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Abstract. The excitation of Fast Magnetosonic (FMS) suggested experiment, a power supply drives a time modu-
waves by a cylindrical array of parallel tethers carrying time- lated current along the tethers acting as an antenna system,
modulated current is discussed. The tethers would fly verwhich radiates a single circularly-polarized whistler wave. A
tical in the equatorial plane, which is perpendicular to the parametric instability, due to pumping by the time-modulated
geomagnetic field when its tilt is ignored, and would be sta-background made of geomagnetic field and radiated wave,
bilized by the gravity gradient. The tether array would radi- gives rise to two unstable coupled whistler perturbations,
ate a single FMS wave. In the time-dependent backgroundeading to the onset of a nonlinear wavefront. With both in-
made of geomagnetic field plus radiated wave, plasma FMSensity and frequency of the radiated wave controlled, this
perturbations are excited in the array vicinity through a para-boundary-free experiment would allow studying nonlinear
metric instability. The growth rate is estimated by truncating wave interactions and turbulence in real space plasmas.
the evolution equation for FMS perturbations to the two az- A similar parametric instability in the near field of a MHD
imuthal modes of lowest order. Design parameters such agave radiated by an appropriate array of tethers will be here
tether length and number, required power and mass are disised to generate a wavefront with frequency below the ion
cussed for Low Earth Orbit conditions. The array-attachedcyclotron frequencyi. A cylindrical array of parallel teth-
wave structure would have the radiated wave controlled byers with its axis normal to the ambient magnetic figlglis
the intensity and modulation frequency of the currents, mak-shown to radiate a single FMS in the cold plasma approxi-
ing an active experiment on non-linear low frequency wavesmation. Although both Alfén and FMS MHD modes could
possible in real space plasma conditions. be parametrically coupled to the radiated wave, we will here
consider the growth rate for just FMS excitation. For typical
LEO conditions o~ 0.3 G, plasma densityo ~ 10° cm2,
Alfv én velocityVa ~ 163 km s 1 and O" ions) the frequency
and wavelength of the radiated wave would be befewve
1 Introduction 180rad s! and above. = 27 Va/ Qi ~ 5.7 km, respectively.

This first analysis will focus on the parametric instability
Nonlinear magnetohydrodynamic (MHD) wavefronts at ce- basics, although other relevant issues such as system mass
lestial bodies moving through magnetized plasmas are comand power efficiency will be considered too. The equipment
mon in space; the “Alfén wings” observed at Jupiter’s satel- required for wave detection could follow the lines of satel-
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lite lo (Acuna and Ness, 1981) or the cometary waves aflite ACTIVNY (1990), which is an example of a scientific
Giacobini-Zinner and Halley (Brinca, 1997) are just two ex- experiment on low frequency in-situ emission (Molchanov
amples. The generation of an artificial wavefront in the et al., 1997). Similarly to the ACTIVNY case, subsatellites
whistler frequency range by using a planar array of electro-for wave detection would be necessary. We note however
dynamic tethers in Low Earth Orbit (LEO) was proposed in that ACTIVNY used a pulsed transmission mode whereas in
recent work (Sanchez-Arriaga and Sanimgr2010). Inthe  our suggested experiment power supply would be continu-
ously on so as to generate a wavefront stationary in the tether
frame.
Correspondence tdG. Sanchez-Arriaga |n-sjtu wave emission by orbiting tethers was considered
BY (gonzalo.sanchez@upm.es) for steady currents (Drell et al., 1965; Barnett and Olbert,
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1986; Estes, 1988; Sanmartin and Martinez-Sanchez, 1995n Sect. 3 where we also show that no Alfvwave is radi-
Sanmartin and Estes, 1997), and recently for modulated curated. The Mathieu-like equation that governs the dynamic of
rents, in a Radiation Belt Remediation scheme (Inan et al.just FMS perturbations is derived in Sect. 4 and the growth
2003). In a RBR mission, as in our experiment, requiredis determined in Sect. 5. Characteristic values of relevant pa-
lengths make use of rigid antennas impossible, (flexible)rameters, as well as a trade-off of growth rate versus system
tethers becoming the only feasible solution. Further, a tethemass and radiation efficiency, are discussed in Sect. 6. Con-
is typically arranged to exchange current with the ambientclusions are finally given in Sect. 7.

