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Abstract. Spectra measured by incoherent scatter radars are
formed predominantly by scattering of the incident signal off
ion-acoustic and Langmuir waves in the ionosphere. Occa-
sionally, the upshifted and/or downshifted lines produced by
the ion-acoustic waves are enhanced well above thermal lev-
els and referred to as naturally enhanced ion-acoustic lines.
In this paper, we study another kind of enhancement, which
is spectrally uniform over the whole ion-line, i.e. the up-
and downshifted shoulder and the spectral valley in between.
Based on observations made with the EISCAT Svalbard radar
(ESR) facility, we investigate the transient and spectrally uni-
form power enhancements, which can be explained by ion-
acoustic solitary waves. We use a theory of nonlinear waves
in a magnetized plasma to determine the properties of such
waves and evaluate their effects on scattered signals mea-
sured by ESR. We suggest a new mechanism that can explain
backscattered power enhancements by one order of magni-
tude above the thermal level and show that it is consistent
with observations.

Keywords. Ionosphere (Auroral ionosphere; Plasma waves
and instabilities) – Space plasma physics (Nonlinear phe-
nomena)

1 Introduction

In incoherent scatter radar data, enhanced spectra are of-
ten seen. One such phenomenon isnaturally enhanced ion-
acoustic lines(NEIAL), which refers to spectral enhance-
ments at the ion-acoustic frequency sometimes observed by
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(jonas.ekeberg@irf.se)

incoherent scatter radars when the radar beam is nearly par-
allel to the geomagnetic field. NEIAL cover a wide range
of altitudes and are interpreted as destabilized ion-acoustic
waves (Rosenbluth and Rostoker, 1962). They were first
seen in spectra taken by the Millstone Hill incoherent scat-
ter radar (Foster et al., 1988) and were later also observed
with the EISCAT UHF (Rietveld et al., 1991), the EISCAT
VHF (Collis et al., 1991) and the EISCAT Svalbard Radar
(Sedgemore-Schulthess et al., 1999; Buchert et al., 1999).

Several attempts to explain the phenomenon have been
made, but so far none is completely satisfactory. A detailed
review of the understanding of NEIAL during the first decade
of study has been written bySedgemore-Schulthess and St.-
Maurice(2001). The generation models constitute different
ways of producing the ion-acoustic fluctuations necessary for
causing NEIAL. These fluctuations enhance either or both of
the ion-acoustic shoulders in the incoherent radar spectra.

Based on earlier theoretical work (Rosenbluth and Ros-
toker, 1962; Kindel and Kennel, 1971), a current instabil-
ity (= ion-electron streaming instability) has been suggested
(Foster et al., 1988; Collis et al., 1991; Rietveld et al., 1991)
as a mechanism for producing NEIAL observed by the Mill-
stone Hill and EISCAT radars. Shortly after, an ion-ion two-
stream instability was suggested to generate the necessary
ion-acoustic fluctuations for NEIAL (Wahlund et al., 1992).

A third type of generation mechanism was suggested by
Forme(1993) in the form of parametric decay of Langmuir
waves. This model was later refined (Forme, 1999) to explain
the altitude dependence of spectral signatures, in particular
cases where both shoulders are enhanced.

Solitary waves have recently been suggested as ex-
planations for coronal heating (e.g.,Stasiewicz and Eke-
berg, 2008a) and auroral acceleration (e.g.,Stasiewicz and
Ekeberg, 2008b). The present study investigates how
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Fig. 1. Incoherent radar spectra taken with ESR. The left panel
shows a typical NEIAL at altitudes above 300 km on 9 April 2007
at 11:31:54 UT. The right panel shows a different kind of spectral
enhancement seen on 1 August 2007 at 00:43:00 UT. Both spectra
were integrated 6 s. The colour bar shows range corrected power
spectral density in arbitrary units.

ion-acoustic solitary waves could create a different type of
transient enhancement of the incoherent scatter ion-line than
that so far implicitly associated with the term NEIAL.

In data sets taken by the EISCAT Svalbard Radar (ESR)
during the IPY (International Polar Year) operation, tran-
sient, spectrally uniform enhancements of the power in the
ion-line by about one order of magnitude over a limited
height range at, or close to, theF region peak have been
found to be quite common. One example is shown in Fig.1,
where the left panel displays a “classical” NEIAL spectrum
and the right panel shows a uniformly enhanced spectrum.
The uniform type of enhancement, which leaves the ion-line
spectral shape largely unchanged, is not easily explained by
any of the current NEIAL models but is consistent with the
model presented below.

