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Abstract. The ionospheric feedback instability (IFI), which
involves feedback between ionospheric modifications and
waves reflected off the magnetosphere, has up to this point
been analyzed in terms of field line integrated (FLI) iono-
spheric quantities, that is, with the assumption that the iono-
spheric thickness can be ignored. In this work we test this
assumption by solving the two-fluid equations for a repre-
sentative ionospheric slab of finite thickness. We find that
the results are for the most part incompatible with a descrip-
tion in terms of FLI quantities, and that their use can easily
lead to an order of magnitude overestimation of the growth
rate. This occurs because the first eigenmode, which is the
one compatible with an FLI description, is cutoff above a cer-
tain frequency, leaving only higher order modes with wave-
lengths alongB that are subsumed by the slab. Taking the re-
sults at face value, the parallel electric fields associated with
the higher order modes are a possible contributor to electron
heating and plasma structure in the E-region ionosphere.

Keywords. Ionosphere (Auroral ionosphere; Ionosphere-
magnetosphere interactions; Plasma waves and instabilities)

1 Introduction

Charge separation in the ionosphere launches an Alfvén wave
into the magnetosphere that transmits energy along the lines
of the geomagnetic field, and reflects back to the ionosphere,
where if the phase of the reflected wave is correct the initial
charge separation will be reinforced, such that there is posi-
tive feed back and an instability. This phenomena, which is
still for the most part a theoretical construct, is referred to as
the ionospheric feedback instability (IFI) Atkinson (1970) is
generally credited with introducing this idea; he suggested

Correspondence to:R. Cosgrove
(russell.cosgrove@sri.com)

the process as a model for the formation of auroral arcs.
Sato (1978) gave perhaps the cleanest development of the
basic concept, solving the eigenvalue problem of a driven
ionospheric layer satisfying field-line-integrated (FLI) con-
tinuity equations in charge and number density, and loaded
by a complex admittance representative of a passive magne-
tospheric load. However, Sato (1978) did not attempt any
model of the actual magnetospheric load. Trakhtengertz and
Feldstein (984), and Lysak (1986, 1991) added models of
such, in varying degrees of complexity. Numerical simu-
lations of the instability development have been performed
more recently (e.g., Streltsov and Lotko, 2003, 2004; Chas-
ton et al., 2002; Pokhotelov et al., 2004). In the present work
we examine the assumption, made in all previous works, that
the ionosphere can be reasonably approximated by a thin
layer – we find that it cannot. We do this by performing
a realistic computation of the complex magnetospheric ad-
mittance (using transmission line theory), and applying it
to give a boundary condition at the top of a finite thickness
ionosphere (described by 2-D two-fluid equations perpendic-
ular and parallel to the magnetic field), and then solving the
eigenvalue problem for the growth rates of the eigenmodes.

The theory and modeling of the ionospheric feedback in-
stability (IFI) has, up to this point, assumed that the iono-
spheric thickness can be ignored; the ionosphere is repre-
sented solely by field line integrated quantities. Trakht-
engertz and Feldstein (1984) have given a partial discus-
sion of the limitations of this assumption. The assumption
is based on the idea that the conductivity in the direction par-
allel to the magnetic fieldB is much larger than the con-
ductivity in the directions perpendicular toB; as a matter of
fact, the parallel conductivity in the E-region ionosphere is
about two orders of magnitude larger than the perpendicular
conductivity at 100 km in altitude, and three orders of magni-
tude larger at 120 km in altitude. This ensures that in steady
state the electric field perpendicular toB will map essentially
unattenuated through the E-region ionosphere, as long as the
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Fig. 1. Alfv én velocity (solid line) and phase velocity for Alfvén
waves (red dashed line) in a representative ionosphere, and up to
3RE. The horizontal dashed line at 200 km marks the top of the
E-region ionosphere, and the input to the “magnetospheric trans-
mission line.”

scale on which it varies in the direction perpendicular toB

everywhere exceeds about one kilometer. However, in the
transient case, there is a time constant associated with the
penetration of an electric field through the ionosphere.

Electric field perturbations are transmitted along mag-
netic field lines by Alfv́en waves (Mallinckrodt and Carlson,
1978). Figure1 shows the phase velocity for Alfvén waves
(red dashed line) along with the traditional (ion-neutral col-
lisions not included) Alfv́en velocity (solid line) in a repre-
sentative ionosphere, and up to 3RE. In the E-region (below
about 200 km) collisions cause the Alfvén wave phase veloc-
ity to slow down dramatically; at 100 km the phase velocity
is only 20 km s−1. The assumption – made in previous treat-
ments of the IFI – that electric fields perpendicular toB map
through the ionosphere, so that the ionosphere can be de-
scribed by its field line integrated Pedersen and Hall conduc-
tivities, applies only in the case where the temporal scale for
variations is much longer than the time for an Alfvén wave to
propagate through the ionosphere. For the phase velocity of
20 km s−1, this means that the temporal scale for variations
should be much longer than a few seconds. This condition
is not met for the IFI, which involves the fundamental reso-
nance of the IAR, with a frequency of about 0.5 Hz.

The growing waves of the IFI have wavelengths of a few
kilometers, and propagate relative to the ionospheric plasma
with velocities of a few kilometers per second. If the time
constant for electric field penetration begins to approach one
wave period, in the reference frame fixed to the E-region
plasma, then the penetration time constant will effect the
wave. We show below that this effect of ionospheric thick-
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Fig. 2. Schematic of the physical model. The eigenmodes for the
model will be found analytically.

ness leads to cutting off of the fundamental “thin-layer”
mode, relevant higher order modes, and an associated order-
of-magnitude reduction of the IFI growth rate.

2 Growth rate derivation with E-region depth

Figure2 illustrates the ionospheric part of the model that will
be solved. Moving down from 500 km in altitude the ion neu-
tral collision frequency follows a realistic curve determined
from the MSIS model. The plasma density also follows a re-
alistic F-region curve taken from an incoherent scatter radar
measurement. At a chosen altitude (shown as 130 km) the
collision frequency transitions abruptly into an E-region type
value, and the plasma density transitions abruptly into a value
representative of an auroral arc. These E-region parame-
ters stay constant over some chosen arc thickness (shown as
30 km), below which the plasma density abruptly decreases
to zero.

The parameter values just above the E-region to F-region
transition are representative of an ionospheric altitude of
200 km, that is, a region of the ionosphere has been excised
(70 km thick, for the case of Fig.2), and all the F-region
parameters shown in Fig.2 are actually representative of
a somewhat higher altitude than indicated (70 km higher).
This is done in order to produce a model that is readily sol-
uble using analytical techniques. The relatively low colli-
sion frequency above 200 km ensures that modifications of
the plasma density produce negligibly small modifications of
the conductivity, as compared to similar density modulations
in the E-region. This means that to a good approximation,
only the 30 km thick E-region need be considered as mod-
ifiable (active); the F-region, and on up into the magneto-
sphere, can be described simply as a medium through which
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Alfv én waves propagate. The region above 130 km as shown
in Fig. 2 is equivalent to the Alfv́en phase velocity profile
above 200 km as shown in Fig.1. Figure1 shows how the
model is continued on up to 20 000 km, above which it is
assumed that the Alfv́en velocity remains uniform.

Fluid equations will be used to describe the active E-region
dynamics in two dimensions (one alongB, and one perpen-
dicular toB). In solving the fluid equations, the region be-
low the arc (below 100 km, as shown in the figure) will ini-
tially be taken to have a small non-zero density, but this value
will be allowed to approach zero before a final result is ob-
tained. Recombination will be omitted, and the fluid tem-
perature will be set to zero. These last two simplifications
will produce an overestimation of the instability growth rate.
However, we do not expect them to produce a fundamental
modification of the system behavior.