plasma through end contactors, allowing the extraordinary

simplification of exhibiting current uniform throughout its . .

length, as opposed to a regular antenna, where current muét General considerations

vanish at its ends. Tether array systems have been also dis- — ' .

cussed for electric solar sailing (Janhunen, 2004). An up-a'1 Cylindrical configuration of tethers

dated overview about_science applications of electrodynamigrpq planar array of tethers previously proposed to excite
tethers can be found in work by Sanmartin (2009). whistler waves is not an adequate configuration for the MHD
Our analysis is focused on a region close to the tetheregequency domain in two respects. Whistler wavelengths in
structure, where the radiated wave gives rise 0 a paramef£Q are of order of hundreds of meters while in the case of
ric instability usually known as magnetoacoustic pumping \Hp waves they would be of order of kilometres to tens of
(Vahala and Montgomery, 1971). The general formalism foryiometres. This makes the planar array configuration, which
a uniform pumped wave was first introduced by Nishikawa oy ired a large number of tethers, unrealistically heavy here.
(1968). The parametric instability, has been predicted bygrther, and more important, the selected tether-array geom-

Vahala and Montgomery (1971), before being observed ingyry should be such as to radiate a single MHD mode, for a

the laboratory (Lehane and Paoloni, 1972). The theoreti-simmer mathematical analysis.

cal model was extended to include Hall and resistivity terms  \ve consider an array af tethers carrying a uniform cur-
(Cramer, 1975) _and boundary effects (Cramer and Sy’_1979)rent 11 on the surface of a cylinder of radis< A1 (wave-
Dusty and multicomponent plasmas have been studied 0@t of radiated wave), with its axis normal to the ambient
(Hertzb_erg et.al., 2003, 2004). ) ) . magnetic fieldBg; for N=10, say, the magnetic field from
The intensity of the pumped waves in the experiment iSyhe active array is already nearly azimuthal close to it, with
both distance and azimuthal-angle dependent. The problem j, rig. 1 the azimuth. Further, our linearized analysis will
thus belongs to the theory of parametric instabilities in inho- require the array-generated magnetic field at its surface to be

mogeneous plasmas (Perkins and Flick, 1971; Rosenbluthy, o, |ess tharB, (a condition later shown to exclude the
1972; Liu et al., 1973; Afeyan and Williams, 1997). Instead -5¢6 of 2 single tether)

of using the formal WKB method or a variational approach,
we roughly estimate the growth rate by truncating the equa—ﬂoNIl < Bo 1)
tion for the perturbations to the two lowest azimuthal modes. 27 R
The dependence on distanceo the array is handled first Figure 1 shows the cylindrical array. The ambient magnetic
by looking for an approximate resonance-like condition be-field is taken perpendicular to the tethers and a set of cylin-
tween radial wave-vectors of the modes and then by radialirical coordinatesr( 6) is used in the following sections.
averaging. These conditions can be attained in equatorial orbit, with the

A few waves, those with largest growth rate in the para-geomagnetic field horizontal if ignoring its tilt, and the teth-
metric instability analysis, may dominate the dynamics dur-ers flying vertical in the orbital plane. The gravity gradient
ing the early nonlinear stage. Truncation models of themakes the array attitude stable (Arnold, 1987).
Derivative nonlinear Sckidinger equation (DNLS) (Rogis-
ter, 1971) and the triple- degenerate DNLS (TDNLS) (Hada,2.2 Mathematical model
1993) have been proposed as a starting point to investigate
a Hall-MHD nonlinear wave-front (Sanmartin et al., 2004; The present analysis assumes several simplifying hypothe-
Sanchez-Arriaga et al., 2007, 2009a, b). Since our experiSis. First, the spatial dependence of the wave fields is kept
ment would happen in a non-uniform plasma and the propiwo-dimensional by assuming a tether lengtimuch larger
agation is not quasi-parallel to the ambient magnetic field than the wavelength; of the radiated wave, and a current
alternatives to the DNLS and the TDNLS equations must bedistribution uniform along the tethers
looked for.

