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Abstract. The paper describes the sensitivity of the simu-
lated precipitation to changes in convective relaxation time
scale (TAU) of Zhang and McFarlane (ZM) cumulus param-
eterization, in NCAR-Community Atmosphere Model ver-
sion 3 (CAM3). In the default configuration of the model,
the prescribed value of TAU, a characteristic time scale with
which convective available potential energy (CAPE) is re-
moved at an exponential rate by convection, is assumed to
be 1 h. However, some recent observational findings sug-
gest that, it is larger by around one order of magnitude. In
order to explore the sensitivity of the model simulation to
TAU, two model frameworks have been used, namely, aqua-
planet and actual-planet configurations. Numerical integra-
tions have been carried out by using different values of TAU,
and its effect on simulated precipitation has been analyzed.

The aqua-planet simulations reveal that when TAU in-
creases, rate of deep convective precipitation (DCP) de-
creases and this leads to an accumulation of convective in-
stability in the atmosphere. Consequently, the moisture con-
tent in the lower- and mid- troposphere increases. On the
other hand, the shallow convective precipitation (SCP) and
large-scale precipitation (LSP) intensify, predominantly the
SCP, and thus capping the accumulation of convective insta-
bility in the atmosphere. The total precipitation (TP) remains
approximately constant, but the proportion of the three com-
ponents changes significantly, which in turn alters the verti-
cal distribution of total precipitation production. The vertical
structure of moist heating changes from a vertically extended
profile to a bottom heavy profile, with the increase of TAU.
Altitude of the maximum vertical velocity shifts from upper
troposphere to lower troposphere. Similar response was seen
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in the actual-planet simulations. With an increase in TAU
from 1 h to 8 h, there was a significant improvement in the
simulation of the seasonal mean precipitation. The fraction
of deep convective precipitation was in much better agree-
ment with satellite observations.

Keywords. Meteorology and atmospheric dynamics (Pre-
cipitation)

1 Introduction

The precipitation in many general circulation models
(GCMs) has three components, namely, deep convective,
shallow convective and large-scale precipitation. In the con-
vective parameterization schemes used in GCMs there are
many tunable parameters. Some of the parameters are ob-
servable (e.g., particle size distribution), while many oth-
ers are not (e.g., convective relaxation time scale). The se-
lection of suitable values for these unobservable parameters
is one of the most challenging tasks. Since, these param-
eters are free and disposable, their values are deduced by
an indirect method. The usual method followed, is to find
the effect of a parameter on the model simulation, and then
choose a value, which maximizes agreement with observa-
tions (Mapes, 2001). These parameters are considered to be
the weakest link in the chain of the parameterization (Mapes,
2001).

The convective relaxation time scale (TAU, also known as
convective adjustment time scale) is one of the parameters,
which influences the model simulation significantly (Mishra,
2007; Lee et at., 2009). The definition and function of TAU
is described in Sect. 4.2.

It was a long-standing belief that the TAU is on the order
of 1 h to 2 h. Betts (1986) used a single column model and
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showed that, when the value of TAU was set to approximately
2 h, the observed features (e.g., wave structure and ampli-
tude observed during the GATE experiment) were accurately
reproduced. Following Betts (1986), the value of TAU has
been used as approximately 1–2 h in most of the present day
GCMs. The standard value of TAU in NCAR-CAM3 is 1 h,
which uses the Zhang-McFarlane (ZM) convection scheme
(Collins et al., 2004). In Canadian Center for Climate Mod-
eling and Analysis (CCCma) AGCM3, TAU is set to 40 min,
which also uses the ZM scheme (Lorant et al., 2006). Ric-
ciardulli and Garcia (2000) used TAU = 2 h in CCM3, which
is an older version of CAM3. On the contrary recent stud-
ies suggested that, adjustment time scale is scale dependent
and should be on the order of 12 h for 300 km horizontal res-
olution (Bretherton et al., 2004; Lee et al., 2009). Hence it
is important to investigate the sensitivity of the model sim-
ulation to changes in TAU. Recently, Frierson (2007) used a
range of values for TAU, starting from 1 h to 16 h in an ide-
alized model with a simplified convection scheme (similar to
Betts-Miller scheme) in a gray-radiation aqua-planet moist
GCM. He showed that the model simulation is not sensitive
to TAU. However, in his simplified model, there are no cloud
and water vapor radiative feedbacks. So, it is necessary to
investigate if the model simulation is sensitive to TAU in a
full GCM with water vapor and radiative feedbacks, which
is the focus of this study. Since precipitation is one of the
most important components of the Earth’s climate system,
its simulation is examined in detail in this paper. We have
carried out experiments with NCAR-CAM3 with different
values of TAU. Most of the investigation has been carried
out in an aqua-planet framework. We have also conducted
simulations in the real-planet framework to verify that our
inferences based on aqua-planet simulation are relevant to
the actual planet.

The model components are briefly described in Sect. 2,
and the experiments are described in Sect. 3. The results are
discussed in Sect. 4 and conclusions are presented in Sect. 5.

2 Description of the model

The Community Atmosphere Model version 3 (CAM3) is
a sixth generation atmospheric general circulation model
(AGCM) developed by the atmospheric modeling commu-
nity in collaboration with the National Center for Atmo-
spheric Research (NCAR). The source code, documentation
and input datasets for the model was obtained from the CAM
website (http://www.ccsm.ucar.edu/models/atm-cam).

CAM3 is designed to produce simulations with reasonable
accuracy for various dynamical cores and horizontal resolu-
tions (Collins et al., 2006; Hack et al., 2006; Hurrel et al.,
2006; Meehl et al., 2006; Rasch et al., 2006;). For this study
semi-Lagrangian dynamical (SLD) core was used at 128×64
horizontal resolution with 26 vertical levels. The model uses
the hybrid vertical coordinate, which is terrain following at

earth’s surface, but reduces to pressure coordinate at higher
levels near the tropopause.