In summary, the excision of the altitude range between
200 km and the top of the arc, and the sharpening of the
arc boundaries into a rectangular profile, constitute the ma-
jor simplifications that must be made to produce a model that
can be readily solved using analytical techniques. These sim-
plifications are, at any rate, less draconian than taking the
ionosphere to be infinitely thin. The model is representative
of the ionosphere magnetosphere system with an active E-
region of finite thickness. Additional discussion of this point
is given in Sect.4.

2.1 Treatment of the magnetosphere

Because we are mainly interested in assessing the effects of
ionospheric thickness, and because the magnetosphere is the
passive element in the ionospheric feedback instability, we
will treat the magnetosphere simply as a complex admittance
YM (following Sato, 1978). This provides for an accurate
treatment of the shear Alfvén wave mode, using actual radar
data to describe the F-region ionosphere, but does not ac-
count for mode conversion (Pokhotelov et al., 2001). A po-
larization electric field generated in the ionosphere launches
an Alfvén wave propagating into the magnetosphere (Malt-
sev et al., 1977). Hence, if the magnetosphere is uniform,
the ionosphere can be viewed as loaded by a transmission
line with the Alfvén admittanceYA . If the properties of
the magnetosphere vary with distance from the ionosphere,
then waves initiated in the ionosphere will undergo partial
reflection as they travel. According to the theory of trans-
mission line networks, the effect of these partial reflections
is to present the ionosphere with a modified admittanceYM .
We now describe the calculation of this modified admittance
for a realistic magnetosphere, which will also include the F-
region ionosphere; since the F-region does not play an active
role in the IFI, it can be lumped into the passive load that is
presented to the top of the E-region ionosphere.

Because the displacement current is negligible, an Alfvén
wave is associated with a currentj = ∇×B/µ0. Assuming
the form

E ∝ ei(ωt−k·x) (1)

for the Alfvén wave electric field, and using∇×E = −
∂B
∂t

,
givesB = k×E/ω. Combining these results gives the rela-
tionship between the current and electric field for an Alfvén
wave:

j = ∇×(k×E)/(µoω) = [k∇ ·E−(k ·∇)E]/(µ0ω). (2)

If we assumeE · B̂0 = 0 (whereB0 = B0B̂0 is the geomag-
netic field), and takeE as the electric field at the input to the
“magnetospheric transmission line,” then the launching of an
Alfv én wave upward into the magnetosphere is associated
with a field aligned current

j · B̂0 =
k · B̂0

µ0ω
∇⊥ ·E, orspecifically,

jz = YA∇⊥ ·E, where,

YA =

(
|real(k · B̂0)|− i|imag(k · B̂0)|

)
/(µ0ω), (3)

and wherêz = −B̂0 in the Northern Hemisphere,ẑ = B̂0 in
the Southern Hemisphere, and∇⊥ denotes the gradient in
the plane perpendicular toB0. (Equation (3) assumes the
convention (1).) We will refer to YA as the Alfv́en admit-
tance. This field aligned current must be drawn out of the
ionosphere, and continuity of this current is the boundary
condition imposed by the magnetosphere, in the case where
the magnetosphere is uniform.

In the real case, where the magnetosphere is not uniform,
the wave launched upward will undergo partial reflection as
it travels, and hence there will also be a reflected wave in-
cident on the ionosphere. The effect of this superposition of
waves on the relationship betweenj andE at the input to the
transmission line, that is, on the input admittanceYM , where

jz = YM∇⊥ ·E, (4)

is the purview of transmission line theory. To computeYM
we appeal to the following fundamental result of transmis-
sion line theory: the driving-point admittanceYS of a trans-
mission line of characteristic admittanceY0, length l, and
propagation constantγ , loaded at the output by admittance
YL , is given by (e.g., Collin, 1966)

YS = Y0
Y0sinh(iγ l)+YLcosh(iγ l)

Y0cosh(iγ l)+YLsinh(iγ l)
. (5)

We apply Eq. (5) by assuming a horizontally stratified mag-
netosphere, divided into 10 000 slabs of thickness 2 km each.
Within each slab the transmission line parameters are given
by the local Alfv́en parameters. The upper section (N -th
section) is terminated by a matched load. Therefore, from
Eq. (5), the driving-point admittanceYSN seen looking into
the N -th section is computed by takingY0N as the load
(YLN = Y0N , which givesYSN = Y0N ), whereY0N is the
characteristic admittance of theN -th section; the driving-
point admittanceYS(N−1) seen looking into the (N − 1)-th
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Fig. 3. Magnetospheric admittance computed from the transmission
line model, using the parameters of Fig.1.

section is computed by takingYSN as the load (YL(N−1) =

YSN ); the driving-point admittanceYS(N−2) seen looking into
the (N −2)-th section is computed by takingYS(N−1) as the
load (YL(N−2) = YS(N−1)), and etc, untilYS1 is obtained.
The magnetospheric admittance for use in Eq. (4) is then
YM = YS1.

Because the Alfv́en wave energy travels along magnetic
field lines, and because of the assumption of a horizon-
tally stratified magnetosphere, the distance between reflec-
tion points should be measured along magnetic field lines,
and the relevant propagation constant should be taken paral-
lel to the magnetic field lines. With this understanding, the
characteristic admittanceY0 of each slab is the local Alfv́en
admittance (Y0 = YA), and the propagation constant is de-
rived from the parallel component of the wavevector (specif-
ically, γ = k · B̂0). The wavevector is found from the disper-
sion relation for shear Alfv́en waves (see derivation in Ap-
pendix B),

k2
=

2ω(ω− iνin)

V 2
A

(
1+cos2θ −

√
sin4θ +4cos2θ (ω− iνin)2/�2

i

) ,(6)

whereθ is the angle betweenk andB0, k = |k|, νin is the
ion-neutral collision frequency,�i is the ion gyrofrequency,
VA = B0/

√
µ0min is the Alfvén velocity,mi is the ion mass,

n is the plasma density, andµ0 is the free space permeability.
The collisions have been included in the dispersion relation
so that the effect of the ionospheric F-region conductivity can
be included inYM ; the input to the magnetospheric transmis-
sion line will be at the top of the E-region ionosphere. For
our applicationθ ∼= 90◦, and |ω − iνin|

2
� �2

i , so that (6)
simplifies to

k · B̂0 = kcosθ = ±

√
ω(ω− iνin)/VA, (7)

which fills out the relations necessary to computeYM for a
givenω, profile ofνin, and profileB0.

This procedure has been applied using model parameters
along with a selected, ISR measured F-region conductiv-
ity profile. The parameters used are summarized in Fig.1,
by plotting the profile for Alfv́en velocityVA , and the pro-

file for the parallel phase velocityVp = ω/real
(
k · B̂0

)
=

VA/real
(√

1− iνin/ω
)

(from Eq. 7), for ω = 2π (0.35Hz).
The horizontal dashed line at 200 km marks the top of the
E-region ionosphere, and the input to the “magnetospheric
transmission line.” Note that there is a region above the ref-
erence line where ion-neutral collisions are important. How-
ever, omitting collisions entirely from Eq. (7) has no signif-
icant effect on the calculations presented in this paper, and
no effect at all on the conclusions. The relevance ofνin in
Eq. (7) lies only in the discussion of the introductory section
(Sect.1), where we noted that the phase velocity for Alfvén
waves in the E-region ionosphere is much less thanVA .