The paper is organized as follows. In Sect. 2 the cylindri-l = fcosihtu; @
cal configuration of tethers is justified and the mathematicalUniform current distributions were considered in the past
model is presented. The perturbation scheme involves wavefr radiation impedance considerations (Hastings and Wang,
of two disparate magnitude: the radiated wave and the perturi987; Hastings et al., 1988), and require end plasma contac-
bations. The first one, a cylindrical FMS wave, is calculatedtors with short enough time response.
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@, _ ~® v=cvi+0v! (7b)
/,/ \\\ B=u,+cB1+ B! (7c)

@ R ® wheree is a small parameter that helps keeping track of terms

/ \ of equal order. In Egs. (7a—c), magnitudes with subscript 1

// \ correspond to the radiated wave while superscript 1 repre-

Yy sents any plasma perturbation. Variables with superscript 1

Ny
>

® 0 @ parametric instability.

quadratic ing, will be ignored because they represent pure
/ forcing terms, which can be verified not to contribute to a

\
CD @ are much smaller than products ©fand subscript 1 vari-
\ >\ | ables. Terms quadratic, say, in the driven fields, in effect
/

AN e
~ @ | - Bo 3 Radiated wave
The radiated wave is calculated by substituting expansion (7)
in Egs. (3-5) and collecting terms of order
X 9
\ %—I—VAVﬂ)l:O (8)
Fig. 1. Cylindrical configuration of tethers will be called az- v
imuthal angle. a_tl — Va(V x B1) X tty (9)
Secondly, the modulation frequen€s will be well be- 0B1 1 _o

low the ion cyclotron frequencf; <« €; and the plasma 3; — EV By = VAV x (v1xux)

will be assumed cold. Hence, Hall term and coupling be- vy

tween Alfven and Fastmagnetosonic (FMS) modes will be =Va [W - (V'vl)ux:| (10)

neglected. Finally the plasma is assumed at rest in the tether

frame because orbital and Afim velocitiesVy and Va sat-  The continuity equation is decoupled from Egs. (9) and (10);

isfy Vo <« Va, the relative velocity thus introducing a small also, Eq. (9) shows,; =0. Linear system (8-10) contains

frequency shift. both Alfvén and FMS modes, which will be now studied sep-
We will use the cold MHD plasma model equations, arately.
ap The FMS mode can be analyzed combining the divergence
§+VAV'('O”)=0 (3) of Eq. (9)
0

90 —(V-v1)=—VaV?By1 (11)
,0|:—+VA(v-V)v:|=VA(VxB)xB (4 9

at with theu,, component of Eq. (10), giving the characteristic
9B equation
2 2B VAV x (vx B) (5)
at o 2 ) n )
where ) is the plasma resistivity, and ambient values for | 9’ roVi ot

density pp, magnetic fieldBy and Alfvén velocity Va were
used to construct dimensionless variable® andv. Equa-
tions (3-5) will be solved using the Ampere law (Eq. 1) for

the cylinder array as boundary condition, V2 NG 2 4 1
[1—1——’" g (4 1d F=0 (1)
(6)

NI v2)\ar2 " rar r2
Bor=R) =u,+ L2t cosruy HOYA
27 RBy

Substituting a solution of the form,1 = f (r)sinde %1 in
Eq. (12) yields the first order Bessel equation

the solutions being the Bessel functiohsandY; with argu-
Following Vahala and Montgomery (1971), the dependentmenté = k1r and wavevector
variables are written as made of three contributions of dis- .
i n2
1+ — (14)
2 noVy

parate magnitude, in a double independent linearization  ; — i&; ~ i&

) Va 1_ infy Va
p=1+ep1+p (7a) 1oV2
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where an/y,oV/f « 1 was assumed. As we will see, the 4 Alfvén and Fastmagnetosonic perturbations

radiation condition now implies that the actual solution for

f must be proportional to the Hankel function of the first We next derive evolution equations for FMS and Alfv
kind, Hl(l) — J1+iY1. Equations (8-10) nextshow = B,;, ~ mede perturbations. Expansion (7) is again substituted in
v1 =v,11, and By = Byuy; we absorb any constant factor EJS- (3-5) and terms proportional to the excited (super-

into parametee. The full radiated wave solution is finally SCript 1) waves and the product of excited waves and compo-
nents of the radiated (driven) wave with subscript 1 are col-

gvenas ' lected. For simplicity, we now neglect the resistivity, which
p1=—Re [iHl(l) (%‘)Sih@e_'glt] (15) would just modify the growth rate slightly. The set of ex-
panded equations then reads
v1=—Re (Ho(l)(é)e_ml’)uy (16) apt
W+VAV~v1=—8VAV~(,olvl—i—,olvl) (24)
Bi=Re [i HY (g)e—iﬂﬂ]u,, 17)

