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Abstract. Similar to the Dst index, the SYM-H index may mainly reflect on average the characteristic time of ring cur-
also serve as an indicator of magnetic storm intensity, butent decay which involves various decay mechanisms with
having distinct advantage of higher time-resolution. In thision lifetimes from tens of minutes to tens of hours. The El-
study the NARX neural network has been used for the firstman network makes feedback from hidden layer to input only
time to predict SYM-H index from solar wind (SW) and IMF  one step, which is of 5 min for SYM-H index in this work and
parameters. In total 73 time intervals of great storm eventghus insufficient to catch the characteristic time length.

with IMF/SW data available from ACE satellite during 1998
to 2006 are used to establish the ANN model. Out of them,
67 are used to train the network and the other 6 samples fo
test. Additionally, the NARX prediction model is also val-
idated using IMF/SW data from WIND satellite for 7 great
storms during 1995-1997 and 2005, as well as for the July

2000 Bastille day storm and November 2001 superstorm us{ |ntroduction
ing Geotail and OMNI data at 1 AU, respectively. Five in-

terplanetary parameters of IMB;, By and totalB compo-  Magnetic storm is a multi-faceted phenomenon that orig-
nents along with proton density and velocity of solar wind jhates from the sun and interplanetary disturbances and
are Used as the Original external inputS of the neural networlfnanifests in the geospace of magnetosphere_ionosphere_
to predict the SYM-H index about one hour ahead. For the 6hermosphere (M-I-T) coupling system. Long-lasting large
test storms registered by ACE including two super-storms ofsoyuthward IMF (Interplanetary Magnetic Field) enables en-
min. SYM-H< —200 nT, the correlation coefficient between ergy transfer from the solar wind to the magnetosphere to
observed and NARX network predicted SYM-H is 0.95 as gnhance greatly through magnetic reconnection at dayside
a whole, even as high as 0.95 and 0.98 with average relamagnetopause. Large interplanetary electric fields (IEF)
tive variance of 13.2% and 7.4%, respectively, for the twopreak into geospace, leading to dramatically enhanced and
super-storms. The prediction for the 7 storms with WIND earthward shifted ring currents which cause a rapid decrease
data is also satisfactory, showing averaged correlation coeffim the horizontal component of the geomagnetic field on the
cient about 0.91 and RMSE of 14.2nT. The newly developedyround at low latitudes and characterize a geomagnetic storm
NARX model shows much better capability than Elman net- development Gonzalez et al.1994 Gosling et al, 1991,

work for SYM-H prediction, which can partly be attributed to  Tsyrutani et a).1988 Daglis 2006. Satellite observations

a key feedback to the input layer from the output neuron withshow that storm time ring current mainly consists of ions
a suitable length (about 120 min). This feedback means thayith energy from tens to hundreds keV which drift westward
nearly real information of the ring current status is effectively gyer the equatorial area within 2&¢ height. During the
directed to take part in the prediction of SYM-H index by main phase of large storm, the content of heavy ionospheric
ANN. The proper history length of the output-feedback may jons (especially ®) in the ring current { < 4) is extremely
increased. The larger the magnetic storm is, the greater the
O™ contributes to the ring currenD@glis 1997. When

Correspondence tdS. Y. Ma southward IMF decreases or disappears, the rate of magnetic
BY (syma@whu.edu.cn) reconnection reduces, convection electric field turns weak,
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40 \ \ \ \ \ been applied to predict geomagnetic disturbances as indi-
i ] cated by Dst index from solar wind and IMF observations,
] such as differential equation8(rton et al, 1975 Wang
- et al, 2003, statistical correlative analysiBéker, 1986
] Temerin and Lji2002 Yermolaev et a].2005, and artificial
| neural networks (ANNs)Wu and Lundstedt1996 Gleisner
7 etal, 1996 Wu and Lundstedtl997 Lundstedt et a).2002
Pallocchia et a).2006 Amata et al. 2008. Of those, arti-
] ficial neural networks have shown their great ability of non-
7 linear mapping in Dst prediction. However, there are not any
reports yet on the prediction of SYM-H index by ANN in the
I publications. The prediction of SYM-H index can be applied
e wo a0 o0 o o not only in magnetic storm forecasting, but also in predict-
Min. SYM-H of Storm Events (nT) ing thermosphere and ionosphere parameters through empir-
ical models where the SYM-H or Dst index plays a dominant
Fig. 1. Histogram of minimum SYM-H index for the events used in role (e.g.Zhou et al, 2009 Ridley and Liemohn2002. The
ANN model. higher time-resolution of SYM-H index makes its prediction
somewhat different from and harder than the Dst index.
In this study, an artificial neural network (ANN) of Non-

