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Abstract. Magnetic clouds are important objects for space
weather forecasters due to their impact on the Earth’s magne-
tosphere and their consequences during geomagnetic storms.
Being considered as cylindrical or toroidal flux ropes, their
size, velocity, magnetic field strength, and axis orientation
determine its impact on Earth. Above mentioned parameters
are usually extracted from model fits using measurements
from one-spacecraft crossings of these structures. In order
to relate solar events with these spacecraft observations, the
parameters are then compared to situation at the Sun around
a most probable source region with a goal to correlate them
with near-Sun observed quantities for prediction purposes.
In the past we performed three-dimensional simulations of
magnetic cloud propagation in the inner heliosphere. Simu-
lated spacecraft measurements are fitted by models of mag-
netic clouds and resulting parameters are compared with real
shapes of magnetic clouds which can be directly obtained
from our simulations. The comparison shows that cloud pa-
rameters are determined quite reliably for spacecraft cross-
ings near the cloud axis.
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1 Introduction

Magnetic clouds were discovered in solar wind observa-
tions as regions with an enhanced magnetic field magni-
tude, smooth rotation of magnetic field vector, decreased pro-
ton temperature, and size of the order of 0.1 AU (Klein and
Burlaga, 1982). The regions are interpreted as manifestations
of large interplanetary flux ropes, probably still magnetically
connected to the solar corona by their feet when they are reg-
istered at 1 AU.

There are numerous models which try to model observed
magnetic clouds as flux ropes, to compare measurements
with model profiles, and thus to extract some basic param-
eters of these phenomena (e.g., Marubashi, 1986, 1997;
Burlaga, 1988; Lepping et al., 1990, 2006; Hidalgo et al.,
2000, 2002; Mulligan and Russell, 2001; Hu and Son-
nerup, 2001; Vandas et al., 2005, 2006; Dasso et al., 2006;
Marubashi and Lepping, 2007; Nakwacki et al., 2008). Most
models assume a cylindrical geometry with quantities not
changing along the axis (i.e., a two-dimensional problem).
There are specific assumptions on magnetic fields (e.g., a
force-free field) and temporal behaviour (e.g., stationarity or
radial expansion). Models yield basic parameters of the flux
ropes as their radius, value of the axial magnetic field, chi-
rality, or helicity per unit length. One can think about how
these parameters are real or reliable, because they are mostly
extracted from single spacecraft crossings, i.e., from mea-
surements along only a single line through a flux rope. It is
difficult to verify independently obtained geometric param-
eters of the cloud like its axis orientation or its dimensions,
because we do not “see” needed quantities apart from the tra-
jectory. Simultaneous crossings of magnetic clouds by more
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Fig. 1. Simulated flux rope lying in the ecliptic plane, after it
reached 1 AU. Thin helical lines in blue are magnetic field lines
of the flux rope. Parts of the flux rope are labeled as apex, W
(west) leg, and E (east) leg. The thick solid lines are boundaries
of a computational domain (RS means the solar radius), the dashed
arc shows the distance of 1 AU. A more detailed description is in
the text.

spacecraft sufficiently separated are rare and so are papers
analyzing them (e.g., Mulligan and Russell, 2001; Liu et al.,
2008; Möstl et al., 2008; Kilpua et al., 2009).

On the other hand, magnetohydrodynamic simulations of
magnetic cloud propagation (e.g., Vandas et al., 2002; Odstr-
cil et al., 2002; Manchester et al., 2004, Chané et al., 2006;
Jacobs et al., 2009) have the advantage that necessary quan-
tities are known globally and such that simulations can pro-
vide what a spacecraft can measure at given points. There-
fore, they are suitable for testing fitting procedures. One may
admit that simulations are simpler than probably the real phe-
nomena are. But even in this case they provide us with basic
information on credibility of fittings.

A comparison of fits with one simulated case of a flux
rope from two-dimensional simulations has been presented
by Riley et al. (2004). Simulated measurements were pro-
vided to several groups, which are involved in fitting of ob-
served magnetic clouds, and they independently determined
basic parameters (without knowing details of the simulation).
The authors conclude that accuracy of model parameters de-
creases markedly with increasingly glancing encounters and
that correct identification of the boundaries of the flux rope
can be a significant limiter.