In Sect. 2, we present ESR observations of spectrally
uniform ion-line enhancements and plasma parameters used
later for modelling. Section3 introduces the model equa-
tions and discusses the characteristics of the solitary wave
solutions. In Sect.4, the suggested mechanism for spectrally
uniform scattering cross section enhancements is described
and results presented. The paper ends with a discussion of
the model results seen in the light of the observations.

2 Observation

The EISCAT Svalbard radar (ESR) (Wannberg et al., 1997)
is a 500 MHz incoherent scatter radar located on Spitsber-
gen at 78◦09′11′′ N, 16◦01′44′′ E. The system consists of two

Table 1. Parameter values applicable for the ionosphericF region.

Assumed values Derived values

N0 = 2×1011m−3 VA = 6×105 m/s
B0 = 52 µT β = 8×10−6

Te= 2000 K λi = 2 km
Ti = 1000 K λe= 10 m
mi = 16 u
γ = 5/3

parabolic dish antennae of 32 m and 42 m in diameter. The
former is fully steerable in azimuth and elevation, whereas
the latter is fixed along the local direction of the geomagnetic
field with an azimuth of 181◦ and an elevation of 81.6◦.

Our example case was derived from an ESR 42 m dataset
taken on 1 August 2007 with the IPY experiment. The
experiment used a 32 bit alternating code (Lehtinen and
Häggstr̈om, 1987) in 30 µs long pulses and had maximum
range and time resolutions of 4.5 km and 6 s, respectively.
It was run during one year and focused on lower heights
(< 500 km), in particular theE region.

Figure2 shows a sequence of ion-line spectra with a time
resolution of 6 s and an altitude resolution of approximately
17 km, recorded between 00:42:42 UT and 00:43:30 UT. At
00:43:00 UT, the power in the ion-line at 229 and 246 km al-
titude suddenly peaked, reaching a level of about 4–5 times
the quiescent level, after which it started to decay back to the
quiescent level. The power enhancement was almost uniform
across both ion-acoustic shoulders and the spectral valley,
suggesting no increase of theTe/Ti-ratio as typically seen
in NEIAL-type enhancements (e.g,Forme et al., 1995). At
the same time, almost no enhancement of the spectral power
was seen in the height gates immediately below 229 km and
above 246 km.

To get an idea of the magnitude of the enhancement, the
total energy contained in the ion-line between−10 kHz and
+10 kHz was estimated as a function of time and normalized
to the level at the beginning of the event at 00:42:42 UT. This
was done for each altitude bin separately. We found that at
00:43:00 UT, the ion-line power at 229 km was enhanced by a
factor of four and the power at 246 km by a factor of five; six
seconds later, the enhancements were down to two and four
times, respectively. The duration of the strong enhancement
peaking at 00:43:00 UT was at most 12 s.

The electron density profile preceding the event is shown
in Fig. 3. The electron density and electron- and ion temper-
atures were integrated during 3 min between 00:28:48 and
00:31:48 UT and forms the parameter set, upon which the
assumed model plasma in Table1 is based. This particular
interval was the last consecutive 3 min interval without ab-
normal spectra before the event in Fig.2. It can be seen that
the maximum spectral enhancement was taking place close
to theF region peak.
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Fig. 2. Incoherent radar spectra measured with the 42 m ESR radar on 1 August 2007. The full time resolution of 6 s is used and the starting
times for each integration are shown for 5 adjacent height gates, which are centered at the altitudes indicated. Thex-axes show frequency
and they-axes show range corrected power spectral density in arbitrary units (common for all spectra). The spectra at 00:43:00 UT over a
longer height range are shown in the right panel of Fig.1.

3 Non-linear fluid model

We anticipate that ion-acoustic solitary structures could ex-
plain the observed spectrally uniform enhancement shown in
Fig. 1. Therefore, a fluid model based on Hall-MHD with a
generalized Ohm’s law including electron-to-ion-mass ratio
effects and electron pressure gradients, is introduced. The
details are presented in the following.