. ) . ) linear Auto Regressive with eXogenous inputs (NARX) has
parthleS nEW|y Input Into rnng current decreases, the Con-been developed for the first time to prediCt SYM-H index
vection boundary moves outside, cold ionospheric plasma,,,t one hour in advance from solar wind and IMF parame-
refills the exhausted inner magnetosphere, then encountets s The newly developed NARX model shows much better
W?th energy partides' _and thus gives rise t(_) plasma WaVescapability than Elman network in SYM-H prediction. In the
Ring current ions loss is caused through 4 kinds of processeg, oy ing sections we will firstly present the data used to es-
S,’U,Ch as (;harge excha_nges with ngutrgl atoms, Coulomb CO['ablish the SYM-H prediction model of NARX NN and the
|ISIO!’]S vx{|th plagma, pitch angle dllffgsmn caused by WaVe-harameters selected as the external inputs. Then a brief de-
particle interaction, as well as drifting out of the dayside g¢yintion is given on the architectures and training methods

w
o
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inant for mono-charged ions (e.g.,"HO™) with moderate  ,,, ANN models are shown and compared with each other.

energy (10-100keV). For ions with higher energy, the 10SSgjna1y 4 brief discussion and summary is given along with
caused by the wave-particle interaction becomes more Sigiaas for further worthy studies.

nificant due to the decrease of charge exchange section. For

low energy heavy ions (less than 10keV), the loss caused

by Coulomb collision cannot be neglected. The fast decay, pata sets and external inputs
of ring current during the recovery phase of intense storm is

caused by the rapid loss of'Cand He'. The solar wind and IMF data observed from ACE satellite
The hourly Dst index is a measure of the total energyat Lagrange point L1 are used to establish the neural net-
content of the ring current, being used the most widely sowork model to predict SYM-H index. The ACE data are ob-
far to quantify the geomagnetic storm activigugiura and  tained from CDAWeb site of NASA and the SYM-H index
Poros 1964 Mayaud 1980 Rangarajan1989. SYM-His  data are provided by World Data Center for Geomagnetism,
another geomagnetic storm index to measure the intensity okyoto. The solar wind and IMF data are sampled at rates
the storm-time ring current proposed in recent more than twaof every 64 and 16 s, respectively, while SYM-H index at
decades. In contrast to 1 h time-resolution of Dst, SYM-H 1 min. To unify the temporal resolution, they are all aver-
has the advantage of much higher time resolution of 1 min.aged every 5 min. Therefore, all the data we used to establish
Essentially, the SYM-H index is the same as Dafafliss  the ANN model have the same time resolution of 5min. In
and Showalter2006 except that it is calculated from a dif-  this study, we collected 73 time intervals that contain storm
ferent set of stations and in a slightly different coordinate eyents with the minimum SYM-H value less thar85nT
system. during 1998-2006, of which 67 intervals comprising 66 800
In the past several decades, many studies have been deamples are used to train the neural network and the other 6
voted to the relationship between the solar wind and the geointervals are used for testing. The selection of the interval is
magnetic storm (e.gRostoker and &thammar1967 Aka- constrained by the data availability and quality of ACE obser-
sofy, 1981 McPherron et a).1988. Various methods have vations in addition to the threshold ef80 nT for minimum
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Table 1. Storm intervals used to develop the ANN prediction model.

No Start date End date Min. SYM-H (n'ﬂ) No. Start date End date Min. SYM-H (nT)
1  1998-02-17 1998-02-19 —119 35 2001-10-21 2001-10-24 —210
2 1998-03-10 1998-03-12 —119 36 2001-10-27 2001-10-30 —150
3 1998-05-03 1998-05-06 —266 37 2002-03-23 2002-03-25 —114
4 1998-06-25 1998-06-26 —120 38 2002-04-17 2002-04-21 —183
5 1998-08-06 1998-08-08 —168 39 2002-05-11 2002-05-13 —109
6  1998-08-26 1998-08-28 -171 40 2002-05-23 2002-05-25 —113
7 1998-09-24 1998-09-26 —213 41  2002-08-01 2002-08-04 —114
8  1998-10-19 1998-10-20 —120 42  2002-08-19 2002-08-22 —119
9  1998-11-07 1998-11-10 —179 43  2002-09-03 2002-09-07 —108
10 1998-11-12 1998-11-15 —123 44 2002-09-07 2002-09-12 —167
11 1999-01-13 1999-01-14 —-111 45 2002-10-01 2002-10-06 —153
12 1999-02-17 1999-02-20 —127 46  2002-10-14 2002-10-15 —88
13 1999-02-28 1999-03-02 -93 47  2002-10-23 2002-10-26 —87
14  1999-04-16 1999-04-17 —122 48 2002-11-20 2002-11-22 —126
15  1999-09-22 1999-09-24 —160 49  2003-05-29 2003-06-03 —162
16  1999-11-13 1999-11-15 —106 50 2003-06-16 2003-06-19 —162
17  2000-01-22 2000-01-24 —101 51 2003-07-10 2003-07-17 —125
18 2000-02-12 2000-02-13 —164 52  2003-08-17 2003-08-20 —138
19 2000-05-23 2000-05-26 —159 53 2003-11-04 2003-11-05 —87
20 2000-06-08 2000-06-09 —-90 54  2003-11-19 2003-11-21 _a88
21  2000-07-16 2000-07-21 —294 55 2003-11-21 2003-11-23
22 2000-08-10 2000-08-13 —235 56 2004-01-21 2004-01-27 —137
23 2000-09-17 2000-09-19 —196 57 2004-02-11 2004-02-12 —107
24  2000-10-02 2000-10-07 —183 58 2004-07-22 2004-07-24 —122
25 2000-10-12 2000-10-15 —100 59  2004-07-24 2004-07-27 —166
26 2000-10-28 2000-10-30 —120 60 2004-07-27 2004-07-29 —208
27 2000-11-06 2000-11-07 —174 61 2004-08-29 2004-09-01 —128
28 2000-11-10 2000-11-11 —126 62 2004-11-07 2004-11-13 —393
29 2000-11-26 2000-11-30 —165 63 2005-01-21 2005-01-23 —101
30 2001-03-19 2001-03-21 434 64  2005-05-15 2005-05-22 —302
31 2001-03-27 2001-04-03 65 2005-06-12 2005-06-14 —112
32 2001-04-11 2001-04-14 —275 66  2005-06-23 2005-06-24 —101
33 2001-08-17 2001-08-19 —130 67 2005-09-11 2005-09-16 —127
34  2001-09-30 2001-10-05 —187

