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On spurious instabilities on theβ-planes with no mean flows
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Abstract. Recent numerical calculations that suggest the ex-
istence of instabilities of the shallow water equations on the
β-planes (both mid-latitudes and on the equator) are shown
to be associated with spurious instabilities rather than gen-
uine unstable modes. The spurious unstable modes arise in
an analysis of the necessary condition for the existence of
complex roots to the cubic dispersion relation but it is shown
here that these complex roots are not associated with solu-
tions (eigenvalues and eigenfunctions) of the corresponding
eigenvalue equation.
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1 Motivation

In Mckenzie (2009) a general condition for the existence of
complex phase speeds was derived for the Linearized Shal-
low Water Equations (LSWE) on theβ-plane in the absence
of mean flow. The condition was also calculated (using very
similar formulation to that of the LSWE) to stratified flows
without rotation (where Brunt-Vaisala frequency,N(z), is
substituted for Coriolis frequency,f (y)) and also on the
equator (wheref0 = 0). This note attempts to cast the for-
mulation of the equations in a more traditional way and ex-
amine the range of parameter values where the calculation of
the instabilities reported in Mckenzie (2009) is valid. These
instabilities defy the necessary conditions for instability link
derived in the last 70 years between the existence of unstable
perturbations and an energetic source for their growth (see
e.g. Kuo, 1949; Pedlosky, 1982). The most common of these
sources is a mean flow that can transfer its kinetic energy
under certain conditions (e.g. an inflection point of the vor-
ticity) to the unstable perturbation modes. The aim of this
note is to clarify the source of the apparent contradiction be-
tween the classical GFD instability theory and the numerical
calculations of McKenzie (2009).
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2 Energy integral for the Linearized Shallow Water
Equations (LSWE) with rotation

For arbitrary latitude-dependent Coriolis frequency,f (y),
the LSWE with rotation are:
∂u
∂t

− f (y)v = −g
∂η
∂x

∂v
∂t

+ f (y)u = −g
∂η
∂y

∂η
∂t

= −H
(

∂u
∂x

+
∂v
∂y

) (1)

A trivial multiplication of the x-momentum equation (first
equation of system 1) by Hu, the y-momentum equation (sec-
ond equation of system 1) by Hv and the continuity equation
(third equation of system 1) bygη (note thatg andH stand
for the reduced gravity and reduced height, respectively, so

the speed of gravity waves,(gH)
1/2, is a parameter that can

vary from 2–3 m s−1 in a baroclinic ocean to 200–300 m s−1

in a barotropic ocean/atmosphere).
Adding the resulting equations one gets:

1

2

∂

∂t

(
Hu2

+Hv2
+gη2

)
= −gH∇ ·

(
V η
)
. (2)

When this equation is integrated over the entire domain (in-
cluding infinity) the RHS vanishes for suitable boundary con-
ditions (integration of the divergence operator retains only
values of the integrand at the boundaries) and the result is:

∂

∂t

∫ ∫ (
H

2
u2

+
H

2
v2

+
1

2
gη2

)
= 0. (3)

This straightforward calculation (which can be found in any
textbook) shows that regardless of the form assumed forf

(e.g. f-plane,β-plane) in the SWE with no mean flow, lin-
ear instabilities can develop, only if perturbation energy is
advected inward from the domain’s boundaries. The way
by which this advection through the boundaries generates
the unstable modes is the subject of many classical instabil-
ity studies the resulted in a wealth of examples associated,
for example, with potential vorticity jumps at the boundaries
such as in Rayliegh problem (see Paldor et al., 2009) or the
inflection-point conditions (Kuo, 1949).