3.1 Model equations

The center of mass momentum equation and the generalized
Ohm’s law for a collisionless plasma with singly charged
positive ions and electrons are given by (e.g.,Krall and Triv-
elpiece, 1973)

Nmi
dV

dt
= J ×B −∇ ·P (1)

me

Ne2

[
∂J

∂t
+∇ ·

(
V J +JV −JJ

1

eN

)]
+

1

Ne
(J ×B −∇ ·Pe) = E+V ×B, (2)

whereV , J , P andPe are the center of mass velocity, current
density, total pressure and electron pressure, respectively.
In deriving Eqs. (1) and (2), collisions were neglected and
Ne ≈ Ni ≈ N was assumed, thus neglecting charge separa-
tion effects. The system is closed by the Maxwell’s equa-
tions,

∇ ×B = µ0J , ∇ ×E = −
∂B

∂t
, (3)

neglecting the displacement current, and two equations of
state,

p = p0n
γ (4)

pe = pe0n
γe, (5)

whereγ and γe are the polytropic pressure exponents for
total and electron pressure, respectively. The isotropic
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Fig. 3. Electron density profile averaged over 3 min between
00:28:48 UT and 00:31:48 UT on 1 August 2007 measured by ESR.
During the interval, there was no NEIAL or other abnormal spectral
enhancements.

and polytropic pressure relations are applicable for plasmas
with β = 2µ0p0/B

2
0 < 1, hence for simplicity they are cho-

sen instead of the more general polybaric pressure model
(Stasiewicz, 2005b).

3.1.1 Collisions

As stated earlier, collisions were neglected in Eqs. (1) and
(2). Among the collisions involving ions, neutrals and elec-
trons, the ion-neutral collisions are expected to affect the
Hall-MHD dynamics the most. The spectral enhancement in
the right panel of Fig.1 was observed around 240 km which
is close to theF region peak. At these heights, the ion-neutral
collision frequency is of the order of 10 rad/s (Kelley, 1989)
and falls off quickly with increasing height. The linear dis-
persion relation of Hall-MHD shows that the growth rate as-
sociated with the wave vector used in this paper is of the or-
der of 103 rad/s. Thus, the growth time of solitary structures
is shorter than the collision period. Collisions are therefore
expected to have a negligible effect on solitary structure for-
mation in the present situation.

3.1.2 The wave frame of reference

In the frame of reference moving with a wave along thex-
axis,NV ′

x =constant (continuity equation) andBx=constant
(∇ ·B = 0), where the prime denotes a quantity being mea-
sured in the wave frame. Zero-indexing background quanti-
tites and defining the magnetic fieldB0 = B0[cosα,0,sinα],
the x-component of Eq. (1) in the stationary wave frame
reads

∂n

∂x
=

(
by

∂by

∂x
+bz

∂bz

∂x

)(
M2

n2
−

βγ

2
nγ−1

)−1

, (6)

whereM = ω/k/VA = −V ′

x0/VA is the Alfvén Mach num-

ber andVA =

√
B2

0/(µ0miN0) for a wave travelling at speed
ω/k relative to the plasma. The normalizationsn = N/N0
andby,z = By,z/B0 have been used. According to Faraday’s
law, the transverse electric field in the wave frame is constant;
E′

y = −VAB0Msinα andE′
z = 0. Substituting with velocity

components from Eq. (1), the transverse vector components
of Eq. (2) in the stationary wave frame read

R
∂

∂x

(
n−1∂bz

∂x

)
+

1

M‖

∂by

∂x
=

(
1−

n

M2
‖

)
bz

−

(
n−

n

M2
‖

)
sinα (7)

−R
∂

∂x

(
n−1∂by

∂x

)
+

1

M‖

∂bz

∂x
= −by

(
1−

n

M2
‖

)
, (8)

whereR = me/mi andM‖ = M/cosα andx has been nor-
malized toλi = VA/ωci = λe/

√
R, whereλi,e are the ion and

electron inertial lengths, respectively. Note thatB andJ are
uneffected by the Lorentz transformation to the wave frame
in the non-relativistic case. Equations (6–8) are identical to
the model used byStasiewicz(2005a) in the isotropic case,
except for a sign difference in the definition of the Alfvén
Mach number, choosing here the positive sign for the prop-
agation direction of the wave. Expressing the second-order
derivatives of Eqs. (7) and (8) in terms of first order ones by
lettingR = 0, differentiating, and re-substituting gives(

