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Abstract. Recent numerical calculations that suggest the ex2 Energy integral for the Linearized Shallow Water
istence of instabilities of the shallow water equations on the  Equations (LSWE) with rotation
B-planes (both mid-latitudes and on the equator) are shown _ . o
to be associated with spurious instabilities rather than genFor arbitrary latitude-dependent Coriolis frequengyy),
uine unstable modes. The spurious unstable modes arise fie LSWE with rotation are:
an analysis of the necessary condition for the existence ofou _ — o0
> : : o o — JOv=—g7z
complex roots to the cubic dispersion relation but it is shown

here that these complex roots are not associated with solu%—l,’ + fu= —gg—'; 1)
ti(_)ns (eigenvalue_s and eigenfunctions) of the correspondinga_77 _ —H(f’—“ . ﬂ)
eigenvalue equation. a = ax T dy

Keywords. Space plasma physics (Waves and instabilities) A trivial multiplication of the x-momentum equation (first
equation of system 1) by Hu, the y-momentum equation (sec-
ond equation of system 1) by Hv and the continuity equation
(third equation of system 1) byn (note thatg and H stand

for the reduced gravity and reduced height, respectively, so

In Mckenzie (2009) a general condition for the existence ofthe speed of gravity wavesg H) 2, is a parameter that can
complex phase speeds was derived for the Linearized Shamary from 2-3ms? in a baroclinic ocean to 200300 m's
low Water Equations (LSWE) on thg-plane in the absence in a barotropic ocean/atmosphere).

of mean flow. The condition was also calculated (using very Adding the resulting equations one gets:

similar formulation to that of the LSWE) to stratified flows 1 j ) ) 5

without rotation (where Brunt-Vaisala frequenay,(z), is >3 (HM +Hv"+gn ) =—gHV-(Vn). 2
substituted for Coriolis frequencyf(y)) and also on the ) L ) o
equator (wherefo = 0). This note attempts to cast the for- When this equation is integrated over the entire domain (in-
mulation of the equations in a more traditional way and ex-cluding infinity) the RHS vanishes for suitable boundary con-

amine the range of parameter values where the calculation dfitions (integration of the divergence operator retains only
the instabilities reported in Mckenzie (2009) is valid. These Values of the integrand at the boundaries) and the result is:
instabilities defy the necessary conditions for instability link H, H, 1 ,

derived in the last 70 years between the existence of unstablg; SU T SU e )= 0. ©)

2 2
perturbations and an energetic source for their growth (see

e.g. Kuo, 1949; Pedlosky, 1982). The most common of thesd Nis straightforward calculation (which can be found in any
sources is a mean flow that can transfer its kinetic energy®XP00K) shows that regardless of the form assumedf for

under certain conditions (e.g. an inflection point of the vor- (¢:9- f-plane,g-plane) in the SWE with no mean flow, lin-
ticity) to the unstable perturbation modes. The aim of this &' instabilities can develop, only if perturbation energy is
note is to clarify the source of the apparent contradiction be-2dvected inward from the domain’s boundaries. The way

tween the classical GFD instability theory and the numericalP?y Which this advection through the boundaries generates
calculations of McKenzie (2009). the unstable modes is the subject of many classical instabil-

ity studies the resulted in a wealth of examples associated,
for example, with potential vorticity jumps at the boundaries O

Correspondence td\. Paldor such as in Rayliegh problem (see Paldor et al., 2009) or the O
BY (nathan.paldor@huiji.ac.il) inflection-point conditions (Kuo, 1949). o
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3 Instability on the g-planes without mean flow

Solutions of system (1) on the-plane (wheref (y) = fo+
By = 2Qsingg + 222c08pgy/ R with Q — earth’s frequency of
rotation, R — earth’s radius angg — the latitude where the
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the expression far and setting cogfp) = 1 in the expression
for b).

By dividing Eq. (4) through by:®? and definingy =
Ca72 (sincea > 0 complex y-values occur only for com-
plex C-values) andn = ba—%/2 > 0, the cubic inC in

tangential plane touches the spherical earth) are usually a%q. (2.1) is transformed to:

sumed to represent zonally propagating waves:j.e.andn
are assumed to vary inandr ase’*=¢"_ The caseR "1 =0
(i.e. whenf(y) = fo sos =0) is called the f-plane and the
casepp = 0 is the equatorigB-plane. In all these cases a cu-

(5)
The extrema of the LHS of Eq. (5) are locatedyat +3~ 2

y—y=m.

bic equation determines the relationship between the phasehere the LHS equalst3‘10(1/3— 1= 13—1/2(—2/3).

speedC and the wavenumbet, and the remaining parame-
ters: Q, R, g (gravity or reduced gravity) anél appear in

the coefficients of this relationship, known as the dispersion
relation. When the equations are nondimensionalized th(@

four-dimensional parametegs H,  and R combine into
a single non-dimensional parametes= gH /(2Q2R)?. The
dispersion relation, which is usually written as eitligk) or

Thus, complex roots exist forn > 2/3%2 (recall that m is
positive) i.e.

/2> (a)3)%2.