SYM-H. Generally, each time interval comprises 3 phasesused for test. Of them, 6 great storms occurring in 1995—
that is, 1 days before the storm commencement, the whold997 and one super-storm in 2005 are tested using SW/IMF
storm (including initial, main and recovery phases), afld  data from WIND satellite (see Tab® the 3 columns on the
day after the storm. All the storm events for network train- left). The other two ones are superstorms occurring on July
ing are listed in Tabld, giving the time interval, the value 2000 Bastille day and 24 November 2001, which are tested
of minimum SYM-H for each storm event. Figutalisplays  using Geotail and OMNI data at 1 AU with no time ahead,
the histogram of the minimum SYM-H for the storm events respectively.
used for neural network training. It can be seen from Eig.
and Tablel that the training samples contain 11 super-storms
with min. SYM-H less than-200 nT, occupying a fraction
of 16.4%, while great storms with minimum SYM-H value
from —200nT to—100nT hold a dominant percentage of
73%. The testing samples using ACE SW/IMF data are all
great storms (minimum SYM-H< —100nT), containing 2
sgper-storm§ (see Tab?e.the 3 columns on the left). In ad- is the proton number density of solar wind, aWdthe so-
dition, to validate the trained ANN model, another 9 storm | : . 2

; ; ar wind velocity, and group of only IMF of3,, B and
events registered in rather than ACE measurements are also2 2 2 5 ) Y

B = By + By + B; with the same correlation time length

The selection of inputs has an important impact on the
result of ANN prediction. In previous studies of Dst pre-
diction by ANNSs, different combinations of solar wind and
IMF parameters with different time-length (i.e., the correla-
tion time between each input and Dst) have ever been used
as the ANNS’ inputs, such as group of V and IMF B,
with 1 h correlation lengthlL{undstedt et a).2002 wheren
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Input Hidden layer Output layer Input Hidden layer Output layer
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Fig. 2. Architecture of two-layer back-propagation neural network.

(Pallocchia et a).2006 and others. In the present study we
use the parameter combination/ofV, B;, By and B with Fig. 3. Architecture of EIman neural network.
90-min history length for each parameter as input to predict
SYM-H index 60 min ahead. Thus, our prediction model has:.

. is only one neural in output layer. The activation func-
_totally 90 input nodes, each 18 fa), BZ.’ B, n andV. The tion is the hyperbolic tangent for the hidden layer and lin-
inputl at moment and the corresponding outpQtare:

ear one for the output layeHéykin, 1999. For the input
I(t) = {By(1), By(t), B(t),n(1), V(1),..., By(t —17), | ={I1,I>,..., 1y}, the output of the-th hidden unitH;, is

B,(t—17),B(t—17),n(t —17),V( —17)}, (1) M
Hj=tanh<2wjili+bj), (3)
O(t) ={SYM-H(r +12)}. 2 i—1

In order to make the neural network converge more easilyVhere/; is the value of input node, M is the number of

all the input parameters are normalized +0[8, 0.8] before  MPUt nodesw;; is the connecting weight between the input
used in ANN. nodei and the hidden neurofy andb; is bias of the hidden
neuron;. And the outpui) is
s
3 ANN models 0= "wyHj+b,, )

=1
In this study, we introduce for the first time the NARX neu- !

ron network to the prediction of magnetic storm index SYM- Where S is the number of hidden neurons,; is the con-
H with time resolution of a few minutes and compare it with Necting weight between the hidden neurpand the output
usual Elman network which enable already very good predicn€uron, ana, is bias of the output neuron.

tion for Dst index with one hour resolution. In this section

we present first the architectures of the two kinds of neural
networks.