Here we present comparisons between fits and real situa-
tions from three-dimensional simulations. Magnetic clouds
in the simulations are truly three-dimensional bodies, which
have a form of loop-like flux ropes that are connected by both
feet to the Sun. The paper by Riley et al. (2004) treated one
case: a flux rope parallel to the ecliptic plane (with incli-
nation 0◦ in our nomenclature, the limitation given by their
2.5-D approach). In our more general approach, we deal here
with many cases, flux ropes with various inclinations that are
crossed in various parts of their loop-like bodies. The simu-

lated flux rope in the Riley et al. (2004) paper has an extreme
oblate shape which can be hardly fitted by existing mod-
els. Our simulations yielded moderate oblate shapes which
are closer to assumptions of current models (circular/elliptic
shape). Reasons for this distinct flux rope shape difference in
simulations are discussed in the Discussion and conclusions
section. In addition and, unlike the Riley et al. (2004) paper,
we provide a direct visual inter-comparison between real and
modelled flux rope shapes.

2 Simulations

Three-dimensional simulations of a flux rope propagation in
a simple solar wind were performed for various flux rope
orientations. The simulations used one-fluid time-dependent
ideal-MHD equations. The simulations and their results have
been described in Vandas et al. (2002, 2003). The simple
quiet solar wind model contained no magnetic sectors and no
heliospheric current sheet, the radial velocity only depended
on the radial distance. The flux rope was introduced into the
computational domain by perturbations of quantities at the
inner boundary. A model of the flux rope was a toroid with
a constant-α force-free field inside it. During injection of
the toroid, only the magnetic field was perturbed at the in-
ner boundary; other quantities remained unchanged. When
a half of the toroid emerged, its feet were kept at the inner
boundary and shifted westward to simulate their solar rota-
tion. Magnetic fields have a lower level than in a real solar
wind in order to suppress numerical reconnection (Vandas
et al., 2002). Here these results are used to test our fitting
procedure. Flux ropes in simulations had inclinations to the
ecliptic plane of 0◦, 20◦, 45◦, 70◦, and 90◦. The first case
(0◦) was studied the most and it is displayed in Fig. 1.

Figure 1 shows a simulated flux rope (magnetic cloud)
propagating in the ecliptic plane, after it reached 1 AU. Its
leading part (apex) is rather flat and its legs are curved ap-
proximately as Archimedean spirals of the surrounding mag-
netic field. Hypothetic spacecraft were introduced into our
computational domain at 1 AU in three places, labeled A,
B, and C (see black bullets in Fig. 1). These spacecraft
“recorded” plasma and magnetic field parameters in a time
sequence. Obtained “measurements” were then fitted by a
flux rope model. Figure 1 also shows estimated flux-rope-
axis orientations by red arrows; the estimations were simply
done from the figure by eye. In the point A the spacecraft
observed the flux rope two times within our simulation pe-
riod, which are denoted as events I and II. Radial directions
connecting the three points with the Sun are also plotted.

3 Flux-rope model

Our flux-rope model assumes a constant-alpha force-free
magnetic structure inside a cylinder (which can be ellipti-
cal) and includes a flux-rope radial expansion. Amount of
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Fig. 2. Simulated time profiles (red) in the point A (c) and a point
slightly above it (s) for the event I. The plot displays from top to
bottom the magnetic field magnitudeB, magnetic field components
Bx, By, andBz (in GSE), velocity magnitudeV , number densityN ,
and temperatureT . Vertical blue lines denote estimated flux-rope
boundaries. Model fits are plotted by the thick green lines.

expansion is estimated from an observed velocity slope. The
orientation of the flux-rope axis is given by two angles, the
inclination θc and the azimuthal angleϕc (in GSE system).
Here these angles are determined from variance analysis of
“observed” magnetic field vectors (Lepping et al., 1990), that
is, in an objective way. Our model is described in Vandas et
al. (2006). It is a generalization of the Lundquist solution;
the latter is commonly used as a model for magnetic cloud
fits (Burlaga, 1988; Lepping et al., 1990, 2006). The gener-
alization includes oblateness and expansion of the magnetic
structure. Oblateness is conserved during expansion, which
is incorporated by time-dependentα and axial magnetic field
parameters.