1
with ¢ in expansion (7) determined by using boundary con-ai —Vajlxuy = s{VA [11 x B+ j1x B1— (v1-V)o!

dition (6) with £r = k1R < 1, HY ~ —2i /7Ky R, yielding %’

S 1
both ¢ and full solution independent ok for k1R small 1 v 1001
— (v V)1 |—pr— —pt—=1(2
enough, (v )vl] P ot p at (25)
moN I1ky

~ 18 dB!
¢ 4Bg (18) W—VAVx<v1xux)=£VAVx[v1xBl+v1xBl](26)

Foré > 1, the Hankel functions become The left-hand sides Eqs. (24—26) contain the same operators

@ 2 (-1 —1) of Egs. (8-10), which would yield the dispersion relation of
Hy" ()~ [ — e 274 (19)  the Alfven and FMS modes, while the right-hand sides rep-

resent the parametric coupling between excited waves and
requiring use of the plus sign in Eq. (14). As advanced the raradiated (background) fields.

diation condition can be verified on the time-averaged Poynt-  Equation (25) shows the velocity componedtto be of
ing vector far away from the tether, reading in dimensional order o (¢). Next, from Eq. (26) we obtain

form dBL 9 9B
2 2 2 2 x 1 1 1, 19bx1
£2VA B £2VA B 2% L yayla—ey, —(v B )—}—B +v,—i| 27

A0 <(WiXuy)xBy>= Ak O, (20) ot 4 A[By Y15 x1Y 74, dy @7)
Mo T [Lok1r

. . . here we introduced the velocity divergence (FMS) variable

To end the discussion about the FMS wave, we estimate th(\év wel u v 'ty diverg ( ) vari
total power radiated by the tether array by integrating the | dvy v}
Poynting flux vector on a cylindrical surface of radiuand ~ 9y | oz (28)
lengthL

<S>=-—

) ) - Equations (24) and (27) show that the differenpée- B! is
26°LVABy _ poSu LN (21  @lso of ordero(e). Hence, terms in right-hand sides involv-
okt 8 ing vl or p1 — B! can be neglected because they are?).
The Alfvén mode could be similarly analyzed in terms of This result together with Eq. (9p1 = B.1 and j; = ji;uz,

components of normalized current densjty= V x B and ~ Make Eq. (25) read

R~

vorticity w = V x v along the ambient magnetic fielBlg, ool
. . _ v .1 eVa .1 1.

as opposed to velocity divergence and magnetic field alon{a— —Vaj X ux] = A7 sB.0 [(Byl] +By11>
By for the FMS mode (Cramer, 2001). Taking the curl of t (1+2Bx1)
Egs. (9) and (10) and projecting an yield gl dvy
Sw 9i xuy—vyla——v)l,a— (29)
VAt (22) Y Y

) . where the terneB,1 in the denominator can be now ne-
Ojx1 _ Va dwr1 (23)  Ylected.

or dx The evolution equation af! is obtained from Eq. (29)
Equations (22) and (23) and boundary condition (6) show8 1
that no Alfven wave is radiated by the system. Therefore, — +VAV28§= (30)
within the cold MHD approximation and assuming a purely 1 1 1 5
azimuthal magnetic field at= R as given by Eq. (6), the v B l%_v ‘13W _Zavylaﬁ_vla Uyl
array of tethers will just radiate a cylindrical FMS wave. 70z 7 By ay dy 7 9y2?
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For quasi-parallel propagation of the Adw mode,jxl = 5
jiex,ey,ez) and wl = wl(x,ey,ez), the termajl/az in 45
Eqg. (30) can be neglected and the FMS mode equation is fi-

nally obtained by combining Egs. (27) and (30) 4

2,1 35
Iy 2021 _
Tz AV o
d 9B.1 2.5
2 1 1 1 X
SVA{VAV [5 (Ulex)'FBle +Uywi| 5
3 ayl  _gu, vl 82,
Y N 42 18 (31)
at\ ~~ dy dy dy ay

0.5

Equation (31) will be solved in the next section assum-
ing that the perturbatiogr! is made of just two waves. The 0
variable B! that appears on the right hand side will be ob-
tained from Eq. (27) wittke = 0, while the velocity compo-
nentv} is related toy* by introducing the vorticity definition  Fig. 2. Thick solid lines show the allowable domai > 0. Thin
w=V xvinEq. (28) solid lines are solutions of Eq. (42).