3.1.2 Elman neural network

An Elman neural network is a two-layer BP network with
feedbacks from hidden neurons to inpEtrhan 1990, be-

ing called also Elman recurrent network (ERN). Figdre
Both of the Elman and NARX artificial neural network are Shows its architecture. The input of an ERN consists of two
based on the two-layer BP network, having different layoutParts, one is true external inplit= {/1, I, ..., I}, and the
for global feedback. So, we begin with a brief presentationOther is feedback input = {C1, C2,...,Cs}. The feedback

3.1 Architectures

of the so-called BP network. input nodes are called context nodes or context units. The
value of context unit at time step is simply a copy of the
3.1.1 BP neural network hidden output at time step-1, i.e.
Ct)y=H(t-1) [1=12,..S. 5)

BP (back-propagation) neural network is a kind of clas-
sic feed-forward network using error back-propagating al-For the EIman network, thg-th hidden unit output; is
gorithm for its training. It is usually a two-layer network

M S
with one hidden layer when used in the Dst prediction. Fig-H. —tanh Zw s +Zw 1Cr+b; ). (6)
ure 2 shows its architecture. For prediction purpose, there ’ e A B /
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Input Hidden layer Output layer 3.2 Establish of ANN prediction model
3.2.1 The training method

The Momentum Back-Propagation algorithm is used to train
the 2 kinds of networks. The course of learning all the sam-
ples for once is called an epoch. For each epoch, the cost
function is defined as

1 N
E=§;<Tk—0k>2, ®)

whereT* and OF are, respectively, the target output and the
actual output of the output neuron, is the number of train-
ing samples. For each connecting weigtet then-th epoch,

it is updated according to

Fig. 4. Architecture of EIman neural network.
oE
Aw(n):—na——f—aAw(n—l), 9)
w

Context units are considered containing history information
of the network status. And it is proved that the Elman neural
network can give very good performance of Dst prediction
(Wu and Lundstedtl997).

wheren is the learning rate and is the momentum param-
eter. For connecting weights between the hidden and output
neurons, they are adjusted following

The Elman ANN used in this study has various numbers of il ok
original external input nodes, 12 hidden neurons and 1 outpuf® wo; () = nY ShH} +atwy;(n—1), (10)
neuron. k=1
sk=1k_ 0ok, (11)

3.1.3 NARX neural network

For connecting weights between the input nodes and the hid-
We introduce a new kind of feedback neural network of den neurons, the adjusting is as follows

Nonlinear Auto Regressive with eXogenous inputs (NARX)

model Haykin, 1999 to predict the SYM-H index from IMF AN

and solar wind. The NARX network is also a two-layer Bp Awji (M) = ”Z‘Sj Ii +aAwji(n—1), (12)
network with a time-delay feedback connection as shown in k=1

Fig. 4. The input of network consists of two parts as well: 2

true input and context input. In contrast to ERN, the contexts’ = (1— (Hj‘) ) ji=12...8, (13)
input for NARX is not from the hidden layer but from the

output layer with some certain time-delay. Assuming that,;pere the input = {/;} includes the context input for Elman
I(r) andO(z) are the true input and output at time step t and ;4 NARX network.

the length of feedback time delay linelis the context input
isC(t)={0t—1),0(—2),...,0(@—L)}. The jth hidden
unit output is

While learning ; anda are adjusted dynamically. Accord-
ing to the change of cost function,E, the adjusting rule is

ano AE<O
M L
n=1{bng AE>0&AEJ/E<¢, (14)
H; =tanh i li i bi]. 7
J (;U)Jz z+;w./lcl+ j) ( ) 1o AEZO&AE/E?E
The context nodes fed back from the output containthe being | oo AE <0 15
predicted parameter’s information with much more steps of* ~ |0 AE >0’ (15)

history than the ElIman network. The determination of the

optimum history length for feedback, i.e., the proper numbenyhereq andb are positive constants aad> 1 andb < 1, ag

of the context units, will be investigated in detail in Sekt. is the original momentum parametetis a pre-defined scale
The NARX ANN used in this study has 90 original exter- value that is usually less than 5%. In this study, we set the

nal input nodes, and 12 hidden neurons as well as 1 outputaining parameters agt =1.04,»=0.7, no=1, o =0.7

neuron. ande =0.03.
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When the neural networks are training, the accuracy pa4 Prediction testing results
rameters of correlation coefficieptand root mean square er-
ror (RMSE) as well as the averaged relative variance (ARV)We use the parameters @f, RMSE and ARV cited in
are calculated for the training samples at the end of evenysect. 3.2.1to characterize the network prediction perfor-
training epoch. The accuracy parameterppRMSE and  mance.
ARV are defined asWu and LundstedtL997)
N 4.1 SYM-H prediction by NARX neural network
k_ 7T k_ "
§ (T T) (O 0) 4.1.1 The optimum length of the output feedback time-

k=1
25 0oy o
k=1 k=1 As described in SecB8.2.2 a sequence of NARX networks
with different lengthZ of the output feedback time-delay line
1 Y . 02 (i.e. number of the context nodes) has been trained in order to
RMSE= ﬁZ(T -0 ) ' (17) find the most proper value d@f. All the trained NARX net-
k=1 works with differentL are tested for the 6 storm events using
N 2 IMF/SW data from ACE satellite. The test results are shown
> (T"~0 ) in Fig. 5, which gives the variation of the prediction perfor-
ARV = kle , (18) mance (characterized by the three parameters, RMSE
3 (Tk _7)2 and ARV) with output-feedback delay time lengthlof
k=1 It can be seen from Figs that the optimum value of