1+R−
RM2

‖

n

)
∂by

∂x
+

RM2
‖

n2
by

∂n

∂x
=(

M‖ −
n

M‖

)
bz −

(
nM‖ −

n

M‖

)
sinα (9)(

1+R−
RM2

‖

n

)
∂bz

∂x
+

RM2
‖

n2
bz

∂n

∂x
=

−

(
M‖ −

n

M‖

)
by . (10)

As seen in Table1, singly charged oxygen ions are assumed
to dominate the ionosphericF region. This justifies neglect-
ing the electron-to-ion mass ratioR to first order.

3.2 Linearization

Linearizing Eqs. (6), (9) and (10) by perturbing the back-
ground state,n = 1+ δn, by = 0+ δby , bz = sin(α) + δbz,
gives a system on the form

ẏ = Jy, (11)
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Fig. 4. Spatial growth rateK, Eq. (14), for solitary waves propa-
gating at an angleα to B0 with the Mach numberM =

ω
kVA

in the
isotropic plasma defined by Table1. The black-edged white circles
indicate theM- and cosα-values presented in Table2, for which
wave solutions are shown in Figs.5 and6.

wherey = [δn δby δbz]
T andẏ =

∂y
∂x

are column vectors and
J is the Jacobian for the system (6), (9) and (10) evaluated
at the background state. Assuming perturbations∝ exp(Kx)

gives

δn =
2sinα

2M2−γβ
δbz (12)

Mδb = 0, (13)

whereM is the polarization matrix andδb =
[
δby δbz

]T is a
column vector. Setting the determinant ofM equal to zero
gives the dispersion relation

K2
=

AC

(1−RA)(1+RM2
‖
C)

, (14)

whereA = M2
‖
−1, C = sin2α/

(
M2

−γβ/2
)
−AM−2

‖
. R =

0 in Eq. (14) gives the Hall-MHD dispersion relation for an
isotropic plasma.K relatesδby to δbz through the equation

δby = −
M‖

A

(
RM2

‖
C +1

)
Kδbz. (15)

The perturbations are fixed through Eqs. (12) and (15) by
choosingδbz. Note that especially high growth rates are
expected in the vicinity of the singularity along the sonic
shock lineM =

√
γβ/2. It is seen from Eq. (14) that the

two rootsK1,2 = ±

√

K2 are either purely imaginary or real.
K2 < 0 corresponds to sinusoidal solutions, whereasK2 > 0
describes exponentially-varying solitary waves. Based on
Eq. (14), the phase diagram in Fig.4 shows two ranges where

Table 2. M and cosα for solitary wave solutions found in Figs.5
and6 and indicated by black-edged white circles in Fig.4.

M 0.001 0.002 0.0025

0.15
cosα 0.1 0.1 0.1

0.05

solitary waves exist for a plasma typical in the ionosphericF

region. The assumed plasma parameters are specified in Ta-
ble1. The present paper focuses on waves in the left area, just
to the left of the sonic shock line (M =

√
γβ/2≈ 3·10−3).

3.3 Wave solutions

Waves existing in the phase diagram of Fig.4 are integrated
by first assuming a density perturbationδn at x = 0, calcu-
lating the related transverse magnetic field perturbationsδby

andδbz with Eqs. (12) and (15) and finally solving Eqs. (6),
(9) and (10) by perturbing the background state. The pertur-
bation is, thus, only an initial condition for the integration
and the result of this perturbation will be refered to as a soli-
tary structure. In the linear regime (white colour) of Fig.4,
a density perturbation will generate a sinusoidal density fluc-
tuation with amplitude equal to the perturbation. The wave
vector is given by the imaginary part ofK.

In the solitary wave range, the wave properties are inde-
pendent of the perturbation size, as long as it is small com-
pared to the normalized background. The density perturba-
tion δn will, however, determine the spatial growth rate of
the first peak. Neither period nor amplitude of the following
peaks will be affected. A change ofδn by a factor 10 will
displace the first peak by∼ λe.