(82 az)vl_a_wﬁ_@%a_w
y

TSt vy = (32) 0 one has, yo0= :I:,/Ei’b +§§ and the resonance condition
dys 0z ay 0z ay . ;
yields a relation between wavevectors

~k.k, (35)

work, first note that Eq. (31) is decoupled from the &fic L
variablesj! andw?. FMS variables can thus be solved inde-

pendently and then substituted in the evolution equations for o _ 5
jandw?, giving rise to purely forcing terms. Ignoring such Frequencies, , ate =0 read ther,o = (1+4, _kb)/z
terms one would finally find and @, = (1+E§—E§)/2. Setting the right hand side of

921 ” 5 (,183},1 ) Eq. (35) equal to zero, one finds

To derive an Alien wave evolution equation for future ) 2 2
E :< a b)
z

92 _ 2

ajl ovy1
2 X 1 y
a2 Agx2 T ETAG By T

I dy ax %y
(33)

ko= (1%K,)° (36)

defining a region in the plank, —k;, wherek, is real (see
Fig. 2).

The derivation of the growth rate requires the fieljsand
v} that appears on the RHS of Eq. (31). The magnetic field

is directly found from Eq. (27)

5 Dispersion relation

Equation (31) describes the FMS wave evolution. The drivenB)}
fields on the right hand side depend on distan@nd an- 1 ) Vg i Wb o
gle d, and an infinite number of radial and azimuthal modes Bx = _’VAcog‘ZZ[w_JO(kar)e ‘ +w_bJ1(kbr)S'”96 ’ }
are thus coupled together. An estimation of the growth rate Lee. ¢ 37)
of the FMS mode can be obtained, however, by keeping the

two azimuthal modes of lowest order in an expansion of theAs regards the velocityi we write it as

solution

cosk ) . .
v = 5 [ Catta 1 (kar) IO+ Corp Jo ke |

¥l = cosk,z [wa Jo(kar)e~ i@t 4y 1y (kbr)sinee*"wa] tcc
+cc (38)

(34)

. ~with  coefficients C, = 4k, / (4Zf+3§5) and Cp =

As usual, cc denotes complex conjugated and frequencies _ PR _ _ .

wa, are related by the resonance condition+wj = Q1. —k» / (2k; +k;) obtained by inserting Egs. (34) and

For convenience we will use the dimensionless parameter§38) in Eq. (32) (see Appendix for auxiliary calculations).

Ba,b =wap /R, kap =kap k1, k; =k [k1. Expressions (34), (37) and (38) are finally substituted in
Before finding the growth rate, we note that the resonanceeq. (31). Collecting terms with the same azimuthal depen-

condition restricts the admissible valueigfandk,. At ¢ = dence yields two equations for the FMS mode amplitufles
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andy,. The wavey, () in the left hand side of Eq. (31) el
is coupled with the product between a driven term propor-
tional toe~"*%" (¢/1) andy;* () in the right hand side. A

tedious but straightforward calculation would give 70
_ -2 2 -
(@2 — (Ko +K2) | o (kat) wa ~ —eg0 €)1 (39a)
—~ 50
_ =2 72 - <
(32— (5 +2) |2 (6ot i ~ —e1.6) b (39%b) T,
the go 1 functions being (see Appendix) 30
8 | 2t kP T2+ T — 1— 4k, (2 +3) ol
-80=kp HoJo i
—2 10
i (1—K)<K2+1—2ka)
— 0 : ‘ ‘ : ‘
2(2HoJ2 —kpH1 J: 0 1 2 3 4 5
_( 0J2 b13)_2H2J2:| i
11—«
1 K5—K4—12K3—12K2+1JJ<+5—2E5 (K3—9K2—17/<+9+12E§> Fig. 3. Anglesa, anday, versus normalized wave-vectos.
_= — HiJx
2 (1—x) <K2+1—2k§>
(40a)  balance out at smal, leading to a wave-vector resonance
conditionky (k,),
—2 2 _ —2 _
o, [0 BN (e (1-07) -]
[ 1+«) (1+K)|:(1+K)2—E‘24i| -
+2k (3K3+9K2+5K —5) -0 (42)
_ [ 2%?+6 7+i? .
+2k, T — 5 2 HyJ1
£ ATk, with « given by Eq. (41). The truncation in Eq. (34) would
4;5 H3Jp thus be strongly invalid unless wavevectbssandk; satisfy
_(7“/()2_%5 Eq. (42).