The lower bound ofn = 2/3%2, above which complex val-
ues ofC are encountered, probably corresponds taithe 1
condition derived in McKenzie (2009).

kC (k), is obtained when the equations for the y-dependent Transforming the condition om (= ba—%/2) into a condi-
amplitudes of the wavelike solutions are transformed intotjon ong andb yields:

a second order (the equation is always second order in

because there is no y-derivative in the linear x-momentumb_2
equation) eigenvalue equation whose eigenvalues (which aret
determined by the boundary conditions) are combinations oﬁ
all the parameters that appear in the equations. Denotin

the eigenvalues by (in the case of harmonic waves in a
channel of non-dimensional width¢ the eigenvalues are
(I Ag)?).

On the mid-latitudes-plane theory the cubic dispersion

a3

2_7.
n a mid-latitude channela(= « + Esirf(¢o)lk?; b =

%os(¢o)a/k2) this condition translates to:

coLpoa?

(EsirPpok—2+a)°
T '

27

(6)

relation takes the form (see Eq. 3.1 of Paldor et al., 2007 Definingx = k2 and rearranging, one gets the following nec-

PRM hereafter):

2 .
e [@ +k21| C —coS(¢p) =0.

o

On the equatoriaB-plane the cubic dispersion relation is
give by the roots of:

®? k
EZ(__k __)
o w

wherew = kC (see Matsuno, 1966, and Erlick et al., 2007).
A similar cubic dispersion relation was derived in LeBlond
and Mysak (1978) but solutions for the eigenvalfig were
only derived on the f-plane.
In both cases th€ (k; E,«) relation can be re-arranged to
the general, cubic, dispersion relation:

C3—aC—-b=0, (4)

where the positive constanégsandb are functions ofk, E
anda (and in mid-latitudes ofp). In a mid-latitude channel
on the g-plane (centered o) a = o + Esir?(¢o)/k? and

b = cog¢po)a/k? and in the case of an equatorial channe!
o+ Ealk? andb = alk? (i.e. the equatorial case is obtained
from the mid-latitude case by substitutingfor sir’(¢o) in

Ann. Geophys., 28, 1737+39 2010

essary condition for instability:

(7)

The RHS of Eq. (7) becomes infinitely large at both small
and largex (= k) so this condition can only be satisfied (i.e.
complex roots exist) at O(1) x-values. The minimal value of
the RHS of Eq. (7) occurs at:

4 3
coL oo’ > o (ESIH2¢>O+Otx)

x = Esirt¢o/ (2x). (8)

Substituting this minimal value of x into the RHS of Eq. (7)
one gets the necessary condition for a complex root to occur:

, 3
27cog oo’ > Es'22¢0)

Esirfég
2
8a

3 cir? 3
~ Esirtgo (EESI ¢O) '

Dividing through byx and rearranging, yields:

(Esin2¢o+

9)
coS oo > E?sint¢p < /o > Etangosingo. (10)

In interpreting the implications of condition (10) one should
remember that the eigenvalug, depends om. In the sim-
ple case of harmonic waves in a mid-latitude channel (where
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the termpy is set equal to O0; see PRM) the eigenvaliigs  eigenvalue problem associated with the dispersion relation
in a channel of width & (2L =25¢R) are (see Egs. 2.10a (such as determining the values Bf can yield genuine in-

and 4.1 in PRM): stabilities and in the absence of such a solution the analysis

2 2 is merely an algebraic calculation of the complex roots of

E,=1+ M, n=0,1,2,.... (11) a cubicC (k) relation. In the case addressed in McKenzie

4sirf o (8¢)> (2009) an attempt to evaluate the (v in the standard GFD
Substituting this relationship into Eq. (10) one obtains theNotation) eigenfunction that solves his Eq. (19) subject to ac-
condition: ceptable boundary conditions would have clarified that no
) ) instability exist in the shallow water equations in the absence
sinf g+ 2ZtD” of a mean flow.
) . .

o> cosho . (12) From another perspective, the shallow water equation can
be formulated as a Hamiltonian system in which the tempo-

Rearranging, this relationship yields the condition: ral evolution is governed by properly defined Poisson bracket
(n+1)272 operator (Weinstein, 1983; Piterbarg and Schulman, 1989).
—za—coai)o\/&Jrsinquo <0. (18)  Thus, the conservation of energy is an inherent and funda-
(25¢) mental property of this system that governs its dynamics via

Viewing this last relation as a quadratic inequalityi and ~ the Hamiltonian and Poisson bracket operator and should not
requiring that the inequality be satisfied at least at the mini-be viewed as a trivial result of the straightforward algebraic

mum of the parabola on the LHS yields: qalculation pr_eser_wted in Sect. 2. Clea_rly, energy conserva-
tion and Hamiltonian form are not consistent with exponen-
8¢ > (n+1)mtangg < Cospodd >+, (14) tial temporal growth of infinitesimally small initial perturba-

singo tions i.e., the satisfaction of the necessary conditions for the
In mid-latitudes this condition cannot be satisfied sinceoccurrence of complexroots of a cubic relatiorCinloes not

8¢ <min(go, 7/4) for a channel located in one hemisphere, guarantee the existence of unstable modes.
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