The moist precipitation process consists of deep convec-
tive, shallow convective and stratiform processes. The phys-
ical parameterization schemes include those for deep con-
vective (Zhang and McFarlane, 1995), shallow convective
(Hack, 1994) and stratiform processes (Rasch and Kristjans-
son, 1998; Zhang et al., 2003). The updraft ensembles in ZM
are deep penetrative in nature, which rooted in the planetary
boundary layer and penetrate into the upper troposphere un-
til their neutral buoyancy levels. The top of the “shallowest”
of the convective plumes is assumed to be no lower than the
height of the minimum in saturated moist static energy (typ-
ically in the mid-troposphere). On the contrary, HK uses a
simple cloud model based on triplets, in which convective in-
stability is assessed for three adjacent layers in the vertical. If
a parcel of air in the lower layer is more buoyant than one in
the middle layer, adjustment occurs. So, unlike the deep pen-
etrative plume of ZM scheme, HK can have both shallow and
deep plumes, but no plume in HK is deeper than the thickness
of 3-model layers. Secondly, in the tropical atmosphere the
typical MSE has its minima in the mid-troposphere, so the
triplet cloud model mainly works in the lower and middle
troposphere. The above discussed designed principle of HK
scheme is such, even when ZM scheme is inactive/absent,
where only HK was operating, it could not produce plumes
which are deeper than 3 model layers. So, it is more like a
local scheme that primarily does shallow and mid-level con-
vection.

Separate evolution equations have been included for the
liquid and ice phase condensate. Condensed water detrained
from shallow and frontal convection can either form precip-
itation or additional stratiform cloud water. Convective pre-
cipitation can evaporate into its environment at a rate deter-
mined from Sundqvist (1988).

Equations governing cloud condensate include advection
and sedimentation of cloud droplets and ice particles. The
settling velocities for liquid and ice-phase constituents are
computed separately as functions of particle size character-
ized by the effective radius. Small ice particles are assumed
to fall like spheres according to the Stokes equation. With the
increase in size of the ice particles, there is a smooth transi-
tion to a different formulation for fall speeds following Lo-
catelli and Hobbs (1974). In the case of liquid drops, fall
velocities are calculated using Stokes equation for the entire
range of sizes.

To insure conservation of energy (Boville and Bretherton,
2003), the calculation of thermodynamic tendencies was re-
formulated. The dry static energy is predicted by each phys-
ical parameterization and is immediately updated. Temper-
ature and geopotential are then obtained from the updated
value of dry static energy. The dissipation of kinetic energy
from vertical diffusion of momentum is calculated explicitly
and included in the heating applied to the atmosphere.
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3 Description of numerical experiments

For this work we carried out two sets of numerical experi-
ments, one in an aqua-planet framework and the other in a
real-planet framework. Since aqua-planet framework is rel-
atively simpler in comparison to real planet, understanding
of the underlying mechanism is often easier. Finally, to see
how the aqua-planet results translate to full GCM, integra-
tions were performed in actual-planet framework. For all the
experiments, semi-Lagrangian dynamical core, 128×64 hor-
izontal resolution, 26 vertical levels, and 60 min time step
size were used.

3.1 Aqua-planet integrations

In the aqua-planet configuration all the land points are re-
placed by ocean points such that the surface drag coeffi-
cients, albedo, and evaporation characteristics are homoge-
neous over the globe. A further simplification was obtained
by fixing the solar declination. Solar insolation was fixed to
be same as on 21 March, which puts the sun overhead at the
equator. Additionally this produces another desirable sim-
plification by providing approximate hemispheric symmetry
of insolation forcing. The experiments have been performed
with a zonally symmetric SST profile as boundary condition.
The distribution of SST used in the simulation is given in
Eq. (1) (similar to the control SST of Neale and Hoskins,
2000).

TS(λ,φ) =
27[1−sin2(3φ/2)] ◦C : −π/3< φ < π/3

0◦C : Otherwise
(1)

Where,TS = Sea Surface Temperature (◦C), λ = Longitude,
φ = Latitude.

A set of integrations was performed with various values of
TAU, ranging from 1 h to infinity. The initial condition for
all simulations was from a previous aqua-planet simulation.
All the integrations were performed for 18 months and the
last 12 months were used for analysis.

3.2 Actual-planet integrations

This framework uses actual land-ocean distribution with to-
pography, observed sea surface temperature and seasonal cy-
cle of solar radiation. Two 10-year (1979 to 1988) simula-
tions were performed with observed SST (Reynolds et al.,
2002; Rayner et al., 2003), one with TAU = 1 h and another
with TAU = 8 h. The initial condition used was generated for
1 January 1979. Soil moisture and snow cover were com-
puted by the model. Supplementary information about the
numerical experiments is given in the respective places in
the following section.

Comparisons with observations were avoided for the aqua-
planet analysis, since it doesn’t represent the actual terrestrial
conditions. However, the results from the actual-planet sim-
ulations were compared with the observed data (CMAP rain-

Fig. 1. Zonal averaged time mean total precipitation (TP) with three
different TAUs, i.e. TAU (1 h), TAU (4 h), and TAU (8 h). TAU
stands for convective relaxation time scale.

fall and TRMM rainfall) for the evaluation, verification, and
performance testing.

4 Results of numerical experiments

4.1 Partitioning between precipitation components

The surface reaching precipitation in CAM3 comprises of
three components, namely, deep convective (DCP), shal-
low convective (SCP), and large-scale precipitation (LSP).
The sum of these three components is referred to as the to-
tal precipitation (TP). Figure 1 shows the zonally averaged
time mean total precipitation for TAU = 1 h, TAU = 4 h, and
TAU = 8 h. The impact is noticed mainly within 12.5◦ S to
12.5◦ N. Hence, this region is chosen for all further analysis.

In Fig. 2, the time mean area averaged (0◦ E to 360◦ E and
12.5◦ S to 12.5◦ N) precipitation, and its various components
are shown as a function of TAU. Since the maximum per-
mitted time step size for stable integration for the resolution
used is 1 h, we could not use a TAU lower than this value,
hence the lowest TAU shown in the figure is 1 h. The highest
TAU is ∞ (infinity), which is the case when deep convec-
tive scheme is switched off. From Fig. 2 the following im-
portant points emerge: (1) total precipitation is by and large
unchanged, (2) DCP, SCP, and LSP show two regimes of re-
sponse, one for TAU up to∼ 2 h, where there is no change
in their magnitudes, the other for TAU greater than∼ 2 h,
where they show monotonic changes, (3) beyond 2 h, with
increase of TAU, DCP decreases, but SCP and LSP increase.
So, the invariance in TP is because of the compensation be-
tween its components. The compensation primarily occurs
between DCP and SCP. Although, LSP shows a steady re-
sponse, it is one order of magnitude smaller than the other
two components.
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Fig. 2. Area averaged, time mean total precipitation (TP) and its
various components (DCP, SCP and, LSP) versus TAU for the re-
gion (0◦ E to 360◦ E and 12.5◦ S to 12.5◦ N). Points showed adja-
cent to the right margin represent TAU =∞. The error bars show
the respective standard deviation in time about the time mean val-
ues. Notations: TP for total precipitation, DCP for deep convective
precipitation, SCP for shallow convective precipitation, and LSP for
large-scale precipitation (also called as stratiform precipitation).