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1738 N. Paldor: On spurious instabilities on theβ-planes with no mean flows

3 Instability on the β-planes without mean flow

Solutions of system (1) on theβ-plane (wheref (y) = f0 +

βy = 2�sinφ0+2�cosφ0y/R with � – earth’s frequency of
rotation,R – earth’s radius andφ0 – the latitude where the
tangential plane touches the spherical earth) are usually as-
sumed to represent zonally propagating waves i.e.u, v andη

are assumed to vary inx andt aseik(x−Ct). The caseR−1
= 0

(i.e. whenf (y) = f0 soβ = 0) is called the f-plane and the
caseφ0 = 0 is the equatorialβ-plane. In all these cases a cu-
bic equation determines the relationship between the phase
speedC and the wavenumber,k and the remaining parame-
ters: �, R, g (gravity or reduced gravity) andH appear in
the coefficients of this relationship, known as the dispersion
relation. When the equations are nondimensionalized the
four-dimensional parametersg, H , � andR combine into
a single non-dimensional parameterα = gH/(2�R)2. The
dispersion relation, which is usually written as eitherC(k) or
kC(k), is obtained when the equations for the y-dependent
amplitudes of the wavelike solutions are transformed into
a second order (the equation is always second order iny

because there is no y-derivative in the linear x-momentum
equation) eigenvalue equation whose eigenvalues (which are
determined by the boundary conditions) are combinations of
all the parameters that appear in the equations. Denoting
the eigenvalues byE (in the case of harmonic waves in a
channel of non-dimensional width1φ the eigenvalues are
(nπ /1φ)2).

On the mid-latitudeβ-plane theory the cubic dispersion
relation takes the form (see Eq. 3.1 of Paldor et al., 2007,
PRM hereafter):

k2

α
C3

−

[
Esin2(φ0)

α
+k2

]
C −cos(φ0) = 0.

On the equatorialβ-plane the cubic dispersion relation is
give by the roots of:

E =

(
ω2

α
−k2

−
k

ω

)
whereω = kC (see Matsuno, 1966, and Erlick et al., 2007).

A similar cubic dispersion relation was derived in LeBlond
and Mysak (1978) but solutions for the eigenvalue,E, were
only derived on the f-plane.

In both cases theC(k;E,α) relation can be re-arranged to
the general, cubic, dispersion relation:

C3
−aC −b = 0, (4)

where the positive constantsa andb are functions ofk, E

andα (and in mid-latitudes ofφ0). In a mid-latitude channel
on theβ-plane (centered onφ0) a = α +Esin2(φ0)/k2 and
b = cos(φ0)α/k2 and in the case of an equatorial channela =

α +Eα/k2 andb = α/k2 (i.e. the equatorial case is obtained
from the mid-latitude case by substitutingα for sin2(φ0) in

the expression fora and setting cos(φ0) = 1 in the expression
for b).

By dividing Eq. (4) through bya3/2 and definingy =

Ca−1/2 (sincea > 0 complex y-values occur only for com-
plex C-values) andm = ba−3/2 > 0, the cubic inC in
Eq. (2.1) is transformed to:

y3
−y = m. (5)

The extrema of the LHS of Eq. (5) are located aty = ±3−1/2

where the LHS equals±3−1/2(1/3− 1) = ±3−1/2(−2/3).
Thus, complex roots exist form > 2/33/2 (recall that m is
positive) i.e.

b/2> (a/3)3/2.

The lower bound ofm = 2/33/2, above which complex val-
ues ofC are encountered, probably corresponds to theM > 1
condition derived in McKenzie (2009).

Transforming the condition onm(= ba−3/2) into a condi-
tion ona andb yields:

b2

4
>

a3

27
.

In a mid-latitude channel (a = α + Esin2(φ0)/k2; b =

cos(φ0)α/k2) this condition translates to:

cos2φ0α
2

4k4
>

(
Esin2φ0k

−2
+α

)3
27

. (6)

Definingx = k2 and rearranging, one gets the following nec-
essary condition for instability:

cos2φ0α
2 >

4

27x

(
Esin2φ0+αx

)3
(7)

The RHS of Eq. (7) becomes infinitely large at both small
and largex(= k2) so this condition can only be satisfied (i.e.
complex roots exist) at O(1) x-values. The minimal value of
the RHS of Eq. (7) occurs at:

x = Esin2φ0/(2α). (8)

Substituting this minimal value of x into the RHS of Eq. (7)
one gets the necessary condition for a complex root to occur:

27cos2φ0α
2 >

4
Esin2φ0

2α

(
Esin2φ0+

Esin2φ0

2

)3

=
8α

Esin2φ0

(
3

2
Esin2φ0

)3

. (9)

