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Abstract. A theory for nonlinear evolution of the mirror
modes near the instability threshold is developed. It is shown
that during initial stage the major instability saturation is pro-
vided by the flattening of the velocity distribution function
in the vicinity of small parallel ion velocities. The relax-
ation scenario in this case is accompanied by rapid attenu-
ation of resonant particle interaction which is replaced by a
weaker adiabatic interaction with mirror modes. The satu-
rated plasma state can be considered as a magnetic counter-
part to electrostatic BGK modes. After quasi-linear satura-
tion a further nonlinear scenario is controlled by the mode
coupling effects and nonlinear variation of the ion Larmor
radius. Our analytical model is verified by relevant numer-
ical simulations. Test particle and PIC simulations indeed
show that it is a modification of distribution function at small
parallel velocities that results in fading away of free energy
driving the mirror mode. The similarity with resonant Weibel
instability is discussed.

Keywords. Interplanetary physics (MHD waves and turbu-
lence)

1 Introduction

Mirror mode structures have been the subject of extensive
studies since the late 1950s when they were shown to be the
result of a resonance instability, the so-called mirror insta-
bility (MI), displaying the interplay between the magnetic
pressure, the bulk plasma pressure and the pressure of res-
onant ions with almost zero parallel velocity (Vedenov and
Sagdeev, 1958). Subsequent observations have shown them
to be ubiquitous in nature, often as solitary holes or peaks in
the magnetic field (Soucek et al., 2008). Over the past half a
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century these observations have also raised a number of in-
triguing conundrums such as the occurrence of mirror dips
in regions of mirror stable plasma, the lack of mirror modes
between peak structures even though the plasma is mirror un-
stable or the violation of adiabaticity in the ion temperatures.
Recently the data from the THEMIS satellites were used to
resolve these dilemmas in terms of the global structure of
mirror modes and the role of the trapped particles in their
dynamics (Balikhin et al., 2009, 2010).

One of the first attempts of a nonlinear treatment of the
mirror instability (MI) was made more than four decades ago
by Shapiro and Shevchenko (1964). These authors using the
random phase approximation have reduced the problem of
nonlinear saturation of the MI to the study of a quasi-linear
(QL) diffusion equation for the ion distribution function. In-
deed, the background ion distribution function is shown to
be modified which leads to saturation of MI. Shapiro and
Shevchenko (1964) came to an important conclusion on the
special role of ions having small parallel velocities.

Some effects related to nonlinear saturation of mirror
waves in the magnetosheath have been already discussed by
Pantellini (1998) and Kivelson and Southwood (1996). Re-
cently Kuznetsov et al. (2007) suggested a new nonlinear
theory of MI in bi-Maxwellian plasmas that describes the
formation of magnetic holes in terms of a process known
under the name of wave collapse (Kuznetsov, 1996). A fur-
ther development of such scenario was offered by Califano et
al. (2008). The role of trapped particles in the MI nonlinear
dynamics was discussed by Pokhotelov et al. (2008), Istomin
et al. (2009a) and Istomin et al. (2009b). Recently Hellinger
et al. (2009) presented the model describing the matching
the QL theory for the space-averaged ion distribution func-
tion with a reductive perturbative description of the mirror
modes. The method was based on the numerical modelling
of the diffusive equation for the ion distribution function.

The purpose of the present manuscript is to provide a fur-
ther nonlinear analysis of the MI which, however, is based
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on the exact analytical solution of the diffusion equation.
We will show that flattening of the ion distribution function
which is inherent to the QL dynamics substantially modifies
the mirror mode dispersion equation and results in two im-
portant effects. The first one is connected with the fact that
the resonant interaction of the ions with the mirror modes
mode rapidly vanishes and gives the place to the slower adi-
abatic interaction, similar to the Bernstein-Greene-Kruskal
(BGK) modes (Bernstein et al., 1957). As the result the MI
dispersion equation becomes of the second order equation
in frequency. The second effect is associated with the addi-
tional decrease in the free energy which turns out to be much
stronger than that predicted by reductive perturbation model.