Figure 2 summarizes the above results involving wavevec-

3 2 —2 - —2 2 —2 R - . . A <
[5" Tr +7"+3+4kb(1_")]k“H5]1_2ka (5" _1_4"b)H1*J2 torsk, andk,. The thick solid lines correspond fo van-

* (1+K)[(1+,()2_;ﬂ ishing in Eq. (36). Within the enclosed (shaded) regton
(40b) is imaginary. The thin solid lines correspond to the solu-
tions of Eq. (42) and only the higher line makiesreal. As
where we defined kq — o0, Eq. (42) yieldsc /k, — 2, and then Eq. (41) gives
> ka — ki~ 1, which can be verified in Fig. 2. Equation (35)
K=k, —k, (41)  showsk, /k, — 0 ask, — oo.

Note that the argument of the Hankel functions is jést The angles, = arctar(k. /k.) and e, = arctar(k. /k»)

whereas the argument of, Bessel functions irgo (g1) is are plotted versus the normalized wave-veéipin Fig. 3.

kpé (ka8). Angle «,, with values around 35 is nearly insensitive to
There is no way for ratiO%O/JO and gl/Jl to be &- k;,_ for the range considered, as opposedrio henge, the

independent as required by the homogeneous system (394};independent wave labelled appears nearly confined to a

(39b). In the following, we solve for a dispersion relation by conic surface with axis parallel to the array at angié5’.

radial averaging both equations frdmto co. We first, how-  Actually, bothe, anda;, vanish withk /k, as ks — oo.

ever, look for a resonance-like conditiép(k,) that avoids  Also, for a properly selecteld, too large values of, andk,

rapid radial variations in the above ratios. Both, left and rightwould placek, andk,wave-vectors beyond the MHD regime.

hand sides of Eqgs. (39a) and (39b) do decay as oo, as Next, we integrate Egs. (39a) and (39b) frgmand oo,

oc1//E andoc 1/¢ respectively. Also, foE — ér < 1, the  leading to

ratio go/Jo in Eq. (39a) behaves asdnwhich may be con-

sideredO(1) as usual in asymptotic analyses. On the other[ag _ (ELZIJF;ZZ)] Va ~ —eColr} (43a)

hand, the rati()gl/Jl in Eqg. (39b) would in principle be- '

have as 1£2 due to theH; Jo, H; J1 and Hj J> terms. This Y

disagreement is dealt with by requiring those three terms t @;> — (k;, +kz>] Y, & —eC1yy (43b)
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where 14r
~ — —§,=0001
o0
ng,ldé 0
%‘ —
Cor1="—r ’“ka,hfgo,1d§ (44)
fJO,ldg ér
R

Equations (43a, b) yield the dispersion relation
(52 (2+8)[or - (B47) ] =ccocs 1)
We now introduce the dimensionless frequency shitind

growth ratey defined byw, = @.0+¢(@+iy) ando} =
wpo — € (@+1y). Using Eqg. (18), the actual growth rate is

- oN I1k1
=V

4B, (46)

Fig. 4. Dimensionless growth rate versus angje
The dispersion relation now reads

o —CoC1 System mass for the experiment would basically be made
@+iy)=\ 775 (47)  of tether hardware and a power subsystem,