The resulting magnetospheric admittanceYM looking up
from the top of the E-region, which will be used to define
the magnetospheric boundary condition according to Eq. (4),
is plotted versus frequency (ω/2π ) in Fig. 3. Note the reso-
nances (where the imaginary part of the admittance vanishes)
that occur at about 0.3 Hz and 0.7 Hz. These are analogous
to the resonance of an electric circuit, when the inductive
part cancels the capacitive part. By placing a resistor across
the input, to model a thin E-region load, the circuit becomes
a model of the ionospheric Alfv́en resonator; the zero of the
imaginary part of the admittance determines the resonant fre-
quency, and the resistor value determines the quality factor.
A better model for a passive ionosphere could be obtained by
continuing the transmission line down to an altitude below
where the ionospheric conductivity vanishes, with the input
left as an open circuit, in which case the electrical length of
the E-region is included. However, in this work we will ap-
ply a model for an active E-region, with electrical length, and
find unstable resonances.

2.2 General dispersion relation

Derivation of the IFI growth rate requires consideration of
the ionospheric depth. We now solve for the waves in a finite
thickness ionosphere that satisfy the magnetospheric bound-
ary condition (Eq.4), which means that a dependence will be
included in the direction of the magnetic field.

Alfv én waves are electromagnetic waves, in general.
However, the Alfv́en wavevectork may make any angleθ
with respect to the background magnetic fieldB0, which
placesk at an angleθ +π/2 with the electric fieldE. In the
limit as θ → π/2, k becomes aligned with the electric field
E, so that∇ ×E = k ×E → 0; the Alfvén wave becomes
electrostatic. In this work we are considering perpendicular
to B0 wavelengths on the order of 1 km, whereas the wave-
length alongB0 at the top of the E-region (200 km altitude) is
about 6×105 km (from Fig.1, with a characteristic frequency
of 1 Hz). This givesθ = π/2−0.000002, so that the Alfv́en
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wave at the top of the E-region is very nearly electrostatic.
We will likewise solve for the response in the E-region iono-
sphere using the electrostatic assumption. This assumption
is usually employed in the ionosphere, even for much higher
frequency waves involving parallel electric fields (e.g., Os-
sakow et al., 1975; Janhunen, 1997). A thorough justification
for the case of Rayleigh-Taylor waves in the F-region can be
found in Basu (2005). For completeness, in the appendix
we demonstrate the validity of the electrostatic assumption
for our particular problem, and derive the working equations
given below from the full set of fluid equations together with
Maxwell’s equations.

Consider auroral plasma in the altitude range where the
electrons are magnetized, and the ions are collisional, specif-
ically, the altitude range whereκi =

�i

νin
� 1, κe =

�e

νen
� 1,

andκi �
1
κe

, where�i is the ion gyro frequency,�e is the
electron gyro frequency,νin is the ion-neutral collision fre-
quency, andνen is the electron neutral collision frequency.
These approximations are valid roughly in the altitude range
from 100 km to 120 km. Choose an orthogonal coordinate
system withẑ directed upward (and assumed opposite to
the magnetic field), and̂x × ŷ = ẑ. With these approxima-
tions the zero temperature ionospheric fluid equations for the
steady state ion velocityvi , and thex andz components of
the current density,jx andjz, simplify as follows:

vi =
−κi

B
(∇φ−E0−u×B0)+u, (8)

jx = ne
−κi

B

(
∂φ

∂x
−E0x +uyB0

)
+ne

1

B0

(
Ey0+uxB0

)
,(9)

jz = ne
−κe

B

∂φ

∂z
, (10)

0 =
∂jx

∂x
+

∂jz

∂z
, (11)

0 =
∂n

∂t
+

∂

∂x
(nvix)+

∂

∂z
(nviz), (12)

whereE0 (and its componentsE0x , E0y , andE0z) represents
a uniform and constant background electric field,u (and its
componentsux , anduy) represents a uniform constant wind
velocity, n is the plasma density,B0 = −B0ẑ is the back-
ground geomagnetic field, andφ is an electrostatic potential
such that the total electric field isE = E0−∇φ. We have as-
sumed that the background electric field is perpendicular to
B0, i.e., thatE0z = 0. Equations (11) and (12) are the current
and ion continuity equations, respectively, under the assump-
tion that there is no variation in they direction; we will use
this assumption throughout.

The equation for the magnetospheric boundary condi-
tion (4) applies in the frame of reference moving with the
E ×B0 drift, which is the frame of reference withE0x =

E0y = 0. Therefore, we will work in this frame of reference,
so thatE0 = 0 throughout.

Expressingnvix andnviz in terms ofjx andjz, substitut-
ing the result into Eq. (12), using Eq. (11) to eliminatejx ,
and finally using Eq. (10) to expressjz in terms ofφ, gives

∂n

∂t
=

−1

B0
(κe −κi)

[
∂n

∂z

∂φ

∂z
+n

∂2φ

∂z2

]
. (13)

Substituting Eqs. (9) and (10) into Eq. (11) gives

eκe

B

∂n

∂z

∂φ

∂z
+

eκe

B
n
∂2φ

∂z2
=

eκi

B

∂n

∂x

(
−uyB −

∂φ

∂x

)
−

eκi

B
n
∂2φ

∂x2
+eux

∂n

∂x
. (14)

Finally, substituting Eq. (10) into the magnetospheric bound-
ary condition (4) gives

∂2φ

∂x2

∣∣∣∣∣
zT

= n
eκe

B0YM

∂φ

∂z

∣∣∣∣
zT

, (15)

where the subscript indicates that Eq. (15) applies only atz =

zT , which we take to be the top of the E-region ionosphere.
Equations (13) through (15) will be solved in linearized

form: specifically, withn = n0 + δn, wheren0 = n0(z) is a
time independent background density profile depending only
on z (specified below), and discarding terms that are second
order or higher inδn andφ. In addition,δn andφ will be
assumed to have the form

δn = N(z)ei(ωt−kx)

φ = 8(z)ei(ωt−kx), (16)

so that they are wavelike in the x-direction. The arbitrary
functionsN(z) and8(z) will be determined uniquely by the
requirement that Eq. (16) satisfy Eqs. (13) through (15) for
z ≤ zT , with the boundary condition thatδn is bounded as
z → −∞, and for the chosen functionn0 = n0(z). The re-
sulting solutions forδn andφ constitute natural modes of the
system, which are unstable if imag(ω) < 0.

In order to represent the effect of the finite thickness (not
zero, and not infinite) of the ionosphere in the simplest pos-
sible way, we choose a slab model

n0(z) = n01H(z)+n02, (17)

where H(z) is the Heaviside step function, so that the iono-
sphere has densityn0 = n01+n02 in the region 0< z ≤ zT ,
and densityn0 = n02 for z < 0. The magnetospheric bound-
ary condition (15) is applied atz = zT . The derivative of H(z)
is the Dirac delta function,dH

dz
= δ(z). The density atz = 0 is

found from the consistency of this definition:

H(0) =

∫ A

−B

dzδ(z)H(z)

=

∫ A

−B

dz

[
d

dz

(
H2(z)

)
−H(z)

d

dz
H(z)

]
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= H2(z)

∣∣∣A
−B

−

∫ A

−B

dzH(z)δ(z)= 1−H(0)

→ H(0) =
1

2
,

so thatn0(0) = n01/2+n02.
Substituting Eq. (16) into Eqs. (13) and (14), discarding

terms that are second order or higher inδn andφ, eliminat-
ing N(z) between the two equations, and using the zeroth
order density profile (17) along with the various delta func-
tion derivative relations, gives

κi

κe

(n01H(z)+n02)ωk8+(ux −κiuy −ω/k)n01δ(z)
d8

dz

+(ux −κiuy −ω/k)(n01H(z)+n02)
d28

dz2
= 0. (18)

Similarly, the boundary condition (15) becomes

−k28

∣∣∣
zT

= n0
eκe

B0YM

∂8

∂z

∣∣∣∣
zT

. (19)

Away from z = 0, Eq. (18) reduces to

κi

κe

ωk8+(ux −κiuy −ω/k)
d28

dz2
= 0, (20)

which is an ordinary differential equation with constant co-
efficients, with solutions of the form emz. Substituting this
form gives

m =

√
k2 κi

κe

ω

ω−k(ux −κiuy)
(21)