The paper is organized as follows: Sect. 2 formulates the
derivation of the general dispersion relation for the mirror
waves. The effect of flattening of the distribution function
is described in Sect. 3. The derivation of the nonlinear in-
stability growth rate is given in Sect. 4. The similarities be-
tween mirror and Weibel instabilities are discussed in Sect. 5.
Our conclusions and outlook for future research are found in
Sect. 6.

2 Mirror nonlinear dispersion relation

We consider a collisionless plasma composed of ions and
electrons embedded in a magnetic fieldB0. We shall use a lo-
cal Cartesian coordinate system where the z-axis is along the
external magnetic fieldB0, the x-axis is along the wave vec-
tor k, and the y-axis completes the triad. The total magnetic
field isB = B0+δB, whereδB corresponds to perturbation.
The perturbation of the magnetic field consists of only the
z- and x-components satisfying the property of solenoidality,
i.e. ∇ · δB ≡ ∂δBx/∂x +∂δBz/∂z = 0. TheδBy component
corresponds to the so-called non-coplanar magnetic compo-
nent, and does not enter our basic equations and thus can be
set to zero. Furthermore, our analysis will be limited to the
case of most importance when the ion temperature is much
larger than the electron temperature.

Assuming all perturbed values to vary as∼ exp(−iωt +

ik ·r) for each (k,ω) mode the linear response of the distri-
bution function for the mirror-type perturbations is

δFk =
v2
⊥

2

(
∂F

v‖∂v‖

−
∂F

v⊥∂v⊥

)
bk

−
v2
⊥

2

ω

ω−k‖v‖

∂F

v‖∂v‖

bk, (1)

whereF is unperturbed ion distribution function andδFk

corresponds to the Fourier component of the perturbation,
v⊥(||) is the perpendicular (parallel) particle velocity,k‖ is
the component of the wave vectork parallel to the external
magnetic fieldB0, ω is the wave frequency,bk = δBz(k)/B0
is the dimensionless amplitude of thek-th harmonic of the
perturbation.

The first term on the right-hand side of Eq. (1) is the so-
called mirror force (due to that the instability is called mirror
instability (MI)), it vanishes if plasma is isotropic. The sec-
ond term refers to the kinetic contribution. The MI is found
in the low-frequency limit whenω � k‖v‖. In this limit the
second term in Eq. (1) is negligible except for particles with
v|| = 0. For these particles this term is of the same order
and potentially of larger magnitude than the preceding mir-
ror term. The expansion of the resonant denominator in this
case reads

ω

ω−k‖v‖

' −
iπω∣∣k‖

∣∣ δ(v‖)+
ω2

k2
‖
v2
‖

, (2)

whereδ(x) is the Dirac delta function. Usually the second
term in Eq. (2) is neglected as the small parameter of the
order ofω/k‖vT||

∝ K, whereK is the instability threshold.
However, in the nonlinear regime the character of the expan-
sion is changed, instead of small parameterω/k‖vT||

we will
haveω/k‖1v∗, where1v∗ is the width of the zone occu-
pied by the flattening of the ion velocity distribution function
and thus the second term in Eq. (2) can be important or even
dominate.

