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Abstract. We show a case of an outer zone magneto-
spheric electromagnetic wave propagating at the Gendrin an-
gle, within uncertainty of the measurements. The chorus
event occurred in a “minimum B pocket”. For the illustrated
example, the measured angle of wave propagation relative to
the ambient magnetic fieldθkB was 58◦ ±4◦. For this event
the theoretical Gendrin angle was 62◦. Cold plasma model is
used to demonstrate that Gendrin mode waves are right-hand
circularly polarized, in excellent agreement with the obser-
vations.
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1 Method of analyses

Minimum Variance Analyses (MVAs) were performed on the
chorus elements’ magnetic field components in this paper.
With this method, the covariance matrix is calculated and
then diagonalized (Sonnerup and Cahill, 1967; Smith and
Tsurutani, 1976). The eigenvectors give the directions of
maximum, intermediate and minimum variances. The stan-
dard notation ofB1, B2 andB3 is used, respectively (see de-
tails in Smith and Tsurutani, 1976). By definition, an elec-
tromagnetic planar wave has the properties:∇B = 0, and
k ·B = 0, wherek is the wave vector. Thus, the direction of
wave propagation is the minimum variance direction (corre-
sponding toB3) and it is normal to theB1-B2 plane. The po-
larization of the wave is determined by the ratioλ1/λ2 where
λ is an eigenvalue of the covariance matrix. Hodograms (in
B1 versusB2) give a more visual perspective of the polar-
ization (circular, elliptical or linear). An alternative method
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to determine wave polarization is based on multidimensional
spectral analyses (Santolik et al., 2003). Their approach pro-
vides comprehensive analysis but invokes both magnetic and
electric field measurements. In the current study the focus
is on the magnetic polarization properties of the waves and
thus the study will be restricted to magnetic field measure-
ments alone. Thus, we chose the MVA method to analyze
GEOTAIL data.

2 Observations

Electromagnetic chorus have been studied extensively in
the Earth’s magnetosphere (see Tsurutani and Smith, 1974,
1977; Anderson and Maeda, 1977; Koons and Roeder, 1990;
Meredith et al., 2001, 2003, for chorus observational statis-
tics). These waves are believed to be responsible for the
creation of relativistic electrons in the radiation belts (Horne
and Thorne, 1998) and may define the structure of the belts
themselves (Horne et al., 2005). Here we focus on the basic
physical properties of a distinct wave mode within the chorus
frequency range.

In this paper, GEOTAIL observations are used to illus-
trate the property of waves in the dayside outer zone region
of the magnetosphere. High-resolution magnetic field mea-
surements from the PWI and WFC instruments (Matsumoto
et al., 1994; Nagano et al., 1996) are analyzed. The PWI
(plasma wave instrument) contains a 3-component search-
coil with sensitivity of 1.5×10−5 nT/Hz1/2. The WFC (wave
form capture) receiver samples 8.7 s snapshots every 5 min
between 10 Hz and 4 kHz.

Intense electromagnetic emissions were observed around
23:25:51 UT on 29 April 1993. The GEOTAIL position was
(6.5, −4.3, 0.6RE) in GSE coordinates. GEOTAIL was at
roughly noon local time in a minimum-B pocket. The Tsy-
ganenko model (Tsyganenko, 2002) was used for reference.
Chorus was observed in a low-band (ω < 0.5ωce) range, with
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Fig. 1. Minimum variance analyses of a section of a subele-
ment/packet. The event occurred at 23:25:51 UT on 29 April 1993.
In the hodogram the direction ofB0 is indicated, which in this case
is out-of-the paper. The wave is noted to be right-hand circularly
polarized, planar, and propagating at∼ 58◦ relative toB0.

a wave frequencyf ≈ 700 Hz. In the above,ωce is the local
electron cyclotron frequency. Ambient magnetic field,B0, in
GSE coordinates was (21.1, 57.4, 107.5 nT). Details on the
GEOTAIL data analysis are presented in Verkhoglyadova et
al. (2009).

Figure 1 shows the wave event. The top panels are 3 cy-
cles of the wave and theB1, B2 andB3 variations. The bot-
tom two panels are the wave hodograms. The left-hand panel
is theB1-B2 hodogram and the right-hand panel is theB1-
B3 hodogram. The former shows that the wave is circularly
polarized (the ratioλ1/λ2 is 1.1). The magnetic field direc-
tion is out-of-the-paper and the sense of the wave rotation is
right-handed. The right-hand panel shows that the wave is
plane-polarized. The wave was propagating at∼ 58◦ relative
to B0.

