves, our model deals with interactions of obliquely prop-
agating whistler waves, considering separately the cases of
wave-wave interactions due to propagation components both
quasi-parallel and quasi-perpendicular to the mean magnetic
field. Assumptions we use are: (1) there is no wave damping;
(2) waves follow the cold plasma whistler dispersion relation;
(3) interaction is weak or incoherent such that many wave-
wave collisions are needed to transfer energy from one scale
to another. Furthermore, we follow recent solar wind obser-
vations (Alexandrova et al., 2009) and PIC simulation stud-
ies (Saito et al., 2008) and EMHD computations (Biskamp
et al., 1996; Dastgeer et al., 2000; Cho and Lazarian, 2004,
2009) and assume (4) turbulent whistler fluctuations propa-
gate predominantly in directions quasi-perpendicular to the
background magnetic field. Our theory predicts a fluctuat-
ing magnetic energy spectrum which scales ask

−5/2
⊥

, con-
sistent with the slopes of high frequency spectra observed in
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the solar wind (Alexandrova et al., 2009; Kiyani et al., 2009;
Sahraoui et al., 2009).

A different model of whistler turbulence has been devel-
oped byKrishan and Mahajan(2004) using Hall-MHD the-
ory. This theory predicts that the magnetic energy spectrum
at wavelengths shorter than the breakpoint of the MHD iner-
tial range should scale ask−11/3 or k−13/3, much steeper than
our prediction or the recent solar wind observations cited
above. The reason for this discrepancy may lie in the dif-
ference between Hall-MHD, which applies to wavelengths
of order ion inertial or ion gyroradius scales, and our theory
which applies to relatively shorter wavelengths where dimen-
sions scale with the electron, rather than the ion, mass.

2 Theory

As in the Iroshnikov-Kraichnan theory for MHD turbulence,
there are two fundamental time scales in whistler turbulence.
One is the eddy turnover time around the mean magnetic field

τed=
l

v
, (1)

and the other is the whistler-interaction time

τw =
l

vg
, (2)

where the lengthl and the group speedvg are dependent on
the propagation directions (denoted by the subscripts⊥ and
‖). Whistler waves are dispersive and follow atkc/ωe �

1 the cold dispersion relation, which can approximately be
written as

ω

�e
=

k‖kc2

ω2
e

(3)

where�e, ωe andc denote the cyclotron frequency and the
plasma frequency for electrons, and the speed of light, re-

spectively. We use the expressionk = |k| =

√
k2
‖
+k2

⊥
. For

waves propagating perpendicular and parallel to the mean
magnetic field the group velocity is

(
vg⊥

vg‖

)
=

 �ec
2

ω2
e

k‖k⊥

k

�ec
2

ω2
e

(
k+

k2
‖

k

). (4)

We estimate the energy transfer time (or the cascade time) as

τcas= Mτw, (5)

which means that we need to estimate the number of wave-
wave collisions,M, to transfer energy from one scale to an-
other. Consider a fraction of energy transported by one wave
packet interaction

1E

E
=

1v2

v2
∼

1v

v
� 1, (6)

whereE is the total amount of energy on one scale,1E is
the amount of energy that is transported to the other scale
by eddy distortion and is associated with the velocity change
1v. The whistler interaction time is much smaller than that
of eddy distortion, and therefore1E/E and1v/v are very
small.

If the wave interaction occurs coherently (one after an-
other immediately) then we needN wave collisions to com-
plete the energy transport to the next scale with

N =
τed

τw
. (7)

In this case the energy transfer time restores the eddy
turnover timeτcas= τed (substitutingM by N in Eq. 5) and
turbulence is hydrodynamic-like (Kolmogorov scaling) in the
sense that the energy transport is predominantly made by
eddy distortion.

