
Ann. Geophys., 27, 4359–4368, 2009
www.ann-geophys.net/27/4359/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Annales
Geophysicae

Deriving solar transient characteristics from single spacecraft
STEREO/HI elongation variations: a theoretical assessment of the
technique

A. O. Williams1, J. A. Davies2, S. E. Milan1, A. P. Rouillard2,3, C. J. Davis2, C. H. Perry2, and R. A. Harrison2

1Department of Physics and Astronomy, University of Leicester, UK
2Space Science and Technology Department, Rutherford Appleton Laboratory, UK
3Department of Physics and Astronomy, University of Southampton, UK

Received: 31 July 2009 – Revised: 21 October 2009 – Accepted: 17 November 2009 – Published: 1 December 2009

Abstract. Recently, a technique has been developed
whereby the radial velocity,Vr , and longitude direction,β,
of propagation of an outward-moving solar transient, such as
a Coronal Mass Ejection (CME), can be estimated from its
track in a time-elongation map produced using Heliospheric
Imager (HI) observations from a single STEREO spacecraft.
The method employed, which takes advantage of an artefact
of projective geometry, is based on the evaluation of the best
fit of the time-elongation profile of the transient, extracted
from a time-elongation map, to a set of theoretical functions
corresponding to known combinations of radial velocity and
direction; here we present an initial theoretical assessment of
the efficacy of this technique. As the method relies on the
manual selection of points along the time-elongation profile,
an assessment of the accuracy with which this is feasible, is
initially made. The work then presented assesses theoreti-
cally this method of recovering the velocity and propagation
direction of solar transients from their time-elongation pro-
files using a Monte-Carlo simulation approach. In particular,
we assess the range of elongations over which it is necessary
to make observations in order to accurately recover these pa-
rameters. Results of the Monte-Carlo simulations suggest
that it is sufficient to track a solar transient out to around
40◦ elongation to provide accurate estimates of its associated
radial velocity and direction; the accuracy to which these pa-
rameters can be estimated for a transient tracked over a par-
ticular elongation extent is, however, sensitive to its velocity
and direction relative to the Sun-Spacecraft line. These ini-
tial results suggest that this technique based on single space-
craft STEREO/HI observations could prove extremely useful
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in terms of providing an early warning of a CME impact on
the near-Earth environment.
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1 Introduction

In their comprehensive analysis of Coronal Mass Ejec-
tions (CMEs) observed using the LASCO coronagraphs on
the SOHO spacecraft (Brueckner et al., 1995), Sheeley et
al. (1999) introduced the concept that the time-elongation
profile of CMEs would exhibit an apparent acceleration or
deceleration imposed by the observing geometry (elonga-
tion being the angle from the line to Sun-centre to the line-
of-sight). For the LASCO coronagraphs, the images from
which extend to an outer limit of only 8◦ elongation, the
authors assessed that this effect would be inconsequential.
However, with the advent of heliospheric imaging out to far
greater elongations – both by the Solar Mass Ejection Imager
(SMEI) on the Coriolis spacecraft (Eyles et al., 2003) and
more recently, the Heliospheric Imagers (HI) on the pair of
NASA Solar TErrestrial RElations Observatory (STEREO)
spacecraft (Eyles et al., 2009) – this artefact of the observ-
ing geometry is significant and is, indeed, proving to be ex-
tremely useful (e.g. Rouillard et al., 2008, 2009a, b, c, d;
Sheeley et al., 2008a, b).

For any given solar transient viewed by an observer situ-
ated at a radial distancerA, from the sun, the shape of its
time-elongation profile (the variation of elongation,α, as a
function of time,t) depends upon its radial velocity,Vr , and
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Fig. 1. The locations of STEREO A(head: red) and B(ehind: blue)
in the ecliptic plane on 1 January 2009, illustrating the extent of the
HI field of view on each spacecraft. The elongation of P, which cor-
responds to a solar transient moving with velocityVr . at an angle
βA (βB ) with respect to STEREO A (B), isαA andαB for space-
craft A and B, respectively.

the angle between its propagation path and the Sun-observer
line, which we callβ (Rouillard et al., 2008):

α(t) = arctan

[
Vr tsinβ

rA(t)−Vr tcosβ

]
, (1)

Although rA is quoted in Eq. (1) as a time-dependant term,
the radial distance of either STEREO spacecraft varies lit-
tle on the timescale of days (i.e. for the duration over which
a solar transient can be tracked). Implicit in the derivation
of Eq. (1) are the assumptions thatVr and β are constant
and that the transient has limited spatial dimensions, i.e. that
it is a point. As will be discussed later, these assumptions
are not necessarily always valid – transients can accelerate
and decelerate, and they can be large in spatial extent so it
is worth bearing mind that Eq. (1) works best when applied
to narrow CME’s travelling at speeds close to the solar wind
speed. Finally the Thomson Sphere can also affect the vis-
ibility of events in the J-maps, as once events move outside
of the Thomson Sphere the intensity starts to fall off more
rapidly.