4.2 Computation of deep convective precipitation

The closure for the ZM scheme is based on the budget equa-
tion for CAPE. This budget equation may be written as:

∂A/∂t = −MbF +G (2)

Where,A represents CAPE,G represents the large-scale pro-
duction of CAPE by the grid scale dynamics, and−MbF

represents the sub-grid scale CAPE consumption by the pa-
rameterized deep convection.Mb represents the cloud base
mass flux, andF represents the rate at which cumulus clouds
consume CAPE per unit cloud base mass flux. The closure
used in the scheme, in CAM3, is a diagnostic closure condi-
tion, which is as follows:

Mb = A/τF (3)

where,τ is the convective relaxation time scale. This closure
assumes that CAPE is consumed at an exponential rate (1/τ)

by cumulus convection. This may be seen by substituting
Eq. (3) in Eq. (2), which will give Eq. (4).

∂A/∂t = −A/τ +G (4)

So, if at t = 0, CAPE isA0, in the absence of large-scale
CAPE generation, the solution will be,A = A0exp (−t/τ ),
for t > 0. Hence, when the relaxation time scale (hereafter
will be referred as TAU) is increased, it will reduce the mag-
nitude of cloud base mass flux. This in turn determines the
updraft mass flux at every level of the model, by taking the

entrainment and detrainment rate into consideration. Even-
tually, updraft mass flux along with cloud liquid water deter-
mines the DCP production at every model level, as in Eq. (5).

[DCP]i = C0· [Mu]i · [L]i (5)

where,C0 is the DCP production efficiency parameter,Mu is
the updraft mass flux, andL is the cloud liquid water at the
i-th level. The vertical integral of [DCP]i over all the model
levels, gives the surface reaching DCP.

To understand, why change in TAU up to 2 h, there was
no impact, 3-cases were chosen (namely, TAU (1 h), TAU
(2 h), and TAU (8 h)) for a more detailed investigation. Fig-
ure 3 shows surface reaching DCP, vertical structure of DCP
production rate, updraft mass flux, and cloud liquid water.
The top panel of the figure shows the comparison between
TAU (1 h) and TAU (2 h) and the bottom panel for TAU (1 h)
and TAU (8 h). Figure 3a3 shows that updraft mass flux in
TAU (1 h) and TAU (2 h)) is almost same at all the model lev-
els, except in the layers adjacent to the surface. Figure 3a4
shows the cloud liquid water is almost same in both the cases.
Hence, as expected, the DCP production rate (Fig. 3a2) is
also found to be same at all the model levels and so is the
surface reaching DCP (Fig. 3a1).

Bottom panel shows that updraft mass flux is lower for
TAU (8 h) than TAU (1 h). The cloud liquid water is found
to be higher in TAU (8 h). The effect of reduction in updraft
mass flux on the production of DCP outweighs that caused
by the increase in cloud liquid water and thus resulting in
a lower value of DCP production. Figure 4 shows the en-
trainment and detrainment rates for TAU (1 h), TAU (2 h) and
TAU (8 h). Figure 4a3 and (b3) show the net lateral mixing
due to the combined effect of entrainment and detrainment.
The net lateral mixing is found to be negative in most of the
levels in TAU (1 h) and TAU (2 h), which is the reason be-
hind the decrease in updraft mass flux with height in these
simulations. Whereas in TAU (8 h), the net lateral mixing is
nearly zero from the surface up to 300 hPa. This is why, the
updraft mass flux does not show an appreciable change with
height.

The zonally averaged time mean, cloud base mass flux,
CAPE, and CAPE consumption rate per unit cloud base mass
flux, are shown in Fig. 5. It is noticed that, an increase in
TAU results in a decrease in the cloud base mass flux, in-
crease of CAPE, and also increase of CAPE consumption
rate per unit cloud base mass flux. From Eq. (3), it was ex-
pected that, increase of TAU will lead to decrease in cloud
base mass flux, which is confirmed from Fig. 5a1 and b1.
When TAU is less than 2 h, the reduction in the updraft mass
loss due to lateral mixing is lower and hence compensates
for the decrease in cloud base mass flux. Hence there is no
impact on DCP when TAU is increased till 2 h. But, for TAU
greater than 2 h, the reduction of cloud base mass flux is more
than the reduction of lateral mixing, which is why DCP de-
creases after 2 h.
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Fig. 3. Top panel shows the comparison of TAU (1 h) and TAU (2 h), and bottom panel shows the comparison of TAU (1 h) and TAU (8 h).
(a1) and(b1) show the zonal averaged time mean surface reaching DCP (mm/day),(a2) and(b2) show the vertical profile of area (0◦ E to
360◦ E and 12.5◦ S to 12.5◦ N) averaged DCP production (kg/kg/day),(a3) and(b3) show the vertical profile of area (0◦ E to 360◦ E and
12.5◦ S to 12.5◦ N) averaged updraft mass flux (mb/day), and(a4) and(b4) show the vertical profile of area (0◦ E to 360◦ E and 12.5◦ S to
12.5◦ N) averaged cloud water (gram/m2).

4.3 Shallow convective precipitation and large scale
precipitation

Figure 6 shows the impact of TAU on shallow convective
precipitation (SCP) and large-scale precipitation (LSP). SCP
and LSP are found to be more when TAU is 8 h. Since, there
is considerable difference in SCP and LSP in the region 7◦ S
to 7◦ N (see a1 and b1), our analysis will now be confined to
this region. When TAU is 1 h, SCP and LSP production was
primarily confined to the upper troposphere (see Fig. 6a2 and
b2). When TAU is 8 h, a significant enhancement of SCP and
LSP is noticed in lower and mid troposphere.