. — — L is 24 (about 120 min) when the prediction performance
whereN is the number of example&, and O are the aver- ( ) P P

. t i lati fficient of 0.95 bet th
age values of the observed and the predicted SYM-H, respecgﬁ ssei,gja;mug ecdc;(r;[eez j g)\r;'\zf)l_e' all(:gna (r)ninimumeRWI\jlzgrllE Ofe
tively.

17.12nT for all the 6 testing events as a whole. It seems that
the delay time length of the output feedback would be at least
rI%lrger than 60 min so as to get fair prediction performance. If
the length is less than 40 min, the prediction performance is
poor. On the other hand, larger length about 1-2 days seems
still to provide not so bad prediction performance.

and more slowly, converging gradually to an asymptotic

value. Assuming that RMS§,(n) is the minimum of RMSE

till epochn, we define a parameter pfas

_ RMSEnin(n — 7) — RMSEmin(n)
RMSEnin(1)

to judge if the training should finish at epoeh When

¥ (1000 < 0.001, the training is thought to be close to the

limit and should be stopped.

y(T)

' (19) 4.1.2 Prediction results by using ACE data for 6 testing

events

Table 2 lists on its right 3 columns the three parameters of
prediction performance for each test event by the NARX neu-
3.2.2 NARX ANN training with different output- ral network with a context node number of 24. The correla-

feedback lengths tion coefficient between the observed and predicted SYM-H

for each individual test event is more than 0.92 and the best

A sequence of NARX networks with different length of one reaches about 0.98 with a RMSE as small as 7.2 nT. Es-
the output feedback time-delay line (i.e. number of the con-pecially, the two super-storms with minimum SYM-H less
text nodes) has been trained using the 67 storm intervals ithan—200 and-300 nT respectively are also accurately pre-
order to find the most proper value bfand its relationship ~ dicted, having correlation coefficients equal or larger than
with the time scale of the ring current decay. The value of0.95 and averaged relative variances less than 13.5%. Fig-
L ranges from one (corresponding to 5 min) to 1152 (4 days)ure 6 displays a comparison of the observed SYM-H indices
with different time resolution, being taken as: 1, 2, 4, 6, 8, with predicted ones for each test event.

10, ..., 24, 26, 64, 144, 288, 576, 1152. o .
4.1.3 Validation of NARX model using more data

3.2.3 Elman ANN training with different history length (WIND, Geotail/OMNI)

of input

P In order to verify the prediction capability of NARX model,

All the 67 storm intervals are also trained using a series ofwe have made further tests using IMF/SW data available
Elman network with different history length of the external from WIND satellite for another 7 great storms occurring
input to see the performance of the Elman network for SYM-in 1995-1997 and 2005, in which the time ahead of predic-
H prediction. The history length of the input was taken astion is adjusted according to the position of WIND relative
90 min, 240 min, 480 min, and 720 min, separately. to ACE for each event.

Ann. Geophys., 28, 38893 2010 www.ann-geophys.net/28/381/2010/
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Table 2. Prediction performance by using ACE data for 6 test events.

No Time period Min. SYM-H Prediction result
Statdate  End date (nT) p»  RMSE(nT) ARV
1 1999-10-21 1999-10-23 —-221 0.948 21.84 0.132
2 2000-04-06  2000-04-09 —315 0.976 19.34 0.074
3 2005-05-07 2005-05-10 —115 0.927 13.52 0.159
4 2005-05-28 2005-05-31 —-126 0.954 17.97 0.198
5 2005-08-31 2005-09-01 -116 0.979 7.22 0.047
6 2006-04-13 2006-04-15 —110 0.931 15.72 0.255
NARX network NARX network
[ B B T L L B “\:45 *:0-5 RERERRRERREARER AR RRNRAN R :45
o Corr. Coef. 7; 40 E E 05 a0 Eoe Corr. Coef. 740 E
EERE I nrenmeenee i = A &= Fooy o o000 e%e | —=
L o9 35 l(-})J H 04 Boofl- & e - 35 I(-})J
© = 1 > 9 b 12
§o0s8 “J3 X Jo3x §Sos| . 430 X
2 c ] < B=] [ i ] S
« ] kel © SR {EY ] S
07 .25 8 Ho2 o7 4 425 B
SR R ARV, om0 B S [ ¢ & 13
Cosl #ah o e J20 @ Jod O o6l ¥R et A e H20 @
Y ReE T ¢ ] ] RSME MV
1“1“1“1“1“1“1“1“1’15 ;00 U AT ATNER ANUNER ANNER ANANER AR ER SR AT ’15
0 6 12 18 24 00 05 10 15 20
Feedback Time-Delay Length (hrs.) Feedback Time-Delay Length (hrs.)