For an observer close to the ecliptic plane (as is the case
for both the Coriolis and STEREO spacecraft) viewing a so-
lar transient passage along the ecliptic,β corresponds to the
longitude difference between the observer and transient event
in an ecliptic coordinate system. This is illustrated in Fig. 1,
which shows the location of the two STEREO spacecraft in
the ecliptic plane (X-Y plane in Heliospheric Earth Ecliptic

coordinates, HEE) on 1 January 2009; the locations of the
Sun, Earth and other inner planets are also shown. Angles
αA andαB in Fig. 1 correspond to the elongation of a point P
in the inner heliosphere, as viewed from STEREO A and B,
respectively. P can be considered to be the location, at timet ,
of a solar transient propagating anti-sunward with a radial ve-
locity Vr at longitudesβA andβB with respect to STEREO A
and B.

The elongation variation of a solar transient can be anal-
ysed to provide unique estimates of its associatedVr andβ

given a long enough time range of observations. Such anal-
ysis has been performed using STEREO HI observations of
transients entrained in Corotating Interaction Regions (CIRs)
by Rouillard et al. (2008, 2009a, d) and of CMEs by Davies
et al. (2009), Davis et al. (2009), Savani et al. (2009), Baker
et al. (2009), and Rouillard et al. (2009b). A number of these
authors have validated the accuracy of the technique by com-
parison with in situ measurements by various spacecraft (e.g.
including Venus Express or ACE), with ground based obser-
vations (e.g. magnetometers), and with solar surface signa-
tures (e.g. by using precise flare locations). The analysis as
performed by those authors requires the manual selection of
points along the elongation-time profile of an individual tran-
sient in a time-elongation map (commonly referred to as a J-
map, Sheeley et al., 1999). The selected points are then com-
pared to a suite of elongation variations generated theoreti-
cally using Eq. (1) for all physically realistic combinations
of Vr andβ, in order to ascertain which combination defines
the theoretical curve that most closely fits the selected points.

The work presented here aims to assess theoretically this
method of recovering the velocity and trajectory of solar tran-
sients from their elongation variations using a Monte Carlo
simulation approach. In particular, we aim to assess the range
of elongations over which it is necessary to make observa-
tions in order to accurately recoverVr andβ. In doing this
we are then able to comment on the usefulness of this method
based on single spacecraft STEREO/HI observations in pre-
dicting Earth-bound space weather events.

2 Instrumentation

The pair of STEREO spacecraft were launched in Octo-
ber 2006 into heliocentric orbits of approximately 1 AU ra-
dius. STEREO-A (ahead) leads the Earth in its orbit, while
STEREO-B (behind) trails the Earth; the angular separation
between each spacecraft and the Earth increases by approx-
imately 22.5◦ every year. In addition to a complement of
in-situ instrumentation, each STEREO spacecraft carries the
SECCHI imaging suite (Howard et al., 2008) comprising an
Extreme Ultraviolet Imager (EUVI), two Sun-centred coro-
nagraphs (COR1 and COR2), and the Heliospheric Imagers
(HI) that provide the focus for the current study. The HI
instrument (Eyles et al., 2009) consists of two visible-light
cameras, HI-1 and HI-2. The HI-1 camera has a 20×20◦
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field-of-view with its bore sight directed at 14◦ elongation;
the bore sight of the 70◦ wide HI-2 field-of-view is aligned
at 53.7◦. The full angular extent of the HI field of view in
the ecliptic plane for each STEREO spacecraft is shown in
Fig. 1. The upper panel of Fig. 2 shows the angular extent
and relative locations of the HI-1 and HI-2 fields of view by
presenting a pair of near-simultaneous running difference im-
ages from the STEREO A spacecraft on 12 July 2007. The
images are plotted in terms of elongation angle along the cen-
tral row of the combined HI field-of-view (horizontal dashed
line) and elevation angle perpendicular to that line. The up-
per panel also shows elongation contours indicating how the
elongation varies with elevation. During the earliest stages
of the STEREO mission the bore sights of the two HI instru-
ments were not well aligned with the ecliptic plane, but by
the time of the observations used in this paper both instru-
ments were aligned to within 1◦ of the ecliptic plane. The
horizontal dashed line in the image therefore corresponds
closely to the ecliptic plane. The HI-1 instrument produces
an image every 40 min, while for the HI-2 instrument the in-
terval between images is 120 min.