Figure 7 shows the vertical profiles of moist static energy
(MSE), relative humidity, liquid condensate and ice conden-
sate from TAU (1 h) and TAU (8 h). When TAU is 8 h, the
MSE is found to be higher in the lower troposphere and cloud
liquid water is higher in lower as well as mid troposphere.
Hence, the enhancement of SCP in the lower troposphere is
due to increase of both MSE and cloud liquid water. How-
ever, increase in SCP in the mid troposphere is due to the in-
crease of cloud liquid water alone, as there is not much differ-
ence in MSE. Figure 7b shows that RH is more in the lower
and upper troposphere, when TAU is higher. As can be seen
from Fig. 7c, the liquid condensate is found to be more in the

lower and middle troposphere, when TAU is 8 h, whereas,
ice condensate is not significantly different (Fig. 7d). Hence,
higher value of LSP in the lower troposphere is due to the
increase in RH when TAU is 8 h, whereas, in the middle tro-
posphere, the increase in LSP is caused by the increase in
liquid condensate.

It is noticed in Fig. 6 that there is no considerable differ-
ence between TAU (1 h) and TAU (2 h). This is due to the
fact that, DCP was unchanged up to 2 h because of the com-
pensation between the decrease of cloud base mass flux and
increase of the lateral mixing.

4.4 Temperature and moisture

4.4.1 Vertical structure

Figure 8 shows the difference in Temperature and specific
humidity between TAU values of 8 h and 1 h. The tempera-
ture is higher below 550 hPa, and above 250 hPa, when TAU
is 8 h. Between 550 hPa and 250 hPa, the temperature is
found to be lower than that in TAU (1 h). Similarly, specific
humidity is found to be higher when TAU (8 h), from the sur-
face up to 600 hPa, and lower between 600 hPa and 350 hPa.
Hence, both temperature and specific humidity, are found to
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Fig. 4. Top panel shows the comparison of TAU (1 h) and TAU (2 h), and bottom panel shows the comparison of TAU (1 h) and TAU (8 h).
(a1) and(b1) show the vertical profile of area (0◦ E to 360◦ E and 12.5◦ S to 12.5◦ N) averaged updraft mass entrainment rate (per day),
(a2) and (b2) show the vertical profile of area (0◦ E to 360◦ E and 12.5◦ S to 12.5◦ N) averaged -ve updraft mass detrainment rate, (per
day), and(a3) and (b3) show the vertical profile of area (0◦ E to 360◦ E and 12.5◦ S to 12.5◦ N) averaged updraft mass entrainment and
detrainment rate, (per day).

be responsible for the observed structure of MSE and RH.
Similar difference was observed in geopotential height (not
shown here), but its contribution to MSE is an order of mag-
nitude less than that contributed by temperature and mois-
ture.

4.4.2 Heating rates

The heating rate due to moist and radiative processes are
shown in Fig. 9. Top panel shows the heating rate with TAU
(1 h) and TAU (8 h), while the bottom panel shows the differ-
ence between them i.e. [TAU (8 h) – TAU (1 h)]. Figure 9a2
indicates that, relatively TAU (8 h) has larger moist heating
below 550 hPa and above 250 hPa. In between the above two
altitudes it is is lesser than that of TAU (1 h).

However, Radiative processes cause more cooling below
500 hPa and between 350 hPa and 250 hPa, and does the re-
verse at all other model layers. Close comparison of Fig. 9a2
and b2 with Fig. 8a revels that, the moist processes are pri-
marily responsible for the observed temperature structure,
discussed above.

4.4.3 Surface evaporation and large-scale moisture con-
vergence

Figure 10a shows the difference in zonally averaged, time
mean, surface evaporation between TAU (8 h) and TAU (1 h).
Similarly, Fig. 10b shows the difference in the large-scale
moisture convergence i.e. (PRECIP – EVP). It is noticed
from Fig. 10a that, surface evaporation is more in TAU (8 h)
over∼ 10◦ S–10◦ N, and beyond 20◦ S/N. However, between
10◦ S/N to 20◦ S/N it is lower than that in TAU (1 h). More-
over, over equatorial belt (5◦ S–5◦ N), the difference is al-
most zero. Figure 10b shows that, over 5◦ S–5◦ N, the large-
scale moisture convergence in TAU (8 h) is higher, whereas
it is found to be lower in between 5◦ S/N and 12.5◦ S/N. In
Fig. 8b, it was noticed that, for TAU (8 h), over 7◦ S–7◦ N,
the specific humidity is higher in the atmospheric column
except between 600 hPa to 400 hPa. For the latitudinal belt
between 7◦ S–7◦ N, the higher specific humidity in the atmo-
spheric column is primarily due to increase in the large-scale
moisture convergence into this region, and partly due to the
local evaporation. Figure 10c1 shows the vertical profile of
the lateral moisture transport into this region. Positive values
indicate transport into the region, whereas, negative values
indicate transport out of the region. Figure 10c2 shows the
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Fig. 5. Zonal averaged time mean quantities. Top panel shows the comparison of TAU (1 h) and TAU (2 h), and bottom panel shows the
comparison of TAU (1 h) and TAU (8 h).(a1) and(b1) show the cloud base mass flux (mb/day),(a2) and(b2) show CAPE (J/Kg),(a3) and
(b3) showF , which is the CAPE consumption rate per unit cloud base mass flux (J/Kg/Mb).

Fig. 6. Time mean quantities with TAU (1 h), TAU (2 h), and TAU (8 h).(a1) Zonal averaged SCP,(b1) Zonal averaged LSP,(a2) Vertical
distribution of the area averaged SCP production over 0◦ E to 360◦ E and 7◦ S to 7◦ N, and(b2) vertical distribution of the area averaged
LSP production over 0◦ E to 360◦ E and 7◦ S to 7◦ N.
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Fig. 7. Vertical structure of the time mean area averaged quantities over 0◦ E to 360◦ E and 7◦ S to 7◦ N with TAU (1 h) and TAU (8 h).
(a) Moist Static Energy (MSE),(b) RH, (c) liquid condensate, and(d) ice condensate.