With the help of expansion (2) the perturbation of the dis-
tribution function reads

δFk =
v2
⊥

2

(
∂F

v‖∂v‖

−
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)
bk −

v2
⊥

2

ω2

k2
‖

∂F

v3
‖
∂v‖

bk

+iπ
v2
⊥

2

ω∣∣k‖

∣∣δ(v‖)
∂F

v‖∂v‖

bk. (3)

The magnetic mirror mode is the pressure balanced structure
and thus obeys the perpendicular plasma pressure condition
(Pokhotelov et al., 2008)

δp⊥

2p⊥0
+

1

β⊥

(
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4
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i k2
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)
bk = −
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‖
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)
bk,(4)

wherep⊥0 is the equilibrium perpendicular plasma pressure
andδp⊥ =

∫
(mv2

⊥
/2)δFkdv corresponds to its variation. Us-

ing (3) and calculatingδp⊥, from Eq. (4) one obtains(
1+

iπm

8p⊥0

ω∣∣k‖

∣∣
∫

v4
⊥

∂F

v‖∂v‖

δ(v‖)dv−
ω2

k2
‖

IM
1

)
bk = 0, (5)

where
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∫
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∂F
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1
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3

2
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k2
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k2
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IM
1 =

m

8p⊥0

∫
v4
⊥

∂F

v3
‖
∂v‖

dv, (7)

andχ = 1+ (β⊥ −β||)/2 and superscript “M” stands for the
mirror instability.
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Equation (5) shows that generally the MI dispersion rela-
tion is the second order equation in frequency. Of course in
the linear limit the additional term, containingω2, is small as
ω2/k2

||
v2
T||

� 1 (wherevT||
is the plasma characteristic paral-

lel thermal velocity) relative to the resonant term. However,
as it will be shown below in the nonlinear regime the ex-
pansion parameterω/k||vT||

is now replaced byω/k||1u∗,
where1u∗ is the width of the “plateau” in the ion velocity
distribution, which is much smaller than the ion thermal ve-
locity. Due to that the quadratic term can be important or
even dominate.

By integrating the first term on the r.h.s. of Eq. (6) by parts
one finds

1 = K −
3

4β⊥

ρ2
i k2

⊥
−

k2
‖

k2
⊥
β⊥

(
1+

β⊥ −β‖

2
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, (8)

where

K = IM
2 −1−

1

β⊥

, (9)

and

IM
2 = −

m

8p⊥0

∫
v4
⊥

∂F

v‖∂v‖

dv. (10)

Actually the quantityK is proportional to the amount of free
energy necessary for the instability. In bi-Maxwellian plasma
it reduces to the usual value of the threshold condition,K =

KM ≡ T⊥/T|| − 1−β−1
⊥

, whereT⊥(||) is the perpendicular
(parallel) plasma temperature.

3 QL modification of the ion distribution function

For the sake of clarity we consider that due to the rapid
motion of resonant particles we assume that in the vicinity
of small parallel velocities the background ion distribution
function would flatten and takes the shape of quasi-plateau.
This to happen does not necessarily requires the assumption
of random phases and is valid even in the single-mode (sinu-
soidal) regime. In order to take into account the effect of flat-
tening of the distribution function we assume that the coeffi-
cients in Eq. (5) are not frozen into their initial values and are
evaluated from the instantaneous distribution function given
by the QL diffusion equation. In QL regime the amplitude
of oscillations remains so small that perturbations of particle
velocities and particle densities are linear relative to the wave
amplitude. Only the averaged distribution function slowly
varies under chaotic wave perturbations. The equation that
governs this slow variation has been obtained by Shapiro and
Shevchenko (1964) and is
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∂t
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2
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γk |bk|
2
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. (11)

The QL approximation is valid if
∣∣k‖

∣∣1v‖ � γk, where1v‖

is the the region occupied by diffusion. In our case1v‖ '

vT‖
. Sinceγk/

∣∣k‖

∣∣vT‖
∝ KM , the validity of QL approxima-

tion is satisfied when deviation of plasma parameters from
the equilibria is relatively small.

Equation (11) shows that the last term on the right-hand
side possesses a strong singularity in the vicinity ofv‖ →

0 and thus the most noticeable change in the shape of the
distribution function arises in this region. Therefore, Eq. (11)
reduces to

∂F

∂t
=
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γk |bk|
2 v4
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With the help of the relation

∂ |bk|
2
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= 2γk |bk|

2, (13)

Equation (12) becomes
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where
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∑
k

|bk|
2. (15)

Equation (14) can easily be solved by decomposing the vari-
ables and searching the solution in the form of Fourier-Bessel
integral. We assume that whenh = 0 the distribution function
F(h,v‖,v⊥) reduces to bi-Maxwellian form, i.e.