3 Observations

The technique of creating time-height maps (J-maps) of coro-
nal data, initially developed by Sheeley et al. (1999) to aid
the characterisation of CMEs observed by the LASCO coro-
nagraphs on SOHO, has more recently been applied to ob-
servations from the STEREO HI instruments, although with
height being substituted by the more appropriate elongation
parameter. In essence, the J-mapping technique, as has gen-
erally been applied to the HI data, involves plotting the in-
tensity along a fixed solar radial (usually the ecliptic) from a
series of running difference HI-1 and HI-2 images as a func-
tion of time on the X-axis and elongation on the Y-axis.

The upper panel of Fig. 2 combines HI-1 and HI-2 run-
ning difference images from 12 July 2007, during the pas-
sage of a CME through the HI field-of-view of the STEREO
A spacecraft. HI observations of this CME, the launch of
which was associated with NOAA Active Region 10963,
have previously been presented by Davies et al. (2009). As
noted above, the extraction of the time-elongation variation
for a transient has been done manually by the authors apply-
ing this technique.This CME exhibits a typical 3-part mor-
phology, with a hierarchy of overlying loops followed by a
density cavity and a subsequent dense, and in this case V-
shaped, core. In the difference images, light grey/white areas
reveal areas in which the intensity is increased relative to the
previous image (corresponding to increased electron density)
whereas dark grey/black areas show areas of reduced inten-
sity (reduced density). Note that the visibility of a solar tran-
sient will not only be altered by changes in its density but also
by its proximity to the Thomson sphere, as will be discussed
in more detail later. A mask is applied to the HI-2 image

Fig. 2. The upper panel presents combined differenced images from
the HI-1 and HI-2 instruments aboard the STEREO A spacecraft
from 18:00 UT on 12 July 2007. The dashed line corresponds to
the ecliptic, along which the J-map shown in the lower panel is pro-
duced and the curved lines show contours of constant elongation.
The J-map extends over July 2007 and gaps due to missing images
are filled in grey. The tracks of many antisunward-moving solar
transients can be seen in the J-map.

to conceal areas of the field-of-view obscured by the stray-
light baffle system and the Earth occulter. The lower panel
of Fig. 2 illustrates a time-elongation (J-) map extending over
the entire of July 2007, the month encompassing this CME,
following the method described by Davies et al. (2009). The
J-map presented here is derived from HI-1 and HI-2 running
difference observations along the centre of the combined HI
field-of-view on STEREO A, which for this interval of nomi-
nal instrument operation corresponded closely to the ecliptic.
The elongation range of the J-map extends from 4◦, the sun-
ward edge of the in-ecliptic portion of the HI-1 field-of-view,
to 74◦, a limit placed on observations of the central part of
the viewing area by the Earth occulter.

The J-map reveals many inclined tracks, corresponding to
antisunward-moving solar transients, which are visible out
to different elongations. The clearest track, which enters
the HI-1 field-of-view early on 12 July and can be observed
propagating antisunward until it finally becomes obscured
by the Earth occulter on 17 July, corresponds to the dense
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Fig. 3. A close up view of one of the features seen in Fig. 2, with
three sets of points overlaid simulating three levels of accuracy with
which a person can track the feature. The orange, yellow and blue
dots mark sets of normally distributed points with standard devia-
tions of 1, 2 and 5◦, respectively, around those points determined
theoretically for a solar transient withVr=320 km s−1 andβ=48◦.

core of the CME imaged in the top panel of Fig. 2. Note
the transition between light and dark within the core trace
results from use of difference images. Preceding this track
are fainter tracks corresponding to the overlying loops of the
CME front.

As stated previously, from the elongation variation of a
given solar transient, extracted from such a J-map, it is pos-
sible to estimate its radial velocity, Vr, and the angle at which
it is propagating relative to the Sun-spacecraft line,β. Fol-
lowing the method of Rouillard et al. (2008, 2009d), Davies
et al. (2009) estimated the CME core to be propagating with
a radial velocity of 320 km s−1 at a longitude relative to the
Sun-STEREO A line of 48◦ in the ecliptic plane. These val-
ues were validated by in-situ and solar surface observations,
the latter of which revealed a launch time of 04:00 UT on the
11 July 2007 in the vicinity of active region 10963. CME
activity was also recorded in the STEREO inner and outer
coronagraphs and SOHO/LASCO coronagraphs.