Fig. 8. Vertical structure of the time mean area averaged quantities over 0◦ E to 360◦ E and 7◦ S to 7◦ N with TAU (1 h) and TAU (8 h).(a) T ,
and(b) Q.

difference between them, i.e. [TAU (8 h) – TAU (1 h)]. It
can be noticed from the figure that, more amount of moisture
is coming into this region in the lower troposphere, for the
TAU (8 h) case. On the other hand, more amount of moisture

is also going out from this region in the middle and upper tro-
posphere. This resembles the profile of the specific humidity
that was noticed in Fig. 8b.

Ann. Geophys., 28, 1827–1846, 2010 www.ann-geophys.net/28/1827/2010/
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Fig. 9. Top panel shows the vertical structure of the time mean area averaged quantities over 0◦ E to 360◦ E and 7◦ S to 7◦ N with TAU
(1 h) and TAU (8 h).(a1)Temperature tendency due to moist processes,(b1) temperature tendency due to radiative processes. Bottom panel
shows the differences between TAU (8 h) and TAU (1 h).

Fig. 10. (a)Difference [TAU (8 h) – TAU (1 h)] of the zonally averaged time mean surface evaporation in mm/day.(b) Difference [TAU (8 h)
– TAU (1 h)] of the zonally averaged time mean large-scale moisture convergence.(c1) Vertical profile of the zonally averaged time mean
moisture transport into the region 7◦ S–7◦ N, (kg/m/s).(c2) Vertical profile of the difference [TAU (8 h) – TAU (1 h)] of the zonal averaged
time mean moisture transport into the region 7◦ S–7◦ N, (kg/m/s).
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Fig. 11. Zonally averaged time mean quantity with TAU (1 h), and TAU (8 h),(a1) wind magnitude at lowest model level (m/s),(a2) per-
centage change of magnitude of wind at the lowest model level of TAU (8 h) with respect to TAU (1 h),(b1) dq at lowest model level (g/kg),
(b2) percentage change of dq for TAU (8 h) with respect to TAU (1 h).
Notation: Percentage change of TAU (8 h) with respect to TAU (1 h) = [(TAU (8 h) – TAU (1 h))/TAU (1 h)}·100, dq =QS (TS) – QA.

4.4.4 Surface level wind strength and moisture deficit

Figure 11a1 shows the surface level wind strength, and
panel (b1) shows the moisture deficit at the 1st model level.
In Fig. 11a2 and b2, the corresponding percentage change is
shown i.e., [{TAU (8 h) – TAU (1 h)}/TAU (1 h)]·100. Wind
strength in TAU (8 h) is found to be higher over 10◦ S–10◦ N
and beyond 20◦ S/N, and lower over 10◦ S/N and 20◦ S/N.
On the other hand, the moisture deficit at the 1st model level,
is found to be lower with TAU (8 h), between 10◦ S–10◦ N. A
closer look at Fig. 10a and Fig. 11a2 and b2, reveals that the
observed surface evaporation profile is due to the combined
effect of wind strength and moisture deficit at the 1st model
level (dq). However, the surface wind strength is found to be
the primary cause, for the enhancement of evaporation over
10◦ S–10◦ N, which in turn gets transported into 7◦ S–7◦ N,
by the lateral moisture convergence and causes higher spe-
cific humidity in that region.

4.5 Large scale circulation

4.5.1 Meridional cell

Time mean, zonally averaged, meridional circulation is
shown in Fig. 12a and b, respectively for TAU (1 h) and TAU
(8 h). In the background of these plots, zonally averaged time
mean total surface precipitation is also shown. The position
of the ITCZ and position of the strongest ascent are found to

coincide at the same latitudes. The notable differences be-
tween the two cases i.e., TAU (1 h) and TAU (8 h) are the
following: in TAU (1 h) the circulation over the equatorial
belt is weak, whereas in TAU (8 h) circulation over the same
region becomes strong. The rising limb of Hadley cell shifts
towards the equator in TAU (8 h), associated with strong sur-
face winds over the equatorial belts. This strengthening of
the circulation, in turn, leads to an increase in the moisture
convergence into the equatorial region.

4.5.2 Vertical velocity

Zonally averaged time mean vertical pressure velocity
(omega) is shown in Fig. 13a1 and a2 for TAU (1 h) and
TAU (8 h), respectively. A negative value of omega is as-
sociated with ascending motion, which is indicated by the
background gray shading. It is observed that the ascending
limb is more confined to the equator in TAU (8 h). The latitu-
dinal positions of the maximum omega are noticed over the
corresponding locations of the ITCZs/ITCZ, i.e.±7◦ and 0◦

in TAU (1 h) and TAU (8 h), respectively. The notable differ-
ence is the vertical position of the maximum omega. In TAU
(1 h) there are two maxima in the vertical. The primary max-
imum occurs in the upper troposphere at 300 hPa, whereas,
the secondary maximum occurs at 850 hPa, both being away
from the equator. In the case of TAU (8 h), the maximum
omega occurs at lower troposphere i.e. around 800 hPa, and
is found to be over the equator. Another notable aspect is
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Fig. 12. Zonally averaged time mean meridional circulation (vector arrows: v; 50xw) and total precipitation (grey line) for(a) TAU (1 h),
and(b) TAU (8 h).

Fig. 13. Zonally averaged time mean quantities with TAU (1 h) and TAU (8 h).(a1) Pressure vertical velocity with TAU (1 h),(a2) pressure
vertical velocity with TAU (8 h).(b1) Heating rate due to all the moist processes with TAU (1 h), and(b2) heating rate due to all the moist
processes with TAU (8 h). Gray shading indicates the negative values. Negative omega means ascending motion, and negative heating rate
means cooling due to evaporation of precipitating precipitation and melting of the precipitating ice. Contours are labeled inside the plots.
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Fig. 14. Vertical distribution of the net precipitation production from each component of the total precipitation. Zonally averaged time
mean values are shown. Unit of all the quantities are same and in kg/kg/day. Notation: DCP represents the deep convective precipitation,
which is computed by deep convective precipitation scheme. SCP represents the shallow convective precipitation, which is computed by
shallow convective precipitation scheme. LSP represents the large-scale precipitation, which is computed by large-scale precipitation scheme.
Shading indicates (-)ve values i.e. re-evaporation of precipitating precipitation and cloud liquid water.