We look for a solution to Eq. (18) in the form

8(z) = (c1H(z)+c)eσz
+(c2H(z)+c3)e

−σz,

whereσ = sign(Re(m))m, (22)

where Re(m) denotes the real part ofm. Applying the bound-
ary condition8 → 0 as z → −∞, gives c3 = 0. Making
∂8
∂z

(the field-aligned electric field) finite atz = 0 requires
c1 = −c2. With these stipulations, substituting Eq. (22) into
Eq. (18), and integrating over a small region aroundz = 0,
gives c = (4H(0)+2n02/n01)c2 = 2(1+n02/n01)c2. This
determines the solution for8, and using Eq. (13) or (14),
also the solution forN :

8(z) = c2

[(
2+2

n02

n01
−H(z)

)
eσz

+H(z)e−σz

]
,

N(z) =
ic2

kB0
(
ux −κiuy

) (κik
2
−κeσ

2
)
(n01H(z)+n02)[

H(z)
(
eσz

−e−σz
)
−2

(
1+

n02

n01

)
eσz

]
. (23)

It remains to find the dispersion relation betweenω andk,
which is determined by the boundary condition (19). Substi-
tuting Eq. (23) into Eq. (19) gives

σ = −k2 B0YM

eκe(n01+n02)

(1+2n02/n01)eσzT +e−σzT

(1+2n02/n01)eσzT −e−σzT
. (24)

Combining Eqs. (21) and (24) gives a transcendental equa-
tion for ω in terms ofk, i.e., the dispersion relation (note,
σ = sign(Re(m))m).

2.2.1 Reduction whenn02→ 0, and for a thin ionosphere

In the limit zT → 0 andn02 →0 the dispersion relation just
derived should reduce to the expression derived by Sato
(1978) involving field line integrated ionospheric conductiv-
ities. Applying the limitn02→ 0 to Eq. (24) gives

σ = −k2 B0YM

eκen01tanh(σzT )
. (25)

Squaring Eq. (21) and using Eq. (25), after some manipula-
tion, gives

ω = k

uxB0
κi

−uyB0

B0
κi

+
en01tanh(σzT )

σYM

. (26)

Equations (25) and (26) together form the transcendental dis-
persion relation in the limitn02 → 0. Applying the limit
zT → 0 to Eq. (26) gives

ω = k
ux −κiuy

1+
eκiN
YMB0

, (27)

whereN = n01zT is the field line integrated plasma density
of the ionospheric layer. Equation (27) agrees with the ex-
pression derived by Sato (1978).

2.2.2 Numerical solution of dispersion relation

We will solve the dispersion relation numerically in the limit
n02 → 0, for zT finite. This means simultaneously solving
Eqs. (25) and (26). Using various identities in hyperbolic
trigonometry, it is possible to separate Eq. (25) into real and
imaginary parts as

σr sinh(2σrzT )−σi sin(2σizT )

= −k2 YMr

σ0n01
(cosh(2σrzT )+cos(2σizT )) (28)

iσr sin(2σizT )+ iσi sinh(2σrzT )

= −k2 iYMi

σ0n01
(cosh(2σrzT )+cos(2σizT )), (29)

where σ = σr + iσi and YM = YMr + iYMi . Dividing the
imaginary part by the real part eliminatesk, and gives(

σr +σi

YMi

YMr

)
sin(2σizT )+

(
σi −σr

YMi

YMr

)
sinh(2σrzT ) = 0.

(30)

Equation (30) can be reliably solved using Newton’s method.
Due to the oscillatory functions, the dispersion relation has

many solutions, and it is necessary to sort through them and
choose the ones of most interest. We will solve for the two
solutions with the smallestσi , which we have found by ex-
ample to be the two solutions with the largest growth rate. To
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Table 1. Fixed simulation parameters.

Altitude n κi κe 6P 6H B

100 km 1011m−3 1
56 83 0.29 mhos 9.61 mhos 5×10−5 T

120 km 1011m−3 1
4 1166 2.27 mhos 9.05 mhos 5×10−5 T

do this we first choose a frequency (Re(ω)), and form a dense
sampling of the real number line on an interval surrounding
the the thin-layer value forσi (obtained from Eqs.25 and27
with zT → 0). Each of these samples is substituted forσi in
Eq. (30), and Newton’s method used to solve Eq. (30) for the
associatedσr . The result is a list of “candidate solutions” for
σ (= σr + iσi), with monotonically increasingσi . Finally,
substitute this list into Eq. (29), and plot the left hand side
minus the right hand side versusσi , that is, plot

2(σi) = σr(σi)sin(2σizT )+σi sinh(2σr(σi)zT )

+k2(σi)
YMi

σ0n01
(cosh(2σr(σi)zT )+cos(2σizT )),(31)

whereσr(σi) is evaluated from the list of candidate solutions.
In doing this, the constraint of Eq. (26) is enforced by evalu-
atingk(σi) as

k(σi) = Re(ω)/Re

(
uxB0

κi
−uyB0

B0
κi

+
en01tanh[(σr (σi )+iσi )zT ]

(σr (σi )+iσi )YM

)
,

where againσr(σi) is evaluated from the list of candidate
solutions. The zero crossings of2(σi) are the solutions to
the dispersion relation; they are found by interpolation. The
imaginary part ofω (the growth rate) is found from the imag-
inary part of Eq. (26).

Figure4a–c shows three examples of the function2(σi)

that arise in the above method of solution, for three different
layer thicknesses, with the density adjusted so that they all
have the same field line integrated conductivity: Fig.4a, 5 km
thick; Fig. 4b, 10 km thick; and Fig.4c, 15 km thick. The
background electric field is 50 mV/m; the altitude is 120 km;
the frequency analyzed is 0.5 Hz; and the field line integrated
conductivity (1.14 mhos) corresponds to a 15 km thick layer
with an electron density of 1011 m−3. The vertical blue line
marksσi for the thin-layer solution. The vertical green (red)
line marksσi for the actual solution with the largest (second
largest) growth rate.

Figure4a–c illustrates the fact that there are many solu-
tions, or “modes” of the dispersion relation, and that the
modes with the smallestσi cutoff as the layer thickens. By
numerical experimentation, we have found that the modes
with the smallestσi have the largest growth rate, at least for
the three or four values ofσi that are closest to the smallest
value. Therefore, the largest growth rate at any given fre-
quency (among all the modes) is discontinuous with layer
thickness.

Figure4c shows that this discontinuity typically occurs at
layer thicknesses that are thinner than the normal thickness
for an auroral arc. In Sect.3 we will see that the reduction in
growth rate across the discontinuity is very substantial.

Figures4d–4f show the growth rates (of the fastest grow-
ing mode) as a function of frequency for the same parameters
as Figs.4a–4c, respectively. For the thinnest layer thickness
(5 km) the thin layer solution is reproduced except at the top
of the frequency range. For the 10 km thick layer a discon-
tinuity in the growth rate has appeared at about 0.85 Hz, and
the growth rate is also slightly reduced at proximate frequen-
cies below 0.85 Hz. This suggests that the small reduction
in growth rate seen in Fig.4d, at higher frequencies, can be
traced to the presence of a discontinuity above the displayed
frequency range. For the 15 km thick layer the discontinu-
ity has moved below 0.5 Hz, which is the frequency used
in Figs.4a–4c. Evidently, the discontinuity with frequency
and the discontinuity with layer thickness are related. Thin
layers will only behave as such up to some maximum fre-
quency. This duality between the frequency and layer thick-
ness response is consistent with the discussion given in the
introduction.