F0(v‖,v⊥) =
n

π
3
2 v2

T⊥
vT‖

exp
(
−v2

‖
/v2

T‖
−v2

⊥
/v2

T⊥

)
, (16)

wheren is the plasma density andvT⊥(‖)
is perpendicular

(parallel) thermal velocity.
The result can be written as

F(h,v||,v⊥) = C(v⊥)|v|||
3/2 (17)

×

∞∫
0

e
−t2x2(
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vT⊥

)4(
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)h
t

1
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3
4
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3
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where C(v⊥) = 0(3/4)nexp(−v2
⊥
/v2

T⊥
)/π2v2

T⊥
v

5/2
T‖

, 0(x)

andJν(x) are the Gamma and Bessel functions, respectively.
The plot of the distribution functionF as a function of

v|| for different values ofh and constantv⊥ is depicted in
Fig. 1. One sees that velocity diffusion leads to substantial
flattening of the distribution function for smallv||. Instead of
initial dependence∝ exp(−v2

‖
/v2

T‖
) the distribution function

now scales as∝ exp(−v4
‖
/v4

T‖
) and thus the second term on

the left (the term containing theδ-function) vanishes and the
next term in the expansion (2) starts to play an important role.
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VII

F

h=0

h=0.2

h=1

h=0.5

Fig. 1. Velocity distribution functionF as the function of the wave
amplitudeh.

4 Nonlinear regime

As it follows from Eq. (5) the first nonzero term in the MI
dispersion relation will be that proportional toω2 and the
mirror dispersion relation becomes of the second order in
frequency. Actually the flattening of the velocity distribution
mainly affects two terms in the dispersion relation contain-
ing the integralsIM

1 andIM
2 . Using the explicit expression

for the distribution function (18) one can easily calculate the
value ofIM

1

IM
1 ' −

α

v2
T⊥

(
T⊥

T||

)3/2

h−1/4, (18)

whereα =
3
160(1

4)0(1
2) ' 1.2.

For calculation ofIM
2 it is more convenient to find the devi-

ation from its equilibrium value, i.e. to findδIM
2 = IM

2 −IM
20,

where

IM
20 = −

m

8p⊥0

∫
v4
⊥

∂F0

v‖∂v‖

dv ≡
T⊥

T||

. (19)

Then one finds

IM
2 =

T⊥

T||

−µ

(
T⊥

T||

)3/2

h1/4, (20)

whereµ = −
3
320(−3/4)0(1

4) ' 1.6.
The plot ofI2 as a function ofh is depicted in Fig. 2, the

left panel. SinceIM
2 entersK it changes the free energy of

the system. The free energy necessary for the instability de-
creases with the growth of the wave energy. The latter be-
comes clear from the Fig. 2, the right panel, whereK is plot-
ted as a function ofh.

Substituting Eqs. (18) and (20) into Eq. (5) one obtains
expression for the nonlinear growth rate

γ =
|k|||vT||

α
1
2

(
T||

T⊥

) 1
4

h
1
8 (21)

×

(
KM −

3

4β⊥
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⊥
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(
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T||

)3/2

h1/4
−

k2
||

k2
⊥
β⊥

χ

) 1
2

.