(a) (b)

Fig. 5. Prediction performance by NARX network versus feedback delay time length @) For L-value from 0 to 24 h(b) A zoom-in
view of (a) for L-value from 5 to 130 min.

The prediction model is still the NARX network with = point (5min) ahead. Figur8 gives the prediction results,
24 which is trained using IMF/SW data from ACE satellite. which also show acceptable good performancepas:0.89,
Because WIND is nearer to the earth than ACE and theRMSE= 37.3nT, ARV=23.5% for July 2000 storm, while
distance varies in a large range, the preact time of predicp =0.91, RMSE=30.2nT, ARV= 30.2% for 24 November
tion is corrected for each event according to the distance be2001 storm.
tween WIND and the earth at the event occurrence. Table  The prediction results for the 9 events using IMF/SW data
lists the prediction results of the 7 events. These test resultfrom rather than ACE satellite indicate that the NARX pre-
show again that the NARX model has good performancediction model we established has potential capability to pre-
in prediction of SYM-H. As a whole of the 7 events, the dict SYM-H index using input data of IMF/SW from other
three performance parameters have the valugs-610.91, sources.
RMSE= 14.6 nT, ARV=18.0%. The best one has the per-
formance parameters of = 0.966, RMSE=8.58 nT and 4.2 Comparison with EIman neural network
ARV=7.3%, as seen in Tablg& Figure7 shows the SYM-
H index predicted by NARX neural network with 24 con- To make clear if the ElIman network is also effective in SYM-
text units in comparison with the observed SYM-H for the H prediction as it is in Dst prediction, we have made a series
7 testing storm events whose IMF/SW data are from WIND training of the EIman networks with different input time de-
satellite measurements. lay lines of 90, 240, 480, 720 min (i.e., 1.5h, 4.0h, 8.0h,
Besides, in order to validate our NARX model, we have 12 h), using ACE IMF/SW data for the 67 storms. And, a
also tried to predict the SYM-H index for the superstorms series of tests are then carried out for the 6 great storms.
of July 2000 and 24 November 2001 using IMF/SW data Table 4 gives the prediction performance of EIman net-
from Geotail and OMNI at 1 AU, respectively. Data from work with different input time delay lines. When using
Geotail and OMNI can be treated as from dayside mag-90 min length of IMF/SW wind data as input, the testing re-
netospause, so the prediction using these data should b®ilt shows that the correlation coefficient between the pre-
of short time ahead. In the testing, the prediction is onedicted and the observed SYM-H is 0.682, RMSE is 38.54 nT

www.ann-geophys.net/28/381/2010/ Ann. Geophys., 28,383-2010



00

388
100 NARX ANN model - ACE IMF/SW data October 21-23, 1999
F 4 Oct21 Oct.22 | Oct.23 ! ]
£ of | | 1
S r L ‘
T 100 | 3 ; 4
N | | |
r =0.948 | i Observed SYM-H
n-200F P ‘ ‘ : E
[ RMSE=21.84nT ! NARX ANN Predicted
t ARV=132% ; ; US“ng ACE IMF/SW data
-300 00 12 00 12 00 12 00 12 00
UT (h)
(@)
100 NARX ANN model - ACE IMF/SW data May 7-10, 2005
F May 7 3 May 8 ‘ May 9 3 May 10 1
= | | |
S r : :
T 100 | ! ?
s | | |
200 p=0.927 | | Obse]rved SYM-H
» r RMSE=13.52 n'T ! NARX ANN Predicted
I ARV=159% ! ! T Using ACE IMF/SW data
R S e O S S | [ R .
300 00 12 00 12 00 12 00 12 00
UT (h)
(©
100 NARX ANN model - ACE IMF/SW data Aug. 31-Sept. 1, 2005
Aug. 31 Sept. 1 ! !
= | | |
= E | |
I -100 i
s | | |
& 200 [ L p=0.979 ; Observed SYM-H
! RMSE=7.22 nT! NARX ANN Predicted
i ARV=4.7% ; Using ACE%IMF/SW data
-300 00 12 00 12 00 12 00 12
UT (h)
©)

L. Cai et al.: Prediction of SYM-H index during large storms

100 NARX ANN model - ACE IMF/SW data April 6-9, 2000
F April 6 April 7 1 April 8 } April 9 ]
— 0 [ s q | i
= r : ;
c C
=100 [ | |
I F : :
= -200 ! :
c>,') £ | Observed SYM-H
-300 F RMSE=19.34 nT ! NARX ANN Predicted ]
r ARV:7.4% ) i ) i ) ) Usl‘ng AQE IME/SW c{ata ]
-400 00 12 00 12 00 12 00 12 00
UT (h)
(b)
100 NARX ANN model - ACE IMF/SW data May 28-31, 2005
F May 28 May29 ' May30 ! May31
£ oop W | | 3
S r : \ |
T 100 | ? ? ‘ ]
= | | |
200 F p=0.954 | ‘ Obse]rved SYM-H
« r RMSE=17.97 nT ! NARX ANN Predicted
I ARV=19.8% ! ! ~ Using ACE IMF/SW data
R T S| | | [ R .
300 00 12 00 12 00 12 00 12 00
UT (h)
()
100 NARX ANN model - ACE IMF/SW data April 13-15, 2006
April 13 ! April 14 April 15 |
£ of : |
£ ; ‘
T 100 | i ‘
s | | |
5 -200 |- p=0.931 i | Observed SYM-H
RMSE=15.72 nT ! ___ NARXANN Predicted
ARV=25.5% ; ; Using ACE%IMF/SW data
-300 00 12 00 12 00 12 00 12 00
UT (h)