4 Results

Simulated magnetic field components and velocity magni-
tude profiles in given points from Fig. 1 (i.e., what a hypo-
thetic spacecraft would measure, e.g., in point A) were fitted

Fig. 3. Cross section through the flux rope around the point A
for the event I. Contours show the distribution of the magnetic field
magnitude. Thick ovals are projected parts of magnetic field lines.
Dashed straight lines are projected trajectories of hypothetic space-
craft. Xc andYc are axes of a local Cartesian coordinate system
with theZc axis along the estimated flux rope axis (the red arrow
from Fig. 1). So theXc andYc axes lie in the plane perpendicular
to the flux rope axis, but their orientation in this plane is selected
arbitrarily.

by our model. The parameters of flux ropes were obtained
by an objective procedure, which finds ones with the least
mean square difference between observed and modeled pro-
files. Then the model flux rope (its cross section) is compared
with the “true”one from MHD simulations.

Simulated measurements of a flux rope lying in the ecliptic
plane (inclination 0◦, Fig. 1) are analyzed first (cases 1–4):
an apex of the flux rope at the point A (case 1), a leg of
the flux rope at the point A (case 2), an apex at the point B
(case 3), and a leg at the point C (case 4). An apex of flux
ropes in various nonzero inclinations at the point A was then
treated as cases 5–8. A detailed description of case 1 is given
in Sect. 4.1 and Figs. 2 and 3. Case 2 is presented in Sect. 4.2;
and case 3, in Sect. 4.3 and Fig. 4. Case 4 is discussed in
Sect. 4.4 and Figs. 5–6. Cases 5–8 are presented in Sect. 4.5
and demonstrated in Figs. 7–9. The results are summarized
in Table 1 and in the Discussion and conclusions section.

4.1 Point A – event I (case 1)

Figure 2c shows simulated time profiles for the point A and
the first flux-rope crossing (crossing of the apex, event I; the
(c) refers to panels on the left side of Fig. 2). Vertical lines
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Fig. 4. Cross section through the flux rope around the point B.
Outline is similar to Fig. 3.

denote estimated flux-rope boundaries. The estimation is
based on temperature and density drops. These “measured”
profiles show clear signatures of a magnetic cloud: a mag-
netic field magnitude increase, rotation of the magnetic field
vector (sinusoidal profiles of magnetic field components),
and a temperature decrease. A secondB-increase, which is
cut at the right, is the event II.

A cross section through the flux rope around the point A is
shown in Fig. 3. Thick ovals denote a shape of the rope and a
position of its axis. However, a real extent of the flux rope is
slightly larger than the greater oval. The dashed line labeled
(c) is a projected trajectory of the hypothetic spacecraft in the
point A. The profiles in Fig. 2c correspond to this trajectory.
It is called a central crossing as it goes closer to the axis.

The second dashed trajectory (s) is from a spacecraft near
the point A but slightly above the ecliptic plane. It is called a
side crossing, because it has a larger impact factorp. The im-
pact factor is a relative minimum distance from the rope axis,
the distance divided by the rope radiusr0 (for an oblate rope
it is divided by the minor radius). “Measurements” along this
trajectory are shown in Fig. 2s.