2 Wr
where we used the approximations? — (k5+kf) ~ Ms= Mt+aWOhm<l+ WOhm>

25406 (5+i7) anda;2 — (EZ+E§) ~ —2@poe (B+i7). [ al? ( N;LOQlaCAt>i|

) \ . ~ ~ | Ao+ 1+ NL (48)
Figure 4 shows the dimensionless growth rateersus 8

anglew; for two different values ogr. At ap = 90°, cor- ] . -

responding td, ~ 2.0, k, =0, the growth rate vanishes be- whgrea is the inverse specific power _of the power supply

causeC1 =0 in Eq. (44) . The growth rate monotonically in- whllg At, 0 ando(? are tether cross section, density and con-

creases when the angtg decreases, a situation correspond- ductivity respectively. The radiated pow#r was taken

ing with a larger wave-vector (see Fig. 3). The parametricffom Eq. (21). Fixing all parameters except area a Ms

instability becomes stronger because the perturbation waveTinimum is reached at

lengths are shorter and a higher number of spatial oscilla—A _J \/7

tions interact with the radiated wave, which also decays with”'t — ‘1 a/ Tep

distance to the tethers. A4, ~ 60°, which corresponds to yje|ding

kp ~ 1, the growth rate would actually diverge. This is be-

cause the integral contain integrands of the type égy'¢ Ms|min=2pN AL (50)

which makeCy to diverge logarithmically with the upper

limit of the integral. This has not been resolved numeri-

cally in Fig. 4. The local maximum of will be actually

limited by the imaginary part ok in Eq. (14) up to now 7 o [oep N At

(49)

where we neglected the ratﬁzYR/Wohm, assumed small.
From Egs. (46) and (49) we find

neglected. The peak would thus be logarithmically large? :79153_0 a M (51)
y~In(2uoVa /nki).
v ( o /77 ) allowing to write
4 By [ap Li1
6 Discussion Ms|min= — = (52)

7y oV oc 21

In addition to the growth rate, there are other important pa-Also, using Eq. (50) in the expression for the power ratio in
rameters in the experiment such as the characteristic tethdzg. (48), we find

length, the mass of the system, or the orbit. An equatorial or- L100c
bit with the tethers flying vertical and the geomagnetic field =
normal to the array would be a suitable configuration. Sys- Wohm  16pL
tem mass considerations as regards altitude will be shown to In our analysis we assumed/L and21/2; small to allow
involve both plasma density and characteristic ion mass.  a two-dimensional description of the radiated wave and our

Q1 MS|min~ (53)
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ignoring the Hall term. Here, just for a mass estimate, wefrom the array normal about 35the second parametrically
setL =11 andQ=2x VA/Al = Q; while usingy as found  coupled wave covers a broad angle range.
previously, yielding in Eqg. (52) To keep the problem analytically tractable, we made sev-
eral hypotheses that we now revisit. Variations along the
y (54) tether axis direction were neglected requiring tether lengths
oc 1o much longer than the typical wavelength and uniform cur-
rent distributions along the tethers. As showed in Sect. 5, the
with similar simplifications in Egs. (51) and (53). We note first hypothesis yields an unrealistically heavy system while
that Ms|yin does not depend on the geomagnetic field, andthe second one could be addressed with appropriate tether
is proportional to bothn?/ng and growth rate. Hence, ex- plasma contactors. Both hypotheses might be removed in
periments in LEO and MEO would actually require a similar numerical calculations by considering a fully 3-D radiated
system mass because the density drop would be compensategve. For simplicity the Hall term was also ignored but there

167 fap ml2
Ms|min= =3 2 3\ ~ -
Y g€

by the characteristic ion changing from @ H*. is no reason to keep the driven frequency well befovin a
For tether valuesp = 2.7 x 10°%kgm~2 and o =3.5x  real experiment.
10’ Ohmtm1, state-of-the-art = 20kg KW, and the Future works may also consider other aspects that are not

typical LEO conditions Bo~ 0.3G,no~ 10°cm=3and O"  directly related with the parametric instability. We cite the
ions, Va ~ 163kms?! and Q; ~ 180rads?), taking rep- dynamical response of the contactors to exchange current
resentative valug’ ~ 0.3 in Fig. 4 and growth ratey = with the plasma, a detailed stability analysis of the cylindrical
0.015s! yields Ms|min ~ 340kg in Eq. (54). WithL = configuration including forces among tethers, wave detection
11=5.7 km, we also findVr/Wonm~ 0.01 in Eq. (53), small  and scientific missions. All of them would be important for
as previously assumed, antd; ~ 11 mn¥ in Eq. (50), and  a mission to generate an artificial nonlinear MHD wavefront
thenN 11~ 24 Ain Eq. (49). in space plasmas.