Let us estimate this growth rate of the most growing mode.
We consider that in the course of QL evolution the wave am-
plitude is so small that we do not deviate substantially from
the initial most growing mode. The latter corresponds to the
values of the parallel and perpendicular wave numbers given
by the linear theory (cf. Pokhotelov et al., 2008)

(k||ρi)
2
max= β2

⊥

K2
M

12χ
, (22)

and

(k⊥ρi)
2
max= β⊥

KM

3
. (23)

Thus, the nonlinear growth rate for this mode is

γmax =
ωci

2
3
2 3

1
2 α

1
2 χ

1
2

(
T||

T⊥

)3/4

h
1
8 KM

×

(
KM −2µ

(
T⊥

T||

)3/2

h1/4

)1/2

. (24)

From Eq. (24) follows that QL saturation of the most growing
mode is attained at relatively small amplitude whenKM '

2µ
(
T⊥/T||

)3/2
h1/4 or .

δBz/B0 ≈ K2
M(T||/T⊥)3/4. (25)

At this point a few comments are in order. A further non-
linear evolution of the MI will be controlled by the effects
that were excluded during our analysis. Among them are the
mode coupling (incurred stresses) and nonlinear variations of
the FLR effect. The departure is observed when the QL evo-
lution tends to saturate the magnetic field fluctuations. If the
mode coupling is taken into consideration the magnetic en-
ergy continues to grow andb displays a sharp increase lead-
ing to a finite-time blow-up, in accordance with the model of
subcritical bifurcation (Kuznetsov et al., 2007). The termina-
tion of the singularity requires incorporation of the nonlinear
variations of the FLR effect. Such a scenario is supported
by Vlasov-Maxwell numerical simulations (e.g., Hellinger et
al., 2009).

5 Mirror and Weibel instabilities

The mathematical description of MI has much in com-
mon with another instability theoretically identified by Fried
(1959) and Weibel (1959) and usually termed Weibel insta-
bility. The Weibel instability results in the breakdown of the
plasma into current filaments. Recently, this instability has
attracted considerable attention for both astrophysical and
laboratory plasmas. For example, it is considered that this
instability can be driven in strong collisionless shock waves

Ann. Geophys., 28, 2161–2167, 2010 www.ann-geophys.net/28/2161/2010/



O. A. Pokhotelov et al.: Nonlinear Mirror and Weibel modes 2165

0.0 0.2 0.3 0.5
h

0.0

0.5

1.0

1.5

2.0

2.5

I M  2

0.0 0.2 0.3 0.5
h

-1.5

-1.0

-0.5

0.0

0.5

1.0

K

Fig. 2. The plot ofIM
2 (left) andK (right) as the function of the wave amplitudeh. The plasma parameters are:T⊥/T|| = 2 andβ⊥ = 2.

associated with various astrophysical phenomena, e.g., pul-
sar winds (Kazimura et al., 1998), gamma-ray bursts, and/or
their afterglows (Medvedev and Loeb, 1999) or gravitational
collapse of large-scale structures in the universe (Schlick-
eiser and Shukla, 2003). The Weibel instability generates
magnetic fields on a very small spatial scale of the order of
plasma skin depth. In contrast to MI the Weibel instability is
driven by the electrons with anisotropic velocity distribution.
The linear response of the electron distribution function for
the Weibel-type perturbations is

δF = −
ie

m

δBx

k
vy

(
∂F

v⊥∂v⊥

−
∂F

v||∂v||

+
ω

ω−kv||

∂F

v||∂v||

)
,(26)

whereF corresponds to the unperturbed electron velocity
distribution function,vy = v⊥sinϕ andϕ is angle between
v and the wave vector which is directed along the z-axis.

Comparing Eqs. (1) and (26) one sees that they are very
similar. The two first terms on the r.h.s. of Eq. (26) in the
round brackets plays the role of the mirror force and the last
terms describes the contribution of resonant particles. Due
to that one can expect that linear growth rate and also the
nonlinear dynamics of both instabilities might have similar
features.