The accuracy of the velocity and direction estimates re-
trieved from fitting the elongation variation is clearly going
to be dependent on the accuracy with which the user is able
to follow a specific track. This is assessed in Fig. 3, which re-
produces that portion of the J-map presented in Fig. 2, lower
panel, extending from 11 to 17 July 2007 and covering the
CME passage throughout the STEREO-A HI field of view.

Using the CME velocity and longitude quoted by Davies et
al. (2009) for the CME core,Vr=320 km s−1 andβ=48◦, its
“ideal” elongation variation is calculated from Eq. (1), from
an elongation of 4◦ out to an elongation of 74◦ with an elon-
gation resolution of 2◦; this elongation range reflects the
maximum extent to which outward propagating solar tran-
sients can be tracked through the HI viewing area in the
ecliptic plane. Subsequently, three levels of random noise
are added onto this ideal elongation variation, normal distri-
butions with standard deviations of 1, 2 and 5◦, to simulate
three different degrees of accuracy with which the user could
conceivably trace the ideal curve. These three sets of points
are over plotted onto the CME core track in the J-map as
orange, green and blue dots marking the sets of points with
1, 2 and 5◦, respectively, from the ideal elongation variation
of the CME core. By overlaying these three sets of points
onto the J-map, it can be seen that selecting points along this
transient track with a standard deviation of 2◦, and probably
even 1◦, from the perfect curve, shown in red, is likely to be
realistically achievable. It is possible that in the elongation
ranges covered by the HI-1 instrument it would be realistic
to assume a standard deviation of less than 1◦ due to the in-
creased resolution compared to the HI-2 images. In the elon-
gation ranges covered by HI-2 it is generally the case that
transient events drop off in brightness with increasing elon-
gation. Hence it would be realistic to assume an increasing
error with increasing elongation with a maximum error of 2◦

at larger elongations being a realistic target. Clearly the blue
points representing a 5◦ error would be completely unrealis-
tic for any event quantified by this method.

4 Analysis of the 12 July 2007 CME

Clearly the choice of points a user makes in selecting a tran-
sient will have a significant effect on the derived parameters
Vr andβ. As discussed previously, in order to retrieve the
values ofVr andβ from the elongation variation of a given
solar transient, the manually selected points along its track
in a J-plot are compared to a suite of elongation variations
generated theoretically using Eq. (1) for all physically real-
istic combinations ofVr andβ. As discussed by Rouillard et
al. (2009a), the best fit is obtained by evaluatingσ , the stan-
dard deviation of the residuals between the observed elonga-
tion variation,α’(t) and a given theoretical elongation vari-
ation,α(t) derived from Eq. (1) for a particular combination
of Vr andβ.

σ =

√
1

N

∑N

i=1
{α′(ti)−α(ti)}2 (2)

The combination ofVr andβ that correspond to the theoret-
ical elongation that gives rise to the best fit defined by the
minimum in this parameterσ are then assigned to the tran-
sient.
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In order to demonstrate more explicitly the effect on the
goodness of fit of the level of accuracy with which the user
can track this transient, Fig. 4 plotsσ (which we subse-
quently call the fit error) obtained when fitting each of the
three “observed” elongation variations over plotted on the J-
map in Fig. 3, contoured as a function ofVr andβ. The top-
left, bottom-left and top-right panels of the figure correspond
to fitting the elongation variations with random errors of 1◦,
2◦ and 5◦ standard deviation, respectively. In each case the
fit error is evaluated by comparing the observed elongation
variations to theoretical elongation variations computed over
a range ofVr values of 0 to 1000 km/s (with a resolution of
1 km s−1; y-axis) and a range ofβ values of 0 to 100◦ (with
a 1◦ resolution; x-axis). A white star in each panel mark
the combination ofVr and β, 320 km s−1 and 48◦ respec-
tively, from which the three observed elongation variations
are subsequently derived. The white diamond marks theVr /β
combination which is calculated to produce the best fit to the
observed elongation variation in each case, by virtue of cor-
responding to the minimum fit error. Each panel also has a
white contour line overlaid which marks the region bounded
by values ofσ equal to twice its minimum value.