Estimated flux rope orientation (the arrow in Fig. 1) has
θc = 0◦ and ϕc = 95◦. “Measurements” displayed in red
in Fig. 2 were fitted by the model mentioned above and
the fits are shown by the thick green lines in this figure.
Determined flux-rope parameters are for fit (c):θc = −8◦,
ϕc = 109◦, p = 0, r0 = 0.04 AU, oblateness = 1.5; and for
fit (s): θc = −8◦, ϕc = 32◦, p = 0.5, r0 = 0.02 AU, oblate-
ness = 1.0. Oblateness is the ratio of major to minor radii for

Table 1. True and modeled parameters of magnetic flux ropes. The
lines, where the trajectory column (tra) is marked by “–”, give true
parameters (“c” and “s” mean central and side crossings, respec-
tively). Ther0 is in AU, o is oblateness (a/b whereb = r0). Unde-
termined or non-reliable parameters are labeled by ?, thep column
shows true values in parentheses.

case point tra θc ϕc r0 o p

1 A-I – 0◦ 95◦ 0.04 1.6 –
c −8◦ 109◦ 0.04 1.5 0.0 (0.5)
s −8◦ 32◦ 0.02 1.0 0.5 (1.2)

2 A-II – 0◦ 315◦ ? ? –
? −6◦ 289◦ ? ? ?

3 B – 0◦ 110◦ 0.04 1.3 –
c 9◦ 105◦ 0.03 1.5 0.0 (0.1)

4 C – 0◦ 140◦ 0.06 1.1 –
c −2◦ 143◦ 0.05 1.5 0.0 (0.0)
s1 −6◦ 76◦ ? ? (0.9)
s2 9◦ 134◦ ? ? (0.9)

5 A-I – −20◦ 95◦ 0.04 1.5 –
c −17◦ 79◦ 0.04 1.5 0.0 (0.3)
s −17◦ 116◦ 0.04 1.5 0.5 (1.5)

6 A-I – −45◦ 147◦ ? ? –
? −56◦ 93◦ ? ? ?

7 A-I – −70◦ 147◦ ? ? –
? −72◦ 117◦ ? ? ?

8 A-I – −90◦ – ? ? –
? −83◦ – ? ? ?

an elliptic cross section. The central crossing yields quite
plausible parameters (except ofp), the resulting shape of the
model rope is shown in Fig. 3 by a dashed oval. The side
crossing gives wrong parameters and the fit is worse. It was
found that the fitting procedure was not very sensitive to val-
ues of oblateness and impact parameter. Therefore we use
only rough characteristic values in our analysis: 0, 0.25, 0.5,
0.75 forp, 0, 1.5, 2, 3 for oblateness, and selected the best
fit among them.

4.2 Point A – event II (case 2)

This event is the second flux-rope crossing for the point A,
central crossing of the east leg. Estimated axis orientation
(the arrow in Fig. 1) isθc = 0◦ andϕc = 315◦. Variance anal-
ysis yieldedθc = −6◦ andϕc = 289◦. The correspondence is
quite good. Global data were not available for this crossing,
so comparison of geometric parameters was not done. A side
crossing was too far from the axis and did not show a clear
signature of a flux rope crossing.

4.3 Point B (case 3)

A cross section through the flux rope near the point B is
shown in Fig. 4. The hypothetic spacecraft made a central
crossing. Estimated axis orientation (the arrow in Fig. 1)
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Fig. 5. Simulated time profiles in the point C. The layout is similar
to Fig. 2.

is θc = 0◦ and ϕc = 110◦. Determined flux-rope parame-
ters from a fit are:θc = 9◦, ϕc = 105◦, p = 0, r0 = 0.03 AU,
oblateness = 1.5. The shape of the rope according to this fit
is shown as a dashed oval in Fig. 4.

Fig. 6. Cross section through the flux rope around the point C.
Outline is similar to Fig. 3.

4.4 Point C (case 4)

Figure 5c shows simulated time profiles for the point C, a
central crossing of the west leg. The fit is quite good in this
case, the best from all fits presented here.

A cross section of a part of the flux rope which passes
near the point C is shown in Fig. 6. Three dashed lines are
projected trajectories of hypothetic spacecraft for central (c)
and two side (s1, s2) crossings. Estimated axis orientation
(the arrow in Fig. 1) isθc = 0◦ andϕc = 140◦. A fit yielded
for the central crossing (c):θc = −2◦, ϕc = 143◦, p = 0,
r0 = 0.05 AU, oblateness = 1.5. The model shape is shown
in Fig. 6 as a dashed oval. Despite of the fact that the fit of
profiles is good, the shapes do not correspond so well; the
real shape is close to a circle. Leg events are not “classical”
magnetic clouds, temperature is increased in them (see dis-
cussion in Vandas et al., 2002). The side crossings did not
give reasonable results except of axis orientation from vari-
ance analysis. Fit (s1): θc = −6◦, ϕc = 76◦; fit (s2): θc = 9◦,
ϕc = 134◦.