Fig. 15. Time evolution of area (12◦ S to 12◦ N and 0◦ E to 360◦ E) averaged quantities for integration with TAU (1 h) and TAU (8 h).
(a) Cloud base mass flux (mb/day),(b) CAPE (J/Kg),(c) DCP. (d) F , which is CAPE consumption rate per unit cloud base mass flux
(J/Kg/Mb), (e)SCP, and(f) LSP.
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Fig. 16. Time evolution of area (12◦ S to 12◦ N and 0◦ E to 360◦ E) averaged quantities. Shown quantities are normalized against their
maximum values.(a) TAU (1 h), and(b) TAU (8 h).

Fig. 17. Area averaged (0◦ E to 360◦ E and 12.5◦ S to 12.5◦ N), time mean (all months of 10 years) quantities for TAU (1 h) and TAU (8 h).
(a) TP, in this plot,(b) deep convective precipitation,(c) shallow convective precipitation,(d) large scale precipitation,(e) EVP, (f) PRECIP
– EVP,(g) magnitude of wind at 1st model level,(h) specific humidity at the 1st model level, and(i) CAPE.
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Fig. 18. Area averaged (0◦ E to 360◦ E and 30◦ S to 30◦ N), time mean (all months of 10 years) quantities for TAU (1 h) and TAU (8 h).
(a) TP, in this plot,(b) deep convective precipitation,(c) shallow convective precipitation,(d) large scale precipitation,(e) EVP, (f) PRECIP
– EVP,(g) magnitude of wind at 1st model level,(h) specific humidity at the 1st model level, and(i) CAPE.

the strength of maximum omega. The maximum omega in
TAU (1 h) is −0.08 to−0.09 Pa/s, whereas, in TAU (8 h), it
is −0.15 Pa/s (see Figs. 4.16a1, and a2).

Figure 13b1 and b2 shows the latitude-height section of
the heating rate due to the moist processes, for both the cases.
The background gray shading indicates the negative heating
due to the evaporation of falling precipitation and melting
of the precipitating ice. In TAU (1 h), the primary heating
occurs in the upper troposphere, and the secondary in the
lower troposphere, whereas, in TAU (8 h), the reverse is true.

Besides heating due to moist processes, there are some
other heating terms in the model equations, e.g., solar radia-
tion, long wave radiation, diffusion and KE dissipation, and
temperature advection, which are not shown here. However,
the moist heating is found to be the most important term and
largely resembles the structure of omega. Hence, it can be
inferred that the structure of omega is primarily governed by
the distribution of moist heating.

4.5.3 Vertical distribution of precipitation production

Moist heating comprises of the heating due to DCP, SCP
and LSP. Moreover, it also includes the negative heating due
to re-evaporation and the (±)ve heating associated with the
freezing/melting of falling precipitation. In Fig. 14 the ver-
tical distribution of the aforementioned precipitation compo-
nents are shown individually. With increase of TAU, the fol-

lowing can be noted from the figure: (1) DCP is decreasing
largely throughout the troposphere, (2) SCP is increasing sig-
nificantly in the lower- and mid-troposphere, and (3) LSP is
increasing in the mid-troposphere. It is also noteworthy that,
the magnitude of SCP is approximately one order higher than
LSP.

In TAU (1 h), the evaporation of shallow and large scale
precipitation (see Fig. 14b1 and c1, respectively) does oc-
cur in the lower mid-troposphere, which is the reason be-
hind the occurrence of primary peak in heating in the up-
per troposphere, and the bi-modal heating structure. In TAU
(8 h), most of the precipitation occurs in the lower to mid
troposphere by shallow convection (see Fig. 14b2). A small
amount of low-level evaporation of large-scale precipitation
is noticed in TAU (8 h), which is adjacent to the surface.

4.6 Evolution during spin-up

To understand the impact of change in TAU the evolution of
various parameters during the spin-up period was examined.
For this, the hourly model output of both the simulations i.e.,
TAU (1 h) and TAU (8 h), were analyzed. Both the simu-
lations were started from the same initial conditions, which
were prepared from a 5-year long integration in aqua-planet
mode with the default parameter settings. Thus, TAU (1 h)
simulation is basically the continuation of the previous run,
whereas, TAU (8 h) simulation is a new run. In Fig. 15, the

Ann. Geophys., 28, 1827–1846, 2010 www.ann-geophys.net/28/1827/2010/



S. K. Mishra and J. Srinivasan: Sensitivity of simulated precipitation to changes in TAU 1841

Fig. 19. Vertical profile of the difference of the area averaged, time mean, quantities between TAU (8 h) and TAU (1 h), at the raining points.
grid points where the total precipitation is more than 1 mm/day are considered as the raining points. Top panel for the deep tropics (0◦ E
to 360◦ E and 12.5◦ S to 12.5◦ N) and bottom panel for the whole tropics (0◦ E to 360◦ E and 30◦ S to 30◦ N). (a1) and(a2) RH difference
(%), (b1) and(b2) specific humidity difference (gram/kg),(c1) and(c2) atmospheric temperature difference (◦C). Time mean is calculated
by averaging over all the months of 10 years.

evolution of cloud base mass flux, DCP, SCP, CAPE, CAPE
consumption rate per unit cloud base mass flux, and LSP, has
been shown. Each of the variables shown is found to reach a
quasi-steady state within the 96th hour of model integration.

From Fig. 15a and c, respectively, it can be seen that, at
time t = 0 h, there is a difference in cloud base mass flux
and DCP, whereas all other variables shown in the figure
are same in both the cases. Subsequently, difference in all
other variables started showing up, which was seen to grow
in time and arrive at their equilibrium level after a few hours
of model integration. In Sect. 4.2, the computation of DCP
has been illustrated, where Eq. (3) determines the cloud base
mass flux. At timet = 0 h, CAPE and CAPE consumption
rate were same (see Fig. 15b and d), so higher TAU leads
to lower cloud base mass flux. Equation (5) determines the
DCP, which depends upon C0, updraft mass flux, and cloud
liquid water. C0 is a constant parameter and same for both
the simulations, and cloud liquid water was also found to be
same at timet = 0 h (not shown here). Updraft mass flux
depends upon cloud base mass flux and lateral mixing due to
entrainment and detrainment. We observed at timet = 0 that,
the lateral mixing is same for both the cases. However, cloud
base mass flux is lower in TAU (8 h), which leads to a lower
updraft mass flux. A lower value of updraft mass flux, in turn
leads to lower DCP. Since convective precipitation consumes

CAPE, decrease in DCP results in increase of CAPE (see
Fig. 15b), which in turn increases the DCP, and CAPE con-
sumption rate (see Fig. 15c and d). This process continues
till a quasi-steady state is reached, which happens at around
the 96th hour (see Fig. 15f). During this time, SCP and LSP
also increase, because of the increase in the instability of the
atmosphere (measured in terms of CAPE).