If the whistler wave interaction occurs incoherently, that is
the interaction occurs only occasionally or is ineffective such
that a large number of collisions are needed for the wave in-
teraction to complete the energy transport from scale to scale,
we estimate the transfer time by substitutingM byN2 (which
is one of the assumptions in the Iroshnikov-Kraichnan model
to use the smallest number for wave-wave interactions for a
fast energy cascade process) and obtain

τcas= N2τw. (8)

In this caseτcas is expressed as a combination ofτed andτw
(Cho and Lazarian, 2004),

τcas=
τ2

ed

τw
. (9)

We use the incoherent case in the following discussion.
The electron velocityve is estimated by the expression of

electric current in EMHD,

eneve=
1

µ0
∇ ×B. (10)

On the assumption thatve' δve (no bulk velocity),

|δve| =
�ec

2

ω2
e

∣∣∣∣δBB0

∣∣∣∣k. (11)

Then the eddy turnover time is estimated for EMHD (assum-
ing ions are in rest due to large inertia),

τed=
l

|ve|
=

ω2
e

�ec2

∣∣∣∣B0

δB

∣∣∣∣ 1

k2
, (12)

Now define the energy transfer rate usingτcasas

ε =
1

τcas

(
|δve|

2
+

|δB|
2

µ0ρe

)
(13)

'
|δB|

2

τcasµ0ρe
. (14)
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Note that the contribution of the kinetic energy is dropped as
it is small atk2c2/ω2

e � 1 (Eq.11). While the energy trans-
fer time τcas represents the time scale on which the energy
cascade from one scale to another is completed byN2 wave
collisions and has the units of time, the energy transfer rateε

represents the amount of transferred energy withinτcasand is
given in units of energy (or squared velocity) divided by time.
Both τcas andε are dependent on the picture of wave-wave
interaction, in particular in which component of the group
velocity the interaction occurs. In the following discussion
we assume constancy of the energy transfer rate,ε = const.,
and quasi-perpendicular propagation,k‖ � k⊥. But we con-
sider two distinct cases: the quasi-perpendicular part of the
interaction, and the quasi-parallel part of the interaction.

2.1 Quasi-perpendicular interaction

For waves interacting primarily through thek⊥ component
of the wave vector, the whistler interaction time is

τw⊥ =
l⊥

vg⊥

=
ω2

e

�ec2

k

k‖k
2
⊥

, (15)

which yields according to Eq. (9) the energy transfer time

τcas⊥ =
ω2

e

�ec2

∣∣∣∣B0

δB

∣∣∣∣2 k‖k
2
⊥

k5
(16)

and the energy transfer rate

ε⊥ =
�ec

2

ω2
e

|δB|
4

B2
0µ0ρe

k5

k‖k
2
⊥

. (17)

The assumption thatε⊥ = const. allows one to express the
magnetic field fluctuation as

|δB|
4
= ε⊥

ω2
eB

2
0µ0ρe

�ec2

k‖k
2
⊥

k5
. (18)

For quasi-perpendicular propagation we havek ' k⊥. Using
the relation1k⊥ ∝ k⊥, we obtain the energy spectrum as

E(k⊥) ≡
1

1k⊥

|δB|
2

µ0ρe
(19)

' (ε⊥ωe�e)
1/2

〈k‖〉
1/2k

−5/2
⊥

. (20)

The spectral slope is−2.5 in the perpendicular direction
which is steeper than MHD turbulence spectrum and close to
the index obtained in the high-frequency spectra of the solar
wind (Alexandrova et al., 2009; Kiyani et al., 2009; Sahraoui
et al., 2009). 〈k‖〉 denotes the average parallel wave number
representing the half-value-width of energy spectrum in the
k‖ direction. The positive power ofk‖ in Eq. (20) which sug-
gests an increasing energy with increasing parallel wave vec-
tor is not of concern. This equation is valid only atk‖ � k⊥

and may not be extrapolated to the regimek‖ ∼ k⊥. It is inter-
esting to note that Eq. (20) reproduces the energy spectrum
of EMHD turbulence,E(k⊥) ∝ k

−7/3
⊥

when the condition of

whistler critical balance (Cho and Lazarian, 2004), k‖ ∼ k
1/3
⊥

,
is used. In this sense our scaling law may be regarded as a
generalization of the EMHD turbulence model.