Fig. 6. Comparison of observed SYM-H index with that predicted by NARX neural network with output-feedback delay time length of
120 min for testing storm events using ACE data.

Table 3. Prediction result of each test event whose IMF/SW data are from WIND.

No Time period Min. SYM-H Prediction result
Start date End date (nT) 0 RMSE (nT) ARV

1 1995-03-25 1995-03-29 -99 0.886 12.96 0.223
2 1995-04-06 1995-04-10 -163 0.943 14.65 0.157
3 1995-10-18 1995-10-20 —-125 0.963 12.79 0.096
4 1997-04-20 1997-04-23 —-100 0.882 13.95 0.366
5 1997-11-06 1997-11-09 -125 0.874 13.57 0.273
6 1997-11-21 1997-11-25 -121 0.966 8.58 0.073
7 2005-08-23 2005-08-27 -174 0.877 21.45 0.262

Asawhole 0.91 14.6 0.18

and AVR is 54.4% for 6 test examples as a whole, which isfrom p =0.68, RMSE=385nT, ARV=54.4% to o = 0.86,
much worse than the prediction result of NARX model. RMSE= 26.6 nT, ARV=26.9%. If the input time length

It is also shown from Tabld that when the input time continues to increase the SYM-H prediction performance
length increases from 90 min to 240 min, the SYM-H pre- changes very slowly. When it reaches 720 min long, the
diction performance of the Elman ANN improves obviously SYM-H prediction performance parameters for the 6 storms
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Fig. 7. Comparison of observed SYM-H index with that predicted by NARX neural network with 24 context units for each testing storm
event whose IMF/SW data are from WIND.

as a whole increased up top = 0.86, RMSE= 26.2nT, SYM-H indices predicted by NARX model with 90 min
ARV=26.2%, which is still not better than NARX model length of IMF/SW input data are also displayed by green
(0 =0.95, RMSE=17.1nT, ARV=10.7%). Besides, longer curves for a comparison of the two models. Figlibgyives
input time length degraded greatly the applicability when the spot plots of the model predicted SYM-H versus observed
only short time qualified IMF/SW data are available (seeones for NARX model and two EIman models with different
Fig. 9e). input time lengths. Figure8 and 10 show clearly that the

NARX model does exceed the EIman network in SYM-H
Figure9 displays a comparison of observed SYM-H index pregiction.

with that predicted by Elman neural network with 720 min
length of IMF/SW input data for each testing storm. The
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Fig. 8. Comparison of observed SYM-H index with that predicted by NARX neural network with 24 context units for testing storm events
whose IMF/SW data are from Geotail and OMNI.
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Fig. 9. Comparison of observed SYM-H index with that predicted by Elman neural network with 720 min length history IMF/SW parameters
as input for each testing storm event whose IMF/SW data are from ACE. The SYM-H indices predicted by NARX model are also plotted in
the corresponding figures by green lines for a comparison of the two models.

Thus, the classical EIman ANN is not effective in SYM-H than the NARX due to the connections from the hidden layer.
prediction as it is in Dst prediction. The cause of it could However, the classical EIman network makes feedback from
be attributed to that as below. In general, it is not wrong hidden layer to input only one step, which is of 5min scale
that the ElIman network can catch more complex processefr SYM-H index in this work and thus surely insufficient
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Fig. 10. Correlation plots of the SYM-H indices observed and predicted by EIman and NARX neural netfgrksr the Elman model
with input history length of 90 min(b) For the Elman model with input history length of 720 mfa) For NARX model with feedback time
delay length of 120 min.

Table 4. Prediction result by EIman ANN with different length of eYeF not been reported before. However, studies of Dst pre-
input history. diction by neural network has been conducted for more than
ten years, among which, a detailed study on the prediction of
Dst by Elman network is made Wu and Lundsted{1997).