3 Results

Figures5 and6 show the results plotted versus frequency as
measured in the frame of reference moving with theE0×B0
drift (i.e., the frame whereE0 = 0), for 100 km (Fig.5) and
120 km (Fig.6) altitude layers (i.e., the collision frequency
throughout the layer is set either to the value applicable at
100 km, or to the value applicable at 120 km). In both figures,
panels (a) through (c) are the growth rate, wavelength, and
frequency in the earth-fixed frame (determined by Doppler
shift), respectively, when the background electric field in the
earth fixed frame is 50 mV m−1. Panels (d) through (f) are
the same when the background electric field is 100 mV m−1.
In both cases the electric field is directed in theŷ direction
(perpendicular to the wavevector). The integrated Pedersen
conductivity (6P ) for Fig.5 is 0.29 mhos, which corresponds
to a 30 km thick layer with an electron density of 1011 m−3,
at 100 km in altitude. The integrated Pedersen conductivity
for Fig.6 is 2.27 mhos, which corresponds to the same except
at 120 km in altitude. A list of additional simulation parame-
ters is given in Table1. The green (purple) lines show results
for the mode with the largest (second largest) growth rate
for a 30 km thick layer. The blue lines show results for an
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Fig. 4. Panels (a) through (c) show the function2(σi) plotted versusσi , for three different layer thicknesses all having the same integrated
conductivity:(a) 5 km thick layer,(b) 10 km thick layer, and(c) 15 km thick layer. The vertical blue line marksσi for the thin-layer solution.
The vertical green (red) line marksσi for the actual solution with the largest (second largest) growth rate. This shows the cutoff of the
fundamental (thin-layer) mode when the layer becomes too thick. Panels (d) through (f) show the growth rate plotted versus frequency for
the same three layer thicknesses:(d) 5 km thick,(e) 10 km thick, and(f) 15 km thick. These show the convergence of the growth rate to the
thin layer value. For all, the background electric field is 50 mV m−1; the altitude is 120 km; and the field line integrated Pedersen and Hall
conductivities are 1.14 mhos and 4.53 mhos, respectively.

infinitely thin auroral layer of the same integrated conductiv-
ity, which we will refer to simply as a thin layer. The results
for the frequency in the earth-fixed frame (black lines) are
shown only for the mode with the largest growth rate when
the layer is 30 km thick (i.e., for the green lines in the upper
panels).

Figures5 and6 show that the growth rate is discontinu-
ous in frequency, which, from the discussion of Sect.2.2.2,
is clearly a result of the cutting-off of the thin-layer solu-
tion (first eigenmode, with smallestσi). Figure7 shows the
density and potential eigenfunctions (from Eq.23) below
and above the cutoff frequency (0.46 Hz) of the thin-layer
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Fig. 5. Growth rate, wavelength, and frequency in the earth-fixed frame, plotted versus frequency in the frame moving with theE0 ×B

velocity, for a 100 km altitude layer. Panels(a) through(c) are forE0 = 50 mV m−1. Panels(d) through(f) are forE0 = 100 mV m−1. The
green (purple) lines show results for the mode with the largest (second largest) growth rate for a 30 km thick layer. The blue lines show results
for a thin auroral layer of the same integrated conductivity. The results for the frequency in the earth-fixed frame (black lines) are shown
only for the mode with the largest growth rate when the layer is 30 km thick (i.e., for the green lines). The integrated Pedersen and Hall
conductivities are 0.29 mhos and 9.61 mhos, respectively, which corresponds to a 30 km thick layer with an electron density of 1011m−3.

mode, for a 120 km altitude layer with 100 mV/m electric
field. Panel (a) shows the percentage density perturbation for
the mode with the maximum growth rate, just below cutoff of
the thin layer mode. Panel (b) shows the associated potential
function. Panel (c) shows the percentage density perturbation
just above cutoff, for the mode with the highest growth rate,
which is now the second eigenmode (the first eigenmode be-
ing cutoff). Panel (d) shows the associated potential function.

It is notable that the mode shown in panels (c) and (d) of
Fig. 7 supports a parallel electric field, and cannot be rep-
resented by field line integrated quantities in any approxi-
mation. Figures6e and6f show that just before cutoff the
frequency in the earth fixed frame increases rapidly, and the
wavelength decreases, which supports the assertion that cut-
off occurs because the electric field cannot map through the
layer (alongB0) with sufficient rapidity.
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Fig. 6. Growth rate, wavelength, and frequency in the earth-fixed frame, plotted versus frequency in the frame moving with theE0 ×B

velocity, for a 120 km altitude layer. Panels(a) through(c) are forE0 = 50 mV m−1. Panels(d) through(f) are forE0 = 100 mV m−1. The
green (purple) lines show results for the mode with the largest (second largest) growth rate for a 30 km thick layer. The blue lines show results
for a thin auroral layer of the same integrated conductivity. The results for the frequency in the earth-fixed frame (black lines) are shown
only for the mode with the largest growth rate when the layer is 30 km thick (i.e., for the green lines). The integrated Pedersen and Hall
conductivities are 2.27 mhos and 9.05 mhos, respectively, which corresponds to a 30 km thick layer with an electron density of 1011m−3.

The growth rate above cutoff is typically an order of mag-
nitude less than the growth rate below cutoff. The frequency
of the cutoff increases with the background electric field. For
the lower background electric field (50 mV m−1) two cutoffs
are visible (first and second eigenmodes), with the first be-
ing below the lowest frequency thin-layer growth rate max-
ima. This results in the actual maximum growth rate being
an order of magnitude less than the growth rate at the low-

est frequency thin-layer growth rate maxima (which is in the
vicinity of 0.5 Hz). For the higher background electric field
(100 mV m−1) the first cutoff is only a little below the lowest
frequency thin-layer growth rate maxima, such that the actual
maximum growth rate is 30% to 50% (depending on altitude,
throughκi andκe) of the growth rate at the lowest frequency
thin-layer growth rate maxima, with a 0.1 Hz reduction in the
frequency of the maxima.

Ann. Geophys., 28, 1777–1794, 2010 www.ann-geophys.net/28/1777/2010/



R. Cosgrove and R. Doe: Effect of ionospheric depth on the ionospheric feedback instability 1787

0.48 Hz

 

 

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

−10

−5

0

5

10

0.48 Hz

 

 

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

−1

−0.5

0

0.5

1

0.44 Hz

 

 

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

−6

−4

−2

0

2

4

6

0.44 Hz

 

 

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

−10

−5

0

5

10

(a)

(b)

(km)

x (km)

(km)

(km)

x (km) x (km)

x (km)

(km)

(c)

(d)

(V) (V)

%

%

%

%

%

%

%

%

% %

z z

z z

Fig. 7. Comparison of density and potential eigenfunctions below and above cutoff of the thin-layer mode, for 120 km altitude layer with
100 mV m−1 electric field. Panel(a) shows the percentage density perturbation for the mode with the highest growth rate just below cutoff
(the thin-layer mode). Panel(b) shows the associated potential function for the thin-layer mode just below cutoff. Panel(c) shows the
percentage density perturbation just above cutoff, for the remaining mode with the highest growth rate. Panel(d) shows the associated
potential function just above cutoff, for the remaining mode with the highest growth rate.

The wavelength just before cutoff is, in three of the four
examples, reduced by about 50% as compared to the thin-
layer value. In all four cases the wavelengths at the growth
rate maxima are quite short, being between one and three km;
in only one of the three cases did the wavelength exceed two
km.

Careful examination of the figures also shows deviations
from the above generalizations of the behavior. For example,
Fig. 5c and d shows a case where the growth rate at 0.9 Hz is
the same as the growth rate at the lower frequency maxima
(at about 0.4 Hz), and the wavelength is also almost the same.
Also, Figs.6a and6b show a case where the growth rate max-
imizes at 0.9 Hz, although the wavelength is less than one
km.