In this study, a density perturbation ofδn = 10−4 was cho-
sen and the corresponding transverse magnetic perturbations,
for theM- and cosα-values in Table2 (indicated by black-
edged circles in Fig.4), were calculated. The solutions with
cosα = 0.1 are found in Fig.5, whereas the solutions with
M = 0.0025 are shown in Fig.6. All solutions lie within the
range of solitary waves and propagate almost perpendicular
to B0 with speeds slightly smaller than the ion-sound speed
(M =

√
γβ/2). The solitary structures have full widths at

half maximum (FWHM) of about 10 m.

4 Spectral enhancements induced by solitary waves

Alfv én and magnetosonic waves propagating along the ge-
omagnetic field lines down into the ionosphere perturb the
magnetic field as though compressing, twisting and plucking
it. Perturbing a background plasma such as the one described
in Table1 in a manner defined by Eqs. (12) and (15) would
produce solitary structures such as those in Figs.5 and 6,

www.ann-geophys.net/28/1299/2010/ Ann. Geophys., 28, 1299–1306, 2010
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Fig. 5. The curves show normalized plasma density associated with
solitary waves propagating along thex-axis at 84◦ angle toB0 with
M = 0.001 (red “- -”), M = 0.0025 (green “–”) andM = 0.0027
(blue “-·”). The x-axis is normalized to electron inertial length,
λe. All structures propagate in the plasma defined by Table1 with
speeds close to the ion-sound speed (M =

√
βγ/2) relative to the

plasma.

depending on direction of propagation and speed relative to
the plasma.

The geometry implied by the model equations in Sect.3.1
for the ionosphere is illustrated by Fig.7, where thedip angle
θ is the angle between ground and the tangent of the geomag-
netic field at a certain altitude. In the right-handed system
xyz, ŷ points eastward and theα-angles given in Table2 im-
ply anx̂ pointing approximately to the north. Note thatα = θ

would give a purely horizontal flow. At the location of ESR,
the dip angle at 300 km altitude is approximately 80◦.

Assume an isolated solitary wave propagating transversely
across a radar beam oriented along the geomagnetic field.
This solitary structure will supply an addition of plasma into
the radar beam and thus increase the number of scatterers
(electrons). Within a height gate, the radar beam can be ap-
proximated by a cylinder of heighth and diameterd. Assum-
ing a solitary structure consisting of infinitesimal slabs, each
with constant plasma densityN and thickness dx, heighth
and widthw, propagating into the radar beam, implies the
geometry in Fig.8. Since the beam cross section is circular,
the transverse (to the direction of propagation) beam width
w at the distancex is given by

w(x) =

{
2
√

x(d −x) , 0≤ x ≤ d

0 else
(16)

Let the beam originally be filled with background plasma of
densityN0. A solitary structure with densityN(x) and length
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Fig. 6. The curves show normalized plasma density associated with
solitary waves propagating atM = 0.0025 along thex-axis at 81◦

(red “- -”), 84◦) (green “–”) and 87◦ (blue “-·”) angle toB0. The
x-axis is normalized to electron inertial length,λe. All structures
propagate in the plasma defined by Table1 with speeds close to the
ion-sound speed (M =

√
βγ/2) relative to the plasma.

l in thex-direction located inside the beam would then pro-
vide the additional

∫ x0+l

x0

h(N −N0)w dx = hN0

∫ x0+l

x0

(n−1)w dx

number of electrons, wherex0 is the starting location of the
solitary structure in the beam.

Now, assume a train of solitary structures propagating into
the beam and spanning over a length equal to the radar di-
ameterd. As the train fills the full diameter of the beam,
the ratio between number of electrons in the beam with and
without solitary structures is given by

X =
4hN0

∫ d

0 (n−1)w dx +πd2hN0

πd2hN0

=
4
∫ d

0 (n−1)w dx +πd2

πd2
. (17)

The effective beam width of the ESR 42 m antenna is equiv-
alent tod = 2.5 km at 250 km altitude. The ratioX, as de-
fined in Eq. (17), was calculated for the structures in Figs.5
and 6 and shown in Table3. It shows expected scattering
cross section enhancements between 3 and 10 times the qui-
escent level, with the highest enhancements for largeM and
α ≈ 90◦.

Ann. Geophys., 28, 1299–1306, 2010 www.ann-geophys.net/28/1299/2010/
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θ

αx̂

ẑ

B0

Fig. 7. Sketch of the ionospheric geometry showing the direction
of propagationx̂ at an angleα to the geomagnetic fieldB0 in the
xz-plane. θ , the dip angle, is the angle between ground and the
geomagnetic field tangent at a certain height.