Input history Prediction result

(Mins) A comparison between their Dst prediction results and our
p RMSE(nT) ARV SYM-H prediction results by NARX model will be made as
90 0.682 38.54 0.544 follows.
240 0.812 30.20 0.340 In the study byWu and Lundsted(1997), IMF/SW data
480 0.855 26.60 0.269 with history length of 1, 4, 8 and 12 h are taken as input to
720 0.862 26.19 0.263 predict the variation of Dst index and a quite accurate pre-

diction is achieved. Tablb shows the comparison between
their Dst prediction result and our SYM-H prediction result

to catch the characteristic RC decay time that is at least ten8Y NARX model, from which we can find that the accuracy
minutes. For Dst prediction by Elman network this feedback®f SYM-H index prediction by NARX model is comparable
of one step means a time scale of 60 min which is some exWith that of the prediction of Dst by ElIman neural network.
tent enough to match the characteristic RC decay time. It
should be noted also that the RC decay processes asso§- piscussion and conclusions
ated with RC ion losses persistently occur during both of the
storm main and recovery phases rather than only the recovin this study, a new kind of neural network has been intro-
ery phase. So, the insufficiency of classical EIman ANN in duced for the first time to predict storm time SYM-H index.
catching the characteristic RC decay time would deterioratqts prediction capability is examined and compared with El-
the prediction performance of SYM-H for both of main and man network and previous work for Dst prediction. The
recovery phases of the storms. NARX model introduced in this paper shows much better
However, the EIman neural network has potential capabil-capability than Elman network for SYM-H prediction, which
ity to catch more complex processes due to the connectiongsan partly be attributed to a key feedback to the input layer
from the hidden layer to the output. It is possible that a mod-from the output neuron with a suitable time delay length. An
ified Elman ANN may become powerful as NARX by using extensive work of training and testing shows that when the
new techniques like pruning method etc. length of the output feedback sequence (i.e., the context unit
number)L is 24 corresponding to a time length of 120 min,
4.3 Comparison with previous Dst prediction by ANN the NARX network gets the best performance.
It shows that although Elman network can make very ex-
A practical comparison between the SYM-H prediction per- cellent prediction of Dst, it is not able to predict the variation
formances of our NARX model with previous ones is indeed of SYM-H index with satisfied high accuracy at least in its
hard to be made, since the prediction of SYM-H index haspresent frame. The prediction errors are particularly large
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Table 5. Comparison of Dst prediction by Elman network with SYM-H by NARX ANN.

IMF/SW Input history Prediction result
Model data source (Mins)
0 RMSE (nT) ARV
Wu & Lundstedt 60 0.90 15.5 0.19
Dst prediction OMNI 240 0.92 4.1 0.16
rﬁ’]o ol 480 0.92 13.8 0.15
720 0.92 14.1 0.15
SYM-H prediction ACE 90 0.95 17.1 0.11
model of NARX WIND 90 0.91 14.6 0.18

near the maximum of the main phase (minimum SYM-H) especially for the early recovery phase, which involves vari-
and for the recovery phase. This may be attributed to a laclous decay mechanisms with ion lifetimes from tens of min-
of the inner status information of the ring current in the net- utes for pitch angle scattering by EMIC wave-particle inter-
work input. The input of the BP network is only the parame- actions Jordanova et gl.1997, 2001 to tens of hours or
ters of outer space containing nothing on the information ofmore for charge-exchange and Coulomb collision loss etc.
inner status of the magnetosphere, while the context units oThis proper output-feedback delay time length may some-
the Elman network fed back from the hidden neurons containwhat change with the collected storm samples, because dif-
the history information of inner status only 1 step, i.e. 5 min ferent type of individual magnetic storm would have different
in this study. This length is too short to catch the character-characteristic evolution and decay time.

istic time scale of RC decay that is at least tens of minutes.  Different combinations of solar wind and IMF parame-

The development, evolution and decay of the ring current’€rs for input and different time length of input parameters

are controlled by both aspects of solar wind driving and mag-Vould affect the prediction performance of the NARX net-

netospheric internal physical status. The solar wind drivingwork’ which have not been verified yet in this study. So the

dominates the initial and main phase of the storm, which carPr€S€Nt NARX network and its prediction result are not nec-

be somewhat easily implemented by taking their key parame;essar”y the most optimum and the best. They will be exam-

ters with proper history length as the external input of the net—Ined In anda(;]companyl(;lg |nvest|g?t|r?n.’\|:gv>\éever, olur StUd{(
work. The internal status of the magnetosphere affect all thé_1aS p:que_ t ef great & Varg?((iﬂea _t de neural networ
course of RC growth, evolution and decay, especially dom-N Prediction of storm-time -Hin e>.<. "
inate the recovery phase of the storm. How to effectively The Elman neural network has potential ca}pabll|ty to catc.h
bring the internal status information of the ring current to More complex processes due to the connections from the hid-
take part in the prediction is the key point to promote the pre-d€n layer to the output. It might be true in principle that
diction performance. The global feedback in NARX network the Elman neural network could _make storm_predlctlon at
developed in this study directs the predicted SYM-H which |€ast as well as NARX even for higher resolution data. But
contains the nearly real ring current information into the ex- it Néeds major improvement by using new techniques like
ternal input, thus provides an effective way to get this point.Pruning method etc. It is worthy of optimizing Elman net-
Further, how to shape the feedback to contain necessary anfork and other ANNs in SYM-H prediction with some new
sufficient information for a good prediction becomes an im- techniques in the further study.
portant problem. Here the time scale of the feedback should
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