The frequency axis in all the plots discussed above refers
to the reference frame moving with theE0 ×B0 drift. The
results are especially simple in this reference frame. For ex-
ample, the thin-layer growth rate is independent of the back-
ground electric field (E0 in the earth fixed frame, which be-
comes the windu in the E0 ×B0 drift frame); this can be

seen by solving the thin-layer dispersion relation (27) for the
imaginary part ofω in terms of the real part ofω. How-
ever, this independence certainly does not hold for a plot of
the growth rate versus either wavelength, or frequency in the
earth fixed frame. As expected, either of these plots would
reveal the profound dependence of the growth rate on the
background electric field. However, these plots are far more
complex in appearance and we elect not to present them.

Figures5c, 5f, 6c, and6f show the dependence of the
frequency in the earth-fixed frame on the frequency in the
E0 × B0 frame (i.e., frame withE0 = 0), for the largest
growth rate mode, as determined by a simple Doppler shift.
It is negative because the Doppler shift causes the wave to
reverse directions. Examination of the figures shows that the
frequency of the unstable waves extends over a much larger
range in the earth-fixed frame, and can include frequencies
down to dc.

Although the layer thickness has been found to profoundly
reduce the growth rate in many cases, as compared to the
thin-layer case, the results still find very significant growth
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Fig. 8. Same as Figs.6a through6c, except forE0 = 35 mV m−1,
and with a finer vertical scale.

rates for rather moderate background electric fields. Fig-
ure 8 shows results for a 35 mV m−1 background electric
field, with magnified axes. The maximum growth rate has
an e-folding time of only 3 s! This mode has a wavelength

of 1 km and a frequency of 0.2 Hz in the earth-fixed frame.
There is a positive growth rate down almost to dc in the earth
fixed frame, where the wavelength exceeds 2.5 km. There is
also an unstable harmonic with a 3 s e-folding time, 0.5 km
wavelength, and earth-fixed frequency of 0.4 Hz.

The last figure we will discuss, Fig.9, compares results
with E0 pointing in theŷ direction (panels a–c) , andE0
pointing in thex̂ direction (panels d–f). In the latter caseE0
points along the wavevector, which means that the relevant
zeroth order current is determined by the Pedersen conduc-
tivity, and the Hall conductivity has no effect. In the former
case, and all other cases discussed above, the reverse is true.

Figure 9 uses an extremely large electric field(E0) of
250 mV m−1. A quick survey of data from many years op-
eration of the Sondrestrom radar reveals that this is probably
close to the largest value that has been observed in the F-
region ionosphere. This value was chosen to facilitate com-
parison with results in Streltsov and Lotko (2004).

Figure9a–c shows that the large 250 mV m−1 electric field
overcomes the effect of the 30 km layer thickness to produce
a growth rate that is 80% of the thin-layer growth rate (for the
first harmonic). However, this only holds when the electric
field is directed perpendicular to the wavevector, when the
zeroth order current is a Hall current. Figure9d–f shows that
when the electric field is along the wavevector, the 30 km
thickness of the layer reduces the growth rate by an order of
magnitude from the thin-layer case.

This effect is summarized by noting that the role of the
driving winds in the dispersion relation, that is, in Eqs. (25)
and (26), can be consolidated into a single quantity,u′

=

ux −κiuy. The y-component of the wind,uy, is less effec-
tive than the x-component,ux, by the factorκi < 1. This can
be understood by noting that the current along the wavevec-
tor drives the instability by polarizing the density perturba-
tions associated with the wave:ux drives a Hall current along
the wavevector, whileuy drives a Pedersen current along
the wavevector, and the Hall conductivity is greater than the
Pedersen conductivity (in the altitude range under considera-
tion). However, at higher altitudes the Pedersen conductivity
becomes larger than the Hall conductivity, so that it should be
most effective to position the background electric field along
the wavevector.

4 Discussion

Linear analysis of instabilities is generally thought to give a
good benchmark for evaluating the threshold for instability,
and the wavelengths that are unstable. Therefore, the fact
that the growth rate computed by assuming the ionosphere
is infinitely thin can vary by an order of magnitude from the
growth rate calculated without this assumption casts doubt
on simulations and other analysis that utilize the thin-layer
assumption.

Ann. Geophys., 28, 1777–1794, 2010 www.ann-geophys.net/28/1777/2010/



R. Cosgrove and R. Doe: Effect of ionospheric depth on the ionospheric feedback instability 1789

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35
Wavelength

 

 

thin layer
30 km thick layer, mode 1
30 km thick layer, mode 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8
Growth Rate

 

 

thin layer
30 km thick layer, mode 1
30 km thick layer, mode 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8
Growth Rate

 

 

thin layer
30 km thick layer, mode 1
30 km thick layer, mode 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35
Wavelength

 

 

thin layer
30 km thick layer, mode 1
30 km thick layer, mode 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a)

(b)

(c)

(d)

(e)

(f)Hz

Hz

Hz

Hz

Hz

km

1/s

Hz

Hz

Hz

km

1/s

Fig. 9. Comparison of results forE0 pointing perpendicular to the wavevector (panelsa–c), and forE0 pointing along the wavevector
(panelsd–f). In all panelsE0 = 250 mV m−1. Growth rate, wavelength, and frequency in the earth-fixed frame, are plotted versus frequency
in the frame moving with theE0×B velocity, for a 120 km altitude layer. The green (purple) lines show results for the mode with the largest
(second largest) growth rate for a 30 km thick layer. The blue lines show results for a thin auroral layer of the same integrated conductivity.
The results for the frequency in the earth-fixed frame (black lines) are shown only for the mode with the largest growth rate when the layer
is 30 km thick (i.e., for the green lines). The integrated Pedersen and Hall conductivities are 2.27 mhos and 9.05 mhos, respectively, which
corresponds to a 30 km thick layer with an electron density of 1011m−3.

Nevertheless, the growth rates calculated above are still
quite substantial. For example, in Fig.8 we found an e-
folding time of 3 s, for an unstable wave with a frequency
0.2 Hz (in the earth-fixed frame), and a wavelength of 1 km,
when the effective background electric field is 35 mV/m. Un-
less halted by other effects, one would expect that such a
wave would grow to significant amplitude in a couple of min-

utes. On the other hand, the wavelengths of these waves are
quite short, rarely exceeding a few kilometers.

In the example just mentioned, the unstable wave does
not involve the thin-layer IFI mode, but rather involves
the second eigenmode. This eigenmode is of the type
shown in Figs.7c and7d, which supports a parallel elec-
tric field. Therefore, unless some effect not considered stops
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the growth of these waves, they may contribute to elec-
tron heating and plasma structure in the auroral E-region
ionosphere. Such E-region heating is normally attributed to
Farley-Buneman waves, but it is difficult to account for the
entire observed effect (e.g., Bahcivan and Cosgrove, 2010).

One effect that is not included in our analysis is recombi-
nation. Semeter and Kamalabadi (2005) give the recombina-
tion time scale for a variety of densities and altitudes. For the
relatively low density of 1011 m−3 considered here, the re-
combination time scale exceeds 10 s at all altitudes. Hence,
recombination should be negligible for frequencies greater
than one Hz (one second period), and should be only a minor
effect for the one half Hz frequency (two second period) that
is of primary importance in this work.

Another effect that is not included in our analysis is any
precipitation that may be caused by the Alfvén waves prop-
agating away from the ionosphere and up to the auroral ac-
celeration region. Alfv́en waves in the inertial regime, which
support a parallel electric field, can accelerate electrons such
that they precipitate into the ionosphere (e.g., Hasegawa and
Chen, 1975; Hasegawa, 1976; Goertz and Boswell, 1979;
Ergun et al., 2005). The associated ionospheric density mod-
ulations could interact with the feedback mechanism. While
we do not wish to assert that this effect is unimportant, we
do note that modulated precipitation will only modulate the
ionospheric density to the extent that the recombination time
scale is short compared to the modulation period (Cosgrove
et al., 2010). As argued in the previous paragraph, for the
frequencies and densities considered here, it is doubtful that
the recombination time scale is short enough to produce a
substantial effect.