Figure 16 shows the evolution of the normalized DCP,
SCP, LSP, and CAPE to illustrate the lead-lag between them.
Top panel (Fig. 16a) is for TAU (1 h), and the bottom panel
(Fig. 16b) is for TAU (8 h). As discussed above, TAU (1 h)
does not show any major change, which is because of the fact
that, it is the continuation of the previous run from where the
initial conditions were extracted. However, the simulation
with TAU (8 h) shows an increase in CAPE followed by an
increase in DCP, followed by an increase in SCP and then an
increase in LSP.

4.7 Actual-planet simulations

To understand how the impact of TAU in aqua-planet trans-
lates to the real Earth, simulations were performed with
actual land and sea-ice distribution, and fully interactive
physics. Several numerical experiments were performed,
with climatological and observed SSTs. The model was
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Fig. 20. Area averaged (0◦ E to 360◦ E and 20◦ S to 20◦ N), time
mean (all months) deep convective precipitation fraction from ob-
servation (PR), TAU (1 h) and TAU (8 h).

integrated for 10 years with the climatological SST, and for
10 years with the observed SST, with TAU (1 h) and TAU
(8 h).

4.7.1 Area integrated precipitation

Monthly data of 10 years from the climatological SST sim-
ulations were analyzed to address the impact of TAU on the
area-integrated precipitation. Figure 17 shows the impact on
precipitation and its associated variables in the deep tropics
(12.5◦ S to 12.5◦ N). From this figure it is seen that TP is
largely same, the change being less than 2% of the mean TP
(see Fig. 17a). DCP is found to decrease (see Fig. 17b), and
SCP and LSP are found to increase with increase in TAU (see
Figs. 17c, d). So, it is inferred that TP is insensitive to TAU
due to the compensation between the three components of
precipitation. Figure 17e shows that, there is an increase in
evaporation over the region. Hence large-scale convergence
[PRECIP-EVP] is reduced (see Fig. 17f). The increase in
evaporation is found to be due to the enhancement in wind
strength at 1st model level (see Fig. 17g). Surface evapora-
tion is a function of wind strength and humidity. The specific
humidity is higher at the 1st model level (see plot h), thus
reducing the moisture deficit. Hence, it is inferred that the
increase in evaporation is due to the increase in wind strength
at the 1st model level. Figure 17i shows that increase in TAU
leads to increase in CAPE. This finding is similar to those
found in aqua-planet simulations.

Figure 18 shows the response of the above-discussed vari-
ables in the whole tropics (0◦ E to 360◦ E and 30◦ S to 30◦ N).
It is noticed that, DCP is decreasing (see plot b), and SCP
and LSP are increasing (see Fig. 18c and d), with increase
in TAU. However, TP is found to decrease by∼ 5% (see

Fig. 18a). Evaporation is found to decrease (see Fig. 18e),
whereas, wind strength at the 1st model level is found to in-
crease (see plot g). Figure 18h shows that specific humidity
in the 1st model level is increasing, which means reduction
in the moisture deficit at the 1st model level. Hence, it is
inferred that, the response of evaporation is due to the dom-
inance of the response of specific humidity over the wind
strength at the 1st model level. Since, in the deep trop-
ics there is an enhancement of evaporation, it could be be-
cause of the opposite response in the rest of the tropics (from
12.5◦ N/S to 30◦ N/S). Figure 18f shows the enhancement in
the large-scale moisture divergence. The increase in CAPE
with increase of TAU can be seen from Fig. 18i.

Figure 19 shows the vertical profile of the difference in
RH, Q, andT , for deep tropics (in top panel), and for the
whole tropics (bottom panel). Increase of TAU leads to in-
crease in RH throughout the atmosphere (see Fig. 19a1 and
19a2). Specific humidity (Q), is found to increase below
500 hPa, (see plot b1 and b2). Temperature (T ) is noticed
to have increased in the lower (below 850 hPa), and upper
(200–100 hPa) troposphere, whereas, in between it gets re-
duced with increase in TAU. So, the increase in RH in the
lower troposphere is attributable to the increase inQ, but in
the middle troposphere, it is primarily attributable to the de-
crease inT . In the upper troposphere, the increase in RH
is due to the increase inQ, (not shown here). However, an
exception is plot (a2), which shows a slight decrease of RH
between 100 to 200 hPa, which is because of the dominant ef-
fect of increase in temperature (see Fig. 19c2) over the small
increase inQ (see Fig. 19b2) at those levels.

Rasch et al. (2006) showed that the proportion of precipi-
tation components in CAM3 is not satisfactorily simulated,
though the simulated total precipitation is in close agree-
ment with the observation. We noticed that TAU affects the
proportion of the precipitation components, by keeping the
TP by and large the same. In Fig. 20, the fraction of deep
convective precipitation is shown from observation (TRMM
Precipitation Radar), TAU (1 h) and TAU (8 h). TRMM
product 2A23 places the majority of the shallow convec-
tive clouds in the stratiform subcategory (Schumacher and
Houze, 2003). So, to compare with the TRMM data, we use
similar classification of the TP i.e. deep convective and re-
maining as stratiform. Figure 20 shows that, in observation
the DCP is around 40% whereas in TAU (1 h) it is around
90%. This is in agreement with the results shown by Rasch
et al. (2006). However, in TAU (8 h), proportion of DCP is
seen to be around 50%, which is very close to the observa-
tion.

4.7.2 Seasonal mean simulation

To see the response of the seasonal mean precipitation distri-
bution, we analyzed 10-years (1979 to 1988), data from the
observed SST simulations, with TAU (1 h) and TAU (8 h).
The comparisons with CMAP estimates are shown.
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Fig. 21.Climatological mean DJF precipitation (mm/day) for(a) TAU (1 h), (b) TAU (8 h), (c) CMAP, (d) [TAU (8 h) – TAU (1 h)], (e) [TAU
(1 h) – CMAP], and(f) [TAU (8 h) – CMAP]. The climatological mean is derived from 10 years (1979 to 1988).