There are several sources of errors in the MVA determi-
nations. The first one is associated with the presence of ran-
dom statistical noise within the magnetosphere. Tsurutani et
al. (2009) estimated this isotropic noise to be∼20 pT. For
the above chorus subelement examples, the peak wave am-

plitudes were∼300 pT. The noise superposed on the chorus
would give an angular error of∼ 4◦. Another source of er-
ror is instrument noise (0.02 pT/Hz−1/2, Matsumoto et al.,
1994). The lack of full wave cycles (360◦ of rotation) used
in the analyses is a third source. These latter two errors are
small compared to that of the presence of noise, so we will
assume an error of∼ 4◦ for the specific events analyzed.

It is theoretically well-known that whistler waves are cir-
cularly polarized if they propagate parallel toB0 (Stix, 1962;
Helliwell, 1965). However it is not so clear for obliquely
propagating electromagnetic waves. In the next section we
investigate electromagnetic whistler waves propagating in
the Gendrin mode and compare their properties with the
above observations.

3 Whistler mode waves and Gendrin modes

We follow the standard approach for a two-component cold
plasma (Landau and Lifshitz, 1960; Krall and Trivelpiece,
1973) to study electromagnetic waves in the whistler wave
frequency range between the ion cyclotron frequency (ωci)
and the electron cyclotron frequency:ωci � ω � ωce. We
assume thatωce � ωpe, whereωpe is the electron plasma
frequency. The dispersion relation for electromagnetic waves
in this frequency range is:

ω =
ωcek

2c2cosθ

k2c2+ω2
pe

, (1)

whereθ is the propagation angle relative toB0. We introduce
the electron inertial length,ae =

c
ωpe

, and consider different

limiting cases of Eq. (1). In the long-wave limit of(kae)
2
�

1, we obtain the classic whistler wave dispersion relation:
ω = ωcec

2k2cosθ/ω2
pe. The electron cyclotron modeω =

ωcecosθ corresponds to a short-wave limit, or(kae)
2
� 1.

The Gendrin mode is a special mode of electromagnetic
whistler waves (1) withω = ωG = ωcecosθ/2 that exists
strictly atkae = 1. It has unique propagation properties, i.e.,
it propagates at an angleθ = θG, which is called the Gendrin
angle, corresponding to a minimum value of the refractive
index parallel toB0 (Gendrin, 1961). Its phase velocity is
maximum among whistler waves with differentk. The mode
phase and group velocities are equal:Vg = Vph = ωGae (see
also Sauer et al., 2002; Dubinin et al., 2003). The Gendrin
mode is “magnetically guided” in the sense that its group
velocity orthogonal toB0 is zero. Parallel group veloc-
ity of whistler waves (1) is highest if they propagate under
the Gendrin angle. Here we should note that the result by
Storey (Storey, 1953; Stix, 1962) on the maximum angle of
∼ 19◦28′ betweenVg andB0 was obtained for the long-wave
limit of Eq. (1) (i.e. classic whistler only) and is not applica-
ble for Gendrin modes. According to Gendrin (1961), Gen-
drin modes with all frequenciesωG (defined byθG) prop-
agate with the same phase and group velocities alongB0
(Vg|| = Vph|| =

ωceae

2 ).
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Gendrin modes

Fig. 2. Wave diagram for Gendrin modes. There is unique rela-
tionship between the propagation angle and (local) wave frequency
for each of the discrete modes. Note that the mode frequency is
bounded by lower-hybrid (not shown) and half-electron cyclotron
frequencies.

Since the Gendrin mode frequency is defined by the propa-
gation angle at fixedk, the mode is therefore non-dispersive.
This point is illustrated by the relationship between the Gen-
drin mode frequency and propagation angle shown in Fig. 2.
There is one mode for each value ofθG. It should also be
noted that Gendrin modes exist only in theω ≤ ωce/2 fre-
quency range. For a lower-frequency part of the range of
ω < 0.3ωce, the Gendrin modes can be highly oblique with
θG > 50◦.

Since we are restricting ourselves to electron waves only,
ion contributions are ignored in the dispersion (1). In other
words, our results are valid for relatively fast wave processes
that do not involve ion motions and the lower-hybrid fre-
quency is a lower limit for the waves/modes considered in
this paper. Namely, the frequency range for Gendrin modes
is fromω >ωce

√
me/mi ≈ 0.02ωce to 0.5ωce.

Fig. 3. Coordinate systems used. In a standard coordinate system
(axes shown in black),B0 is directed along the Z-axis and an elec-
tromagnetic wave propagates in the (XZ) plane. The MVA frame
axes

(
X′Y Z′

)
, where the newZ′-axis is aligned in the direction of

wave propagation k, are shown in blue. The wave magnetic field is
polarized in the

(
X′Y

)
plane.

The Gendrin angle (θG) calculated for the above observa-
tional example from GEOTAIL is 62◦ whereas the measured
θkB was 58◦±4◦. Thus, it is possible that the electromagnetic
wave was propagating at the Gendrin angle within measure-
ment uncertainties, i.e., it was a Gendrin mode wave.