Except where noted, these results include the effects of
Hall conductivity. Maximum growth rate occurs when the
effective electric field is perpendicular to the wavevector, so
that the density structures are polarized by the Hall current.
Because the Pedersen conductivity is generally much less
than the Hall conductivity in the region below 120 km, the
growth rate is much less when the effective electric field is
directed along the wavevector. However, the reverse would
be true at higher altitudes (not addressed by this work), where
the Pedersen conductivity is larger.

The simulations of Streltsov and Lotko (2003, 2004, 2008)
place the effective electric field along the wavevector. How-
ever, the E-region altitude for these simulations is substan-
tially higher than considered here, so that the Pedersen con-
ductivity is larger. This may mean that the 250 mV/m back-
ground electric field achieved in these simulations is suffi-
cient to validate the use of an infinitely thin ionosphere, such
as for the case seen in Fig.9a–b. However, we note that even
in Fig. 9b, the growth rate maximizes for a wavelength of
3 km, whereas the grid size indicated in Streltsov and Lotko
(2004) is 1.8 km (i.e., a Nyquist of 3.6 km). Therefore, the
simulation space may not be capable of fully representing
the classical IFI with any layer thickness; it may be only the

longer wavelength modes below the growth rate maxima that
are resolved.

Finally, we give some discussion of the effects of the sim-
plifications needed to make the analytic solution tractable.
The E-region feedback is basically a process where the ab-
sorption of waves from the magnetosphere causes ion (Peder-
sen) current in the ionosphere to close with field aligned elec-
tron current from the magnetosphere, creating density de-
pletions and enhancements, which become polarized by the
background E-region current, which polarization launches a
wave back into the magnetosphere, which is reflected back
to the ionosphere, with potential feedback. The ionospheric
parameters that govern this process for a thin E-region can
be gleaned from Eq. (27). The numeratorux − κiuy is the
background ion velocity along the wavevector, which can be
thought of as the background driving source. The only other
ionosphere-dependent term iseκiN

YmB0
, which determines the

impedance match between the ionospheric Pedersen conduc-
tivity and the magnetospheric admittance. Although Eq. (27)
is specialized to the lower E-region, with a thin ionosphere,
it motivates the general concept of an instability governed by
the impedance match between the ionosphere and magneto-
sphere, and by the strength of the background driving source,
which is the ion velocity along the wavevector in the refer-
ence frame whereE0 = 0.

Using a more realistic ionospheric profile would mean that
the background source strength (the ion velocity in the di-
rection along the wavevector), would be a function of alti-
tude (because the ion-neutral collision frequency is a func-
tion of altitude). In addition, the impedance match between
the ionospheric antenna and the magnetospheric transmis-
sion line would be effected. However, as long as there is a
good impedance match, and the vertically integrated source
strength is strong, the instability should remain – that is, as
long as the thickness of the ionosphere is not excessive.

When the ionosphere acquires thickness, then the “elec-
trical length” across it may become important. If the time
constant for penetration of the electric field through the iono-
sphere is on the order of the period of the unstable mode (i.e.,
the E-region has non-negligible electrical thickness), then
these unstable modes must involve variation of the electric
field along the magnetic field, and there should be a cutoff
effect as found in this work. The fact that we find this cut-
off effect separately for the collision frequencies applicable
at 100 km and 120 km, suggests that effecting a smooth tran-
sition between between these two values should not remove
the cutoff effect. The fact that we find this cutoff effect for
a rectangular E-region density profile suggests that the effect
will endure for a smoothly varying E-region profile, as long
as the E-region has an effective electrical thickness that is
non-negligible. However, this question is ripe for a numeri-
cal simulation.
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5 Summary of Cconclusions

The main conclusions from this work are as follows:

1. Analysis of the IFI in terms of field line integrated quan-
tities frequently gives order of magnitude errors in the
linear growth rate. In the lower E-region, for modes
with wavevector parallel to the effective background
electric fieldE′

0, large errors remain forE′

0 exceeding
250 mV m−1. For modes with wavevector perpendicu-
lar to E′

0 – which take advantage in Hall conductivity
– largeE′

0 can overcome the effects of layer thickness.
At higher E-region altitudes not addressed by this work,
where the Pedersen conductivity is increased, we expect
E′

0 along the wavevector to become more effective than
in the lower E-region.

2. The reduction in growth rate comes because the thin-
layer mode cuts off at a certain frequency, above which
the mode with the highest growth rate involves elec-
tric fields parallel toB. The slab thickness subsumes
a wavelength (Fig.7). The parallel electric field implies
enhanced electron heating.

3. This result casts doubt on any analysis or simulation of
the IFI in terms of field line integrated quantities. How-
ever, use of the thin layer assumption may be valid for
large background electric fields (E0), and/or, for thin
auroral arcs.

4. The unstable wavelengths do not exceed 6 or 7 km, even
when the background electric field is up to 100 mV m−1.
The wavelength that maximizes the growth rate is typi-
cally between one and three kilometers. Larger wave-
lengths can be achieved with very large background
electric fields.

5. The growth rate for these few-km wavelength modes
can be quite large, with e-folding times of a few sec-
onds or less. Therefore, it is not so easy to find a reason
why they should not grow.

6. Combining these results: a numerical simulation of the
IFI, to be realistic, should include the effects of iono-
spheric thickness, and should have sub-km resolution
in the ionosphere. If lower E-region arcs are to be
simulated, then wavevectors perpendicular to the back-
ground electric field should be accommodated.

Appendix A

Fluid equations and electrostatic approximation

This appendix shows how Eqs. (8) through (12) can be de-
rived from the fluid equations and Maxwell’s equations, us-
ing the quasineutrality and electrostatic approximations. The

electrostatic approximation is tested for the relevant parame-
ter range and shown to be valid.

The complete set of Maxwell’s equations and fluid equa-
tions for a two species plasma (ions and electrons) are as
follows (e.g., Chen, 1984):

ε0∇ ·E = niqi +neqe (A1)

∇ ×E = −
∂B

∂t
(A2)

∇ ·B = 0 (A3)

µ−1
0 ∇ ×B = niqivi +neqeve +ε0

∂E

∂t
(A4)

mj

[
∂vj

∂t
+
(
vj ·∇

)
vj

]
= qj

(
E+vj ×B

)
−mjνjn

(
vj −u

)
, j = i,e (A5)

∂nj

∂t
= −∇ ·

(
njvj

)
, j = i,e, (A6)

where subscriptsi ande refer to ions and electrons, respec-
tively, n denotes density,q denotes charge,v denotes veloc-
ity, ε0 is the free space permittivity,µ0 is the free space per-
meability, and the other symbols are as defined above. We
will use the form ei(ωt−k·x) in discussing the reduction of
Eqs. (A1) through (A6) to a simplified set through approxi-
mation.

The form ei(ωt−k·x) provides that∂B
∂t

= iωB̃ (whereB =

B0 + B̃, andB0 = const.). Therefore Eq. (A2) gives B̃ =
i
ω
∇ ×E, which provides that∇ · B̃ =

i
ω
∇ ·∇ ×E = 0. So

Eq. (A3) is automatically satisfied.
The left hand side of Eq. (A5) becomesmj i(ω+vkv)vj .