Table 3. The ratioX, defined in Eq. (17), calculated for the values
of M and cosα given in Table2 that were used to integrate the
solitary waves in Figs.5 and6.

M cosα X

0.001 0.1 3
0.002 0.15 4
0.002 0.1 5
0.002 0.05 10
0.0025 0.1 7

5 Discussion

We have studied a case of spectrally uniform scattering cross
section enhancement seen with ESR on 1 August 2007 be-
tween 00:43:00 UT and 00:43:12 UT. During this time, the
power in the ion-line seen in the height gates centered at
229 km and 246 km altitude was enhanced by a factor of 4
and 5 times the quiescent level, at respective gates.

Plasma parameters at the observation altitude immediately
before the observed event were inserted into our non-linear
fluid model and ion-acoustic solitary structures were inte-
grated, as shown in Figs.5 and6.

A train of such structures propagating transversely across
the radar beam would carry enough additional plasma into
the beam to enhance the incoherent scatter cross section to
the observed level. A range of enhancements expected for
different values ofM and cosα, given in Table3, are found
to be in good quantitative agreement with the observations.

The relatively uniform power enhancement over the full
ion-line is difficult to describe with a parametric process or

h

w

x

d
dx

Fig. 8. A slab of infinitesimal width dx with constant plasma den-
sity propagating into a radar beam height gate of diameterd, height
h and widthw perpendicular to the direction of propagation.

any other mechanism suggested for explaining NEIAL. Also,
there is no sign ofTe/Ti-ratio enhancement or asymmetry
in the spectra. Since an electron beam inside or next to the
beam probably would have led to a parametric process (e.g.,
Forme, 1993), the phenomenon is most likely initiated some
distance away from the beam. We therefore assume an ini-
tiating process (such as a pumping electron beam) located
several kilometres away from the radar beam. The generated
solitary structure train could then gradually grow and collect
plasma on its way to the beam and the density depletion, re-
sulting from the solitary structure growth, would be spread
over a long distance.

It is seen from Figs.1, 2 and3 that the spectral enhance-
ment was taking place at or close to theF region peak.
This is consistent with the restrictions of our model, which,
due to its one-dimensionality is unlikely to be valid in the
presence of strong vertical gradients. The strongly localized
spectral enhancement differs essentially from observations of
NEIAL, which are often seen in a height range of several 100
km at the same time (e.g,Rietveld et al., 1991).

6 Conclusions

An event of spectrally uniform ion-line enhancement was ob-
served on 1 August 2007 by the 42 m ESR aligned with the
geomagnetic field. The enhancement was at most 5 times the
quiescent spectra before the event and was seen in the altitude

www.ann-geophys.net/28/1299/2010/ Ann. Geophys., 28, 1299–1306, 2010
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range 230–250 km. This altitude range includes theF region
density peak. The duration of the strong enhancement was at
most 12 s.

The observed spectral enhancement is different from
NEIAL. The spectrally uniform enhancement over the whole
ion-line is difficult to explain with any mechanism suggested
for NEIAL, where either or both ion-acoustic shoulders are
enhanced but in general not the spectral valley in between.
Also, we do not see theTe/Ti-ratio enhancement associated
with an increased peak-to-valley-ratio often seen in NEIAL
observations (e.g,Forme et al., 1995). The enhancement at
study is localized to two height-gates, centered on that alti-
tude at which vertical density gradients vanish. NEIAL, on
the other hand are often observed in a height range of several
100 km.

A non-linear fluid model was used to describe solitary
waves in the upper ionosphere. Perturbing the upper iono-
spheric plasma by shaking and twisting the magnetic field
lines, compressive solitary structures were generated. They
propagate transverse to the magnetic field at speeds close to
the ion-acoustic speed and have perpendicular (toB0) widths
of about 10 m.

A beam-filling train of the solitary waves described above
would produce spectrally uniform power enhancements of
about one order of magnitude above the thermal level, which
is consistent with ESR observations.

Acknowledgements.J. Ekeberg thanks Thomas Leyser,
Tima Sergienko and Ingemar Häggstr̈om for valuable discus-
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