2.2 Quasi-parallel interaction

If whistler waves at quasi-perpendicular propagation are nev-
ertheless interacting primarily through wave vector compo-
nents quasi-parallel to the background magnetic field, the
time scale for such interactions is determined by the paral-
lel group velocity

τw‖ =
l‖

vg‖

=
ω2

e

�ec2

1

k‖k
, (21)

which reduces toτw⊥ under approximationk ∼ k⊥ � k‖,
therefore the scaling laws and the spectrum become the same
as that for parallel wave interaction. In more detail, the cas-
cade time is given as

τcas‖ =
ω2

e

�ec2

∣∣∣∣B0

δB

∣∣∣∣2 k‖

k3
(22)

and the energy transfer rate is

ε‖ =
�ec

2

ω2
e

|δB|
4

B2
0µ0ρe

k3

k‖

. (23)

Again, the assumption thatε‖ = (const.) gives the expression
for the magnetic field fluctuation as

|δB|
4
= ε‖

ω2
eB

2
0µ0ρe

�ec2

k‖

k3
. (24)

For highly obliquely propagating waves,k ∼ k⊥, this scaling
has the same form as that for the quasi-perpendicular wave
interaction, and we obtain the energy spectrum in the perpen-
dicular wave number domain as

E(k⊥) '
(
ε‖ωe�e

)1/2
〈k‖〉

1/2k
−5/2
⊥

, (25)

which has the same form as Eq. (20) except for the differ-
ence betweenε⊥ and ε‖. It is interesting that the both in-
teraction types (wave-wave scattering in the parallel and per-
pendular fluctuation components) yield the same slope in the
spectrum.

3 Conclusions

In this paper we have generalized the Iroshnikov-Kraichnan
concept of magnetohydrodynamic turbulence to apply it
to homogeneous whistler turbulence at propagation highly
oblique to the mean magnetic field. The model predicts an
energy spectrum for such turbulence with a spectral index of
−2.5 in the perpendicular component of the wave vector and
is consistent with measurements of high-frequency spectral
indices in the solar wind. Although our derivation is sugges-
tive, there are many further issues which must be addressed
with respect to whistler turbulence.
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1. We have assumed that waves are propagating at highly
oblique direction, since our work is motivated by the re-
sults obtained in the solar wind observations and sim-
ulations. The cause of anisotropy of large propaga-
tion angles is an interesting and very important ques-
tion. Perhaps it is determined by wave interaction pro-
cess such as three or four wave couplings, or it is deter-
mined by anisotropic decay of wave amplitudes due to
cyclotron or Landau damping.

2. The inclusion of wave damping would therefore be an
important addition to this model; the linear theory dissi-
pation calculations ofGary et al.(2009) for fluctuations
in electron-positron plasmas may be instructive in this
regard.

3. Polarization of whistler waves, in particular the ratio of
the parallel and perpendicular components of the fluctu-
ating magnetic field, could also be incorporated in our
model.

4. The particle-in-cell simulations ofSaito et al.(2008)
suggest that the spectral index of two-dimensional
whistler turbulence at quasi-perpendicular propagation
is larger (steeper spectra) than the value of−2.5 de-
rived here. Further PIC simulations of whistler turbu-
lence would be useful to help determine whether such
steep spectra are due to Landau damping or other ki-
netic effects.

5. Group velocity of whistler waves changes significantly
in dependence upon the propagation angle, with the
wave being purely electromagnetic for parallel and in-
creasingly electrostatic for oblique propagation. Effects
of different propagation angles (from quasi-parallel, to
oblique, and to quasi-perpendicular directions from the
mean magnetic field) should be investigated systemati-
cally.

6. The Hall-MHD theory ofKrishan and Mahajan(2004)
predicts that whistler magnetic spectra should scale as
k−11/3 and then ask−13/3 at very short wavelengths.
This appears to be much steeper than recent solar wind
observations, so it is imoprtant to distinguish between
Hall-MHD and whistler turbulence in simulations and
observations.
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