Fig. 22.Climatological mean JJA precipitation (mm/day) for(a) TAU (1 h), (b) TAU (8 h), (c) CMAP, (d) [TAU (8 h) – TAU (1 h)], (e) [TAU
(1 h) – CMAP], and(f) [TAU (8 h) – CMAP]. The climatological mean is derived from 10 years (1979 to 1988).
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Fig. 23. Difference in the Climatologically mean precipitation (mm/day) between TAU (8 h) and TAU (1 h). The left panel is for DJF and
the right panel for JJA.(a) and(b) Total precipitation,(c) and(d) Convective precipitation, and(e) and(f) Large-scale precipitation. The
climatological mean is derived from 10 years (1979 to 1988).

From Fig. 21a, it is noticed that, the control simulation
successfully captures many of the observed features during
Northern Hemisphere winter, e.g., south Pacific and south
Atlantic convergence zones, precipitation minima over the
sub-tropics of the eastern parts of the oceans of both the
hemispheres. Similarly Fig. 22a shows that, the control sim-
ulation captures the broad features of Northern Hemisphere
summer e.g., precipitation maxima along 10◦ N, strong pre-
cipitation over western Pacific, precipitation over eastern Pa-
cific, and precipitation minima over the sub-tropical eastern
parts of the oceans in both the hemispheres. These are found
to be consistent with the previous studies e.g., Hurrell et
al. (2006), Rasch et al. (2006), Hack et al. (2006), Collins
et al. (2006), and Meehl et al. (2006).

However, there do exist many biases (Hurrell et al., 2006).
During northern winter, the precipitation over the south of the
equator between 60◦ E to 120◦ W is underestimated, and over
tropical Africa, northern Australia, and north of the equator
over the western Pacific, it is overestimated. Similarly, dur-
ing northern summer, over the equatorial zone of western,
eastern, and central Pacific, and eastern and head of the Bay
of Bengal, the model underestimates the precipitation. Over
Saudi Arabia, western Indian Ocean, western Arabian sea,
and western part of south Pacific, the precipitation is overes-
timated.

From Fig. 21, it was noticed that, increase of TAU leads to
increase in precipitation south of the equator between 60◦ E
to 120◦ W, and south Pacific convergence zone. On the other
hand, there is a decrease in precipitation over tropical Africa,
northern Australia, and north of the equator over the western
Pacific. These changes seem to rectify some of the existing
biases of the model. However, along with this, there is also
an increase in precipitation over the eastern Pacific, resulting
in a positive bias. Since some of the existing biases have
been rectified, the pattern correlation is found to be better
with TAU (8 h) i.e., from 0.79 it has increased to 0.83 (see
bottom of the Fig. 21).

It is noticed from Fig. 22 that increase of TAU increases
the precipitation over the equatorial belts of western, eastern,
and central Pacific. It also increases the precipitation over the
eastern coast and north Bay of Bengal, and over the Indian
subcontinent. Over tropical Africa, Saudi Arabia, equatorial
Indian ocean, western parts of the south Pacific, the precip-
itation decreases with increase of TAU. These changes, rec-
tifies some of the aforementioned model biases and improve
the pattern correlation coefficient from 0.67 to 0.79.

Figure 23 shows the contribution of each of the precipita-
tion components to the above effects. It is notable that, over
the whole domain, and in both the seasons, DCP gets reduced
and SCP and LSP get enhanced with increase in TAU. The
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positive biases are rectified by the reduction of the DCP and
the negative biases are rectified by the enhancement of SCP
and LSP. However, comparatively the contribution of SCP is
much higher than that of LSP.

5 Conclusions

The sensitivity of the simulated precipitation to changes in
convective relaxation time scale (TAU) of Zhang and Mc-
Farlane (ZM) cumulus scheme in NCAR-Community Atmo-
sphere Model version 3 (CAM3) was examined. The inves-
tigation was carried out in two modeling frameworks i.e.,
aqua-planet and actual-planet. A series of numerical experi-
ments were conducted in the aqua-planet mode by increasing
TAU from 1 h (default value) up to infinity, and its impact on
simulated precipitation was examined. The deep convective
precipitation (DCP) was found to decrease with an increase
in TAU. This leads to an accumulation of convective insta-
bility and moisture content in the atmosphere. Consequently,
the shallow convective precipitation (SCP) and large-scale
precipitation (LSP) intensify and cap the accumulation of
convective instability. The decrease in DCP and increase
in SCP and LSP, have a compensating effect, and thus the
net surface reaching total precipitation (TP) is insensitive to
TAU. Comparatively the magnitude of the increase in SCP is
one order higher than that of LSP. Thus, it is the enhancement
of SCP that primarily compensates the decrease of DCP. The
DCP occurs throughout the troposphere, with peak in the up-
per levels, whereas SCP mainly occurs in the lower- and mid-
troposphere. So, when TAU was increased, DCP decreased
throughout the troposphere but SCP increased in the lower
and mid-troposphere. Hence, even though the surface reach-
ing TP remains same, there is a change in the vertical distri-
bution of the total precipitation. As a result, the moist heat-
ing increases in the lower and mid troposphere and decreases
in the upper troposphere. The vertical velocity intensifies
in the lower troposphere and the meridional circulation be-
comes stronger.

In order to verify if the effects of TAU on simulated precip-
itation in an aqua-planet framework translate to a real-planet,
numerical integrations were carried out with actual land-
ocean distribution, observed sea surface temperatures con-
taining the annually varying seasonal cycle, and fully interac-
tive physics. The model was integrated for 10 years (January
1979 to December 1988), with TAU = 1 h in one experiment,
and with TAU = 8 h in the other. The seasonal mean pre-
cipitation was analyzed and compared with observed values
(CMAP). The seasonal mean precipitation with TAU = 8 h
was found to be more realistic. In a previous study, we have
shown that some of the variability aspects (convectively cou-
pled equatorial waves) of simulated climate become more
reasonable with TAU = 8 h (Mishra, 2007). However, for val-
ues of TAU greater than 8 h, the quality of model simulations
was found to deteriorate. Since the current work was car-

ried out with a model spectral resolution of T63 (equivalent
grid spacing of∼ 280 km), it seems that 8 h is the optimum
value for 280 km horizontal grid spacing. Future work will
focus on determining the optimum value of TAU and its de-
pendence on model resolution.
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