Dividing through byα and rearranging, yields:

cos2φ0α >E2sin4φ0 ⇔
√

α >E tanφ0sinφ0. (10)

In interpreting the implications of condition (10) one should
remember that the eigenvalue,E, depends onα. In the sim-
ple case of harmonic waves in a mid-latitude channel (where
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the termβy is set equal to 0; see PRM) the eigenvaluesEn

in a channel of width 2δφ (2L = 2δφR) are (see Eqs. 2.10a
and 4.1 in PRM):

En = 1+
π2α(n+1)2

4sin2φ0(δφ)2
, n= 0,1,2,.... (11)

Substituting this relationship into Eq. (10) one obtains the
condition:

√
α >

sin2φ0+
απ2(n+1)2

4(δφ)2

cosφ0
. (12)

Rearranging, this relationship yields the condition:

(n+1)2π2

(2δφ)2
α−cosφ0

√
α+sin2φ0 < 0. (13)

Viewing this last relation as a quadratic inequality in
√

α and
requiring that the inequality be satisfied at least at the mini-
mum of the parabola on the LHS yields:

δφ > (n+1)π tanφ0 ⇔
cosφ0δφ

sinφ0
> π(n+1). (14)

In mid-latitudes this condition cannot be satisfied since
δφ <min(φ0, π /4) for a channel located in one hemisphere.
In then = 0 case (where the RHS attain their lowest values)
the physical interpretation of Eq. (14), is that the ratio be-
tween the change in the value of Coriolis parameter across
the domain (∝ cosφ0δφ) and its mean value (∝ sinφ0) is
larger thanπ . Thus, the necessary condition for instabil-
ity on the mid-latitudeβ-plane is satisfied only when the
very essence of theβ-plane approximation (where sinφ is
expanded to first order only near someφ0 > 0) loses its va-
lidity.

For waves in a channel on the equatorialβ-plane the eigen-
functions are Hermite Functions and the eigenvalues are
En = (2n+ 1)α−1/2. As noted below Eq. (4) The equato-
rial counterpart of condition (10) is obtained by substituting
α for sin2(φ0) in the expression for a and setting cos(φ0) = 1
in the expression forb. Carrying out these substitutions in
Eq. (10) one obtains:

2n+1< 1, (15)

which cannot be satisfied for any integer,n = 0, 1, 2, . . . .
Thus, in both equatorial and mid-latitude channels the nec-

essary condition for the existence of (the spurious) instabil-
ities, Eq. (10), is satisfied only for physically unacceptable
parameter values or for a non-existing mode (i.e.,n < 0).

4 Concluding remarks

The conclusion that can be drawn from the trivial calcula-
tions presented above is that inferences based solely on the
(cubic) dispersion relation can be irrelevant to the instabil-
ity problem under study. Only a complete solution of the

eigenvalue problem associated with the dispersion relation
(such as determining the values ofE) can yield genuine in-
stabilities and in the absence of such a solution the analysis
is merely an algebraic calculation of the complex roots of
a cubicC(k) relation. In the case addressed in McKenzie
(2009) an attempt to evaluate theuy (v in the standard GFD
notation) eigenfunction that solves his Eq. (19) subject to ac-
ceptable boundary conditions would have clarified that no
instability exist in the shallow water equations in the absence
of a mean flow.

From another perspective, the shallow water equation can
be formulated as a Hamiltonian system in which the tempo-
ral evolution is governed by properly defined Poisson bracket
operator (Weinstein, 1983; Piterbarg and Schulman, 1989).
Thus, the conservation of energy is an inherent and funda-
mental property of this system that governs its dynamics via
the Hamiltonian and Poisson bracket operator and should not
be viewed as a trivial result of the straightforward algebraic
calculation presented in Sect. 2. Clearly, energy conserva-
tion and Hamiltonian form are not consistent with exponen-
tial temporal growth of infinitesimally small initial perturba-
tions i.e., the satisfaction of the necessary conditions for the
occurrence of complex roots of a cubic relation inC does not
guarantee the existence of unstable modes.
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