Calculating the y-component of the electric current and
substituting it into the Amṕere’s law one obtains the linear
dispersion relation for the Weibel instability

IW
2 −1−

k2c2

ω2
p

−
iπω

|k|n

∫
v2
⊥

2

∂F

v||∂v||

δ(v||)dv+
ω2

k2
||

IW
1 = 0,(27)

where c is the velocity of light,ωp is the Langmuir fre-
quency,n is the plasma number density and superscriptW

stands for the Weibel instability. The quantitiesIW
1 andIW

2 ,
entering dispersion relation (27), are given by (cf. Eqs.7
and9)

IW
1 = n−1

∫
v2
⊥

2

∂F

v3
||
∂v||

dv, (28)

and

IW
2 = −n−1

∫
v2
⊥

2

∂F

v||∂v||

dv. (29)

In the case of bi-Maxwellian velocity distribution Eq. (27) re-
covers the expression for the linear growth rate of the Weibel
instability

γ =
|k|vT||

π1/2

T||

T⊥

(
T⊥

T||

−1−
c2k2

ω2
p

)
. (30)

Equation (30) shows that it is identical to the MI growth rate
if one replaces the ion quantities by the electron quantities
and the role of ion Larmor radius here is now played by the
plasma skin depth. Furthermore, the QL equations that gov-
ern nonlinear evolution of the electron distribution function
have a similar to MI form (14). It can be easily obtained from
the Vlasov equation and is

∂F

∂he

=
v2
⊥

2

∂

∂vz

(
1

v2
z

∂F

∂vz

)
, (31)

where we took into account that the dominant contribution
to the r.h.s. is provided by the electrons having small parallel
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velocities. Furthermore, the quantityh is replaced by its elec-
tron analog

he =
e2

m2
e

∑
k

|Bk|
2

k2
. (32)

whereme is the electron mass.
Thus, all conclusions that have been made for the MI

can also be applicable to the Weibel instability. After some
straightforward calculations one finds the expression for the
nonlinear growth rate of the Weibel instability. Similar to
MI, using the solution of QL equation (14) one can calculate
the quantitiesIW

1 andIW
2 . Then, after substitution them into

dispersion equation (27) one can easily obtain the nonlinear
growth rate of the Weibel instability which has the form sim-
ilar to Eq. (24).

6 Discussion and conclusions

A local analysis of the MI in a high-β non-Maxwellian
plasma taking into account the effect of flattening of the ion
velocity distribution function near the instability threshold is
presented. QL evolution of the MI was investigated by di-
rect integration of the corresponding diffusion equation. It
has been shown that due to the fattening of the ion distribu-
tion function the resonant interaction of the ions withv|| ' 0
is rapidly “switched off” and then is replaced by a weaker
adiabatic interaction with mirror mode. At this stage the mir-
ror mode behaves similar to the BGK mode (Bernstein et al.,
1957). This fact was not appreciated in the previous analy-
ses. The MI dispersion relation which in the linear regime
is a differential equation of the first order in time derivative
now becomes of the second order. Furthermore, it has been
shown that the main decrease in the free energy, necessary for
the instability, is due to the modification of the ion velocity
distribution which is very subtle near the instability thresh-
old. It was shown that during linear and QL stage the MI
evolution mathematically is similar to another instability, the
Weibel instability (Weibel, 1959), which can be described by
similar differential equations. The differences arise when one
incorporates the higher order nonlinearities. For the MI they
are quadratic in the wave amplitude whereas for the Weibel
instability they are cubic. This results in different saturated
states. In the first case they appear as solitary waves whereas
in the case of the Weibel instability they form the filamentary
structures (Palodhi et al., 2009).

The model developed in our paper still remains oversim-
plified. For example, in the case of the MI it has been
restricted by consideration of isotropic electrons and when
b < 1. The case whenb ' 1 was described by Jovanović and
Shukla (2009). Furthermore, the effect of bistability of mir-
ror modes revealed in recent observations and discussed by
Califano et al. (2008) and Jovanović and Shukla (2009) was
also outside the scope of this study. However, our analysis

has provided a deeper insight into the physics of nonlinear
dynamics of mirror modes in high-β space plasmas.
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