To simplify the analysis, we took the number of tethars
and the radiusR of the cylindrical array as satisfying two
conditions: first, the magnetic field was approximated asAppendix A
purely azimuthal at = R « A1, and secondly we assumed
woN I1/27 R By small to allow a linear analysis. For the value Growth rate calculation
NI11=24 A, we finduoN I1/27 R Bo =~ 0.157 m/R. This makes ) . . -
impossible the use of a single tether and suggests setting th@ this appendix we summarize some auxiliary steps for the
array radius at a few meters. Note that the actual value of calculation of the growth rate. To simplify the notation the
would enter the solution nowhere else, in caséa small  Superscript 1 and the argumenin any Hankel function will
enough. On the other hand, a vale:10, say, would yield be omitted. Note that Bessel functions multiplyittg (v)
a magnetic field already nearly azimuthal close to the arrayas argument,& (kp&).
Hence, a set of tethers with fixed connections and flying as a The coefficientsC, andC,, that appear in the velocity;

single spacecraft would be a possible configuration. are found taking into account

dyt cosk

CLA (A1)
7 Conclusions dy 2

' i [ZWakallsiHGe_iw“t—Iﬁ;kb(./o—}- JzCOSE)eiw;t]+CC
The generation of a FMS wave-front using an electrody-

namic tether array, similarly to a previous analysis for

whistler waves (Sanchez-Arriaga and Sanmartin, 2010),5%y!  _cog,;
could be used to investigate nonlinear wave interactions and; > = 2%, '
turbulence in space plasmas. Such experiment would have
several qualities such as in situ wave emission in natural CaVak?
plasmas, boundary free propagation conditions and an active 2
character because the frequency and the intensity of the FMS 5 -
radiated wave would be controlled by the power supply. This +C ¥k, (Jo— 1200329)6’@”'] +cc
first work analyses the parametric instability that should pro-

duce a saturated nonlinear stage in a frame moving with the;mda%\l,/aZZ = _kzzv};.

(A2)

(3J1SiN9 + J3sin) e i @a!

array. _ _ _ The calculus of the functiong 1 is carried out with the
The radiated FMS wave is parametrically coupled to two fg|jowing auxiliary operations:

cylindrical FMS perturbations waves. One of them, which
is independent of the azimuthal angle is only excited if its 9 [ 2( Bl>] ik? { F,
Uy1b, ~

a [72 * 7 *
wave-vector lies close to a conic surface with angle awayy,, Bad [kTa (H{ Jo+kaHg J1)
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+ka (ko Hi (Jo— Jo)+ (HG — H3) J1)]
Fp =2 ~
‘s [2ka (kp HoJo — H1J1)

+ ki, (ki H1(J3—3J1) +2Ho (Jo— J2)) |}
(A3)

2 1 ik% 7 * * =2 *
V2 (Baax®) ~ =22 {2Fu ko (H5 — H3) 1+ K7, Hi Jo]

_ -2
+F;,[kb(HoJo+H2J2)—kT,,Hljl]} (Ad)
_ —ikf
R

+K (2H5 ~ H3) 1]

{FaCalka (3H{ Jo—2H Jo+ H J2)

“

0By1 4
v
ay 7

+2F,C, [zzb HJi —E?,,HOJO] } (A5)

axl\ iVak? _ o
1L) ~— L (2@poka H J1Fa + @0k HoJoFy ) (AB)

3 vy 0L\ ivak?

5( 8; a—yy ~—g L (@poka CoHy (2J0— J2) Fa
+2w40kp Cy H1 J1 F ) (A7)

d [ 10%vy1\ _ iVakZ

E(vy 52 |~ 8 (@p0Ca (2H5 — H3) J1F,
—20,0C,HoJoFp) (A8)

where the symbok was used to denote higher order az-
imuthal modes, e.g. terms proportional to cos@ere ne-
glected. We also defined

Fy = ¥, cos(k,z)Sind &'’ (A9)
Fp =1} cosk,z) e ! (A10)
Koy =14k 4K, (A11)

Substituting the above expressions in Eg. (31) and usin

Eq. (35) to eliminaté, yield gg 1.
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