4 Polarization analysis

Below, we analyze the polarization of the magnetic compo-
nentBj of the Gendrin mode from a theoretical point of view.
A standard coordinate system is assumed: the background
magnetic fieldB0 is directed along the Z-axis and the elec-
tromagnetic wave propagates in the (XZ) plane (axes shown
in Fig. 3 in black). The index j denotes components along
X, Y and Z directions. Assumingωci � ω � ωce, the non-
zero components of the Hermitian tensor of the dielectric per-
mittivity for cold magnetized plasma (Krall and Trivelpiece,
1973; Stix, 1962) take the form:

εxx = εyy ≈ −
ω2

pe

ω2−ω2
ce

, εzz ≈ −
ω2

pe

ω2
,

εxy = −εyx ≈ −
iω2

peωce

ω
(
ω2−ω2

ce

) , (2)

Using Maxwell’s equations and Eq. (2) it is straightforward
to find the corresponding polarization relations for a plane
wave with dispersion (1):

Bx = −
k||

k⊥

Bz, Bx = i
k||

A1

(
k|| −

k⊥

A2

) By, (3)
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where

A1 = −

ω2

c2

ω2
pe

ω2−ω2
ce

+k2

ωω2
peωce

c2(ω2−ω2
ce)

, A2 =

ω2
pe

c2 +k2
⊥

k⊥k||

. (4)

Here we introduce the parallel and perpendicular (relative
to B0) components of the wave vector,k⊥ = k sinθ, k|| =

k cosθ . For Gendrin modes, we modify Eqs. (4) and (3) by
usingω = ωG andk = 1/ae explicitly:

Bx = −
1

tgθG

Bz, Bx = icosθG By . (5)

We examine the wave polarization in a corresponding MVA
frame, where the newZ′-axis is aligned in the direction
of wave propagationk. To find this coordinate frame, we
perform a linear transformation of the coordinate system
(XY Z) →

(
X′Y Z′

)
by rotating it through an angle−θG (or

anti-clockwise) about the Y-axis (see Fig. 3). Following Korn
and Korn (1961; Eqs. 14.10–18b), we perform this transfor-
mation of the wave magnetic fieldB ′

= T̂ B with the matrix:

T̂ =

 a 0 b

0 1 0
−b 0 a

, a = cosθG, b = −sinθG (6)

For the wave components we obtain with Eqs. (5) and (6):

B ′
x = aBx +bBz = iB ′

y

B ′
y = By

B ′
z = −bBx +aBz = 0

(7)

Thus the Gendrin mode is right-hand circularly polarized
(B ′

x = iB ′
y, B ′

z = 0) in a plane normal to the wave propaga-
tion direction. Note that the mode propagation can be highly
oblique and the polarization plane is generally not orthogonal
to B0.

The Gendrin mode polarization was derived for a cold
plasma model. Kinetic effects are negligible for this fre-
quency range wave for spatial scales larger than electron
gyro-radius. This condition is satisfied for Gendrin modes
(spatial scale∼ ae), assuming typical plasma parameters in
the region of GEOTAIL observations.

5 Discussion and conclusion

Low-band frequency (f < 0.5ωce) electromagnetic waves
observed in the outer region of the Earth’s dayside mag-
netosphere can propagate at highly oblique angles toB0
(Goldstein and Tsurutani, 1984). We presented GEOTAIL
observations showing an example of a right-hand highly
oblique circularly polarized electromagnetic wave propagat-
ing at Gendrin angle within measurement uncertainties (see
also Tsurutani et al., 2009). We suggest that it is a Gendrin
mode wave.

The Gendrin mode is a distinct mode of electromagnetic
whistler waves (Eq. 1). These modes exist only at fre-
quencies belowωce/2 and above the lower-hybrid frequency.
Based on a cold plasma model, we have demonstrated theo-
retically for the first time that the wave magnetic field for the
Gendrin mode is right-handed and circularly polarized. This
theoretical result is in excellent agreement with results of the
data analysis presented here, in Tsurutani et al. (2009) and in
Verkhoglyadova et al. (2009).

Gendrin modes have unique propagation properties. They
are non-dispersive and are “magnetically guided” so that
their group velocity along background magnetic field is max-
imum if the wave propagates at the Gendrin angle. Accord-
ing to Gendrin (1961): “Thus for each frequency there is an
emission angleθ 6= 0, such that the beam is strictly propa-
gated along the line of magnetic force, at a velocity inde-
pendent of the frequency.” Thus, these modes could be re-
sponsible for non-ducted electromagnetic wave propagation
in the low-band range (Lauben et al., 2002; Helliwell, 1995).
There is observational evidence that electromagnetic waves
originated in the outer region of the Earth’s dayside mag-
netosphere can propagate to the ground (Spasojevic et al.,
2008). It is possible that Gendrin mode waves may be re-
sponsible for these ground observations and we suggest that
further modeling efforts be undertaken to determine if this is
the correct interpretation or not. However this effort is be-
yond the scope of the present paper.
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