4.5 Point A for inclined flux ropes (cases 5–8)

Figure 7s shows simulated time profiles for the point A (side
crossing) and Fig. 7c shows them for a site near the point A
(central crossing), but for a flux rope inclined 20◦ to the
ecliptic plane.

A cross section through this inclined flux rope near the
point A is shown in Fig. 8 together with trajectories of the
central and side crossings. Estimated axis orientation (from
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Fig. 7. Simulated time profiles near (c) and in the point A (s) for a
flux rope inclined 20◦ to the ecliptic plane. The layout is similar to
Fig. 2.

analogy with the case I):θc = −20◦, ϕc = 95◦. Determined
flux-rope parameters from a model fit (c):θc = −17◦, ϕc =

79◦, p = 0, r0 = 0.04 AU, oblateness = 1.5; fit (s):θc = −17◦,
ϕc = 116◦, p = 0.5, r0 = 0.04 AU, oblateness = 1.5. In this
case, the both crossings yield quite plausible parameters.

Comparisons of estimated flux-rope axis orientations from
geometric considerations and that from variance analysis of
simulated profiles for other three inclinations, as well as the
above described results, are given in Table 1. Figure 9 shows
simulated time profiles (red) at the point A for case 8, a flux
rope inclined 90◦ to the ecliptic plane, and their fits (green)
by the model.

5 Discussion and conclusions

Three-dimensional simulations of magnetic cloud propaga-
tion in the inner heliosphere were used to verify fits by our
model of a magnetic cloud. The study led us to the following
conclusions. Central crossings yield quite plausible determi-
nation of the axis orientation and the rope radius. It is impor-
tant to point out that this is not true for side crossings. The

Fig. 8. Cross section through the flux rope around the point A for
a 20◦ inclined flux rope. Outline is similar to Fig. 3.

axis orientations were determined by variance analysis of
magnetic field components. This was an objective procedure,
the only subjective element here is an estimate of boundary
crossings from “observed” magnetic field and plasma tem-
poral profiles. Table 1 shows that variance analysis yields a
good determination of the axis orientation for central cross-
ings. It gives mixed results for side crossings. The determi-
nation of the impact factor is not reliable. Oblateness can
be roughly estimated from magnetic field magnitude pro-
files. Oblateness does not significantly affect fits of profiles
of magnetic field components.

The problem is to guess if a crossing is sufficiently close
to the axis. Our simulated flux ropes have a quite regular
shape, close to circular or elliptical cross sections. But if the
cloud shape is distorted by its evolution in the solar corona
or by dynamical interactions in a structured solar wind, the
determined parameters will not be mostly reliable. So even if
the fits of profiles are quite good, the determined parameters
must be treated with caution. So our findings are in accord
with experience gathered by Riley et al. (2004) from 2.5-D
simulations.

The reason for the shape difference in our results and those
from the Riley et al. (2004) paper are initial conditions. In
the latter case, the flux ropes transforms into a very oblate
shape during its propagation in the solar corona and exits it as
an extremely oblate structure (cf. Riley and Crooker, 2004).
Our simulations starts at the outer corona with a circular flux
rope. Changes in its shape during propagation in the inner
heliosphere are not so significant (cf. Vandas et al., 1995). If
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Fig. 9. Simulated time profiles at the point A for a flux rope inclined
90◦ to the ecliptic plane. The layout is similar to Fig. 2.

a flux rope is close to circular at the outer corona, then it has
a moderate oblateness at 1 AU. If it is pancake-shaped, then
it preserves this shape. As real magnetic cloud shapes are an
open question, our simulation results offer an alternative for
tests of fitting procedures.
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