This can be directly compared with the termmjνjnvj on
the right hand side. Using the typical scale sizes for theE-
region ionosphere, and from the analysis above, we haveω .
2π s−1, andvkv . 2π(1kms−1)(1 km−1) = 2π s−1, whereas
νjn & 400 s−1. Therefore, the left hand side of Eq. (A5)
is negligible, and Eq. (A5) becomes what is known as the
steady state momentum equation:

0= qj

(
E+vj ×B

)
−mjνjn

(
vj −u

)
, j = i,e. (A7)

If we take the cross product of Eq. (A7) with qjB, and add
the result back tomjνjn times Eq. (A7), the result, after some
manipulation, is the equivalent form

νjn

�′

j

vj +
�′

j

νjn

vj⊥ =
1

B
(E+u×B)+

1

B2

�′

j

νjn

E×B +
νjn

�′

j

u,

j = i,e, (A8)

where the symbol⊥ denotes the component perpendicular
to B, and where�′

j =
qj B

mj
(the prime denotes that this is a

signed gyrofrequency).
For the casej = i (i.e., for ions), applying the lower E-

region approximation
�′

i

νin
� 1 makes the second terms on

both sides negligible, which gives Eq. (8).
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For the casej = e (i.e., for electrons), the ionospheric ap-

proximation |�′
e|

νen
� 1 gives

ve⊥ =
1

B2
E×B, and

ve‖ =
−κe

B
E‖ +u‖. (A9)

where⊥ and‖ indicate the components perpendicular and
parallel toB. Subtracting Eq. (A9) from Eq. (8), and using
the quasineutrality assumptionn = ni

∼= ne, we can calculate
the current:

J⊥ = nevi⊥ −neve⊥

= ne
−κi

B
(−E⊥ −u×B)+ne

1

B2

(
−E×B +u⊥B2

)
,

J‖ = nevi‖ −neve‖ = ne
(κi

B
+

κe

B

)
E‖

∼= ne
κe

B
E‖, (A10)

wheree is the absolute value ofqj . With E = E0−∇φ, and
B = −B0ẑ, these are exactly Eqs. (9) and (10).

Multiplying Eqs. (A6) by qj , and adding the result for the
casej = i to the result for the casej = e gives

e
∂(ni −ne)

∂t
= ∇ ·(eneve −enivi) = −∇ ·J . (A11)

Without any loss in generality, Eq. (A11) can replace one of
the continuity Eqs. (A6), for example it can replace continu-
ity for j = e. Using the quasineutrality assumptionni

∼= ne,
Eq. (A11) becomes

∇ ·J = 0. (A12)

Given our assumption that all derivatives with respect toy

vanish, Eq. (A12) is equivalent to Eq. (11).
The assumptionE = E0 −∇φ used in Eqs. (8) through

(12) provides for a solution with∇ ×E = 0, which does not
satisfy Eq. (A2) exactly; this is known as the electrostatic as-
sumption. Similarly, by using Eq. (11) we have not satisfied
(A11) exactly; this known as the quasineutrality assumption.
To show that these two assumptions give good approximate
solutions to the full Eqs. (A1) through (A6), we should take
the solutions obtained from Eqs. (8) through (12) and plug
them into Eqs. (A4) and (A1) to get the solutions for̃B and
the charge densityniqi +neqe, respectively. Then these solu-
tions should be plugged into the Eqs. (A2) and (A11), to ver-
ify that these are satisfied in an approximate sense. By “sat-
isfied in an approximate sense,” we mean that only insignif-
icant modifications are necessary to the solutions of Eqs. (8)
through (12) in order to exactly satisfy Eqs. (A2) and (A11).

The validity of the quasineutrality approximation is dis-
cussed in many textbooks, for example (Chen, 1984), and
we will not bother to verify it further here. We will, however,
validate the electrostatic assumption as follows: Using our
results from above and substituting into Eq. (A2) gives

∇ ×E = ŷ

(
∂Ex

∂z
− ikxEz

)
= −iωB̃, (A13)

which says that the onlỹB component isBy . We need to
compare the size ofωBy (i.e.,∇ ×E) with kxEz, in order to
see if settingBy to zero in (A13) would make any significant
difference in our result forEz. To do this we solve forjz

using both Eqs. (A4) and (A10), and set the results equal.
Ignoring the displacement current, from Eq. (A4) we get

Jz =
ikx

µ0
By . (A14)

From Eq. (A10), keeping only first order terms, we get

Jz = n0e
κe

B0
Ez +n0e

κi

B0
uxBy −n0e

1

B2
0

E0xBy . (A15)

Setting these equal and solving foriωBy gives

−iωBy=∇ ×E=
−iωµ0B0n0eκe

ikxB
2
0−µ0B0eκiux+µ0n0eE0x

Ez. (A16)

We substitute into this using the characteristic unstable wave-
length of 1 km, the lower E-regionκe of 100, the density
of 1011 m−3 used throughout, the maximal E-region elec-
tric field of 100 mV/m, and the 2000 m/s wind associated
with transforming to a reference frame that eliminates a
100 mV/m electric field (where the signs of the last two are
chosen to maximize the result for|∇ ×E|), and find

∇ ×E = −0.0064kxEz. (A17)

Comparing Eq. (A17) with Eq. (A13) shows that the percent-
age error inEz from assuming∂Ex

∂z
= ikxEz (the electrostatic

assumption) is very small. Also, because the scale size for
variations in the z-direction is larger than the scale size for
variations in the x-direction, the percentage error inEx is
even smaller.

Therefore, the electrostatic assumption is a good approx-
imation for the lower E-region problem solved in this work,
within the parameter range that we consider. In addition, we
have shown that the working Eqs. (8) through (12) can be de-
rived in good approximation from the full set of fluid equa-
tions together with Maxwell’s equations (Eqs.A1 through
A6).

Appendix B

Collisional Alfv én wave dispersion relation

To derive the dispersion relation for Alfvén waves in the pres-
ence of collisions, consider the case with no neutral wind,
and zero background electric field. Then using the form
ei(ωt−k·r), and keeping terms to first order invj , Eq. (A5)
becomes

(νjn + iω)vj −�jvj × b̂ =
qj

mj

E, (B1)
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whereb̂ is a unit vector along the background magnetic field.
Cross multiplying this bŷb gives

(νjn + iω)vj × b̂+�jvj =
qj

mj

E× b̂. (B2)

Multiplying the first equation byνjn + iω, the second equa-
tion by�j , adding them together, and solving forvj gives

vj =
qj

mj

(νjn + iω)E+�jE× b̂

(νjn + iω)2+�2
j

. (B3)

For the electrons we can make the approximationνen,ω �

�e, which gives

ve⊥ =
1

B
E× b̂. (B4)

Using Eqs. (B3) and (B4) we can compute the perpendicular
part of the current as

J⊥ = nevi⊥ −neve⊥ = σP E⊥ −σH E× b̂, where

σP =
ne2

mi

νin − iω

(νin − iω)2+�2
i

, and

σH =
ne

B

(νin − iω)2

(νin − iω)2+�2
i

. (B5)

Neglecting the displacement current, Eqs. (A4), (A2), and
(B5) give

µ0(σP Ẽ⊥ −σH Ẽ× b̂) =

[
−ik× B̃

]
⊥

, iωB̃ = ik× Ẽ, (B6)

whereẼ and B̃ are the wave electric and magnetic fields,
respectively. Lettingk = k‖ẑ+k⊥x̂, and ignoring the parallel
electric field, we can eliminatẽB between the equations in
Eq. (B6) to obtain

−iωµ0(σP Ex −σH Ey) = k2
‖
Ex,

−iωµ0(σP Ey +σH Ex) = k2Ey . (B7)

Solving this system and writingk‖ = kcosθ leads to the dis-
persion relation

k4cos2θ +iωµ0σP (1+cos2θ)k2
−ω2µ2

0(σ
2
P +σ 2

H ) = 0,(B8)

which is a quadratic equation ink2. Solving this quadratic
equation, taking the negative sign for the shear mode, and
substituting the expressions forσP andσH gives Eq. (6).
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