It is clear from Fig. 4 that the parameters corresponding to
the best fit (the diamond) are closest to the input parameters
(marked with a cross) when the user fit to the transient track
is performed most accurately (top-left panel). This results
from the much more tightly constrained minimum in the fit
error,σ , as is evident by comparing the contours defined by
the 2 timesσ level. Also, as would be anticipated, the mini-
mum value of the fit error is higher for the tracks with larger
random error. For the case of the most poorly defined track
(with its points having a random error of 5◦ standard devi-
ation; top-right panel) the fit error field is highly uniform,
so much so that this contour encompassesVr values from
300 km s−1 to 600 km s−1 and β values from 20◦ to 100◦.
It is interesting to note that the form of the fit error field is
such that, for this combination of initial parameters at least,
it appears that one is likely to be able to determineVr much
more accurately thanβ. Obviously, as the noise added is ran-
dom, with only its standard deviation specified, different runs
would produce somewhat different results; we will return to
this theme later when we adopt a Monte Carlo simulation
scheme to compare the accuracy of fitting different extents
of the elongation variation. While this 5◦ standard deviation
is shown mostly for comparison, it emphasises the need for
the users to take care in selecting points for fitting.

Based on Fig. 3, we decide that it is realistic to assume that
a user is capable of selecting a set of points along a typical
transient track with a 2◦ standard deviation in the worst case
at elongations greater than 44◦, a 1◦ standard deviation be-
tween 24◦ and 44◦, and a 0.5◦ standard deviation in the range
of the HI-1 instrument of 4◦ to 24◦ elongation. We examine
the effect on the accuracy of the best fit parameters of the
extent over which the solar transient can be tracked by the
HI instruments. Differences between the points selected by

Fig. 4. Contour plots of the fit errors obtained when fitting elonga-
tion variations corresponding to a track defined byVr=320 km s−1

andβ=48◦ onto which three levels of random error have been added
(with 1, 2 and 5◦ standard deviation – top left, bottom left and top
right panels, respectively). Darker shades illustrate regions of lower
fit errors, lighter shades reveal larger fit errors. The asterisk on each
panel marks the input values, while the diamond marks the best fit
values. The white contours here indicate a level equal to twice the
minimumσ .

different observers (and indeed a single observer doing mul-
tiple fits of the same transient) could also result in a different
value ofVr andβ for a transient. The results presented here
provide observers with a method of determining the quantita-
tive impact this will have on the parametersVr andβ. J-plots
such as those shown in Fig. 2 (lower panel) and Fig. 3, reveal
that only a minority of transients can be tracked over the full
range of elongations viewed by HI, 4◦ to 74◦, in the ecliptic
plane. As well as the precision with which the user is able
to follow the transient signature in a J-plot, it is suggested
that the elongation extent over which it can be tracked will
also affect the accuracy of retrieving the parameters from the
observed elongation variation; this we assess now.

Figure 5 presents contour plots of the errors in fitting, sim-
ilar to those presented in Fig. 4, but where the elongation pro-
file is fitted over decreasing ranges of elongation 4◦ to 74◦,
4◦ to 64◦, 4◦ to 54◦ and 4◦ to 44◦ (a–d), 4◦ to 34◦, 4◦ to 24◦

and 4◦ to 14◦ (e–g); this simulates the effect of this technique
of tracking solar transients that are only visible in the HI im-
ages to different points in the field of view. As in Fig. 4 the
asterisk and diamond mark the initial input and best fit val-
ues, respectively, and a white contour marks the boundary of
twice the minimum value ofσ . The top-left panel, showing
the error map derived from fitting the elongation variation of
a solar transient which can be detected over the full extent
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Fig. 5. Contour plots of the fit errors obtained when fitting de-
creasing extents of the elongation variation corresponding to a track
defined byVr=320 km s−1 andβ=48◦ onto which a random error
has been added as described in the text. In each panel the Asterisk
marks the input values, and the diamond marks the best fit values.
Each panel corresponds to the elongation range given. The white
line marks a contour equal to twice the minimum fit error.

of both HI cameras, from 4◦ to 74◦, will be similar to the
bottom left panel of Fig. 4; differences will exist though due
to the smaller errors used at elongations less than 44◦; the
main notable difference is a better certainty in the fit from
the 2σmin level in Fig. 5. The 2σmin level here corresponds
to a certainty ofVr andβ of 95%. The panels showing fit er-
rors associated with fitting an event seen further than approx-
imately halfway across the HI 2 field of view, panels (b–d),
potentially give a very good fit. It should be noted that the

range of values that form the smallest mean error is slightly
larger than when using the full extent of the cameras and this
range increases as the visible extent decreases. Panels (e–g)
use a smaller extent covering the HI 1 camera and sunward
portion of the HI 2 camera. The result of fitting over shorter
elongation extents is clear: rather than a band running across
a range ofβs and a narrow range of velocities, there is a
broader spread that runs from highVr /smallβ values to large
β/Vr , again as shown by the overlaid white contour lines.
The best fit is again marked with a diamond and, in general,
the panels (a–e) which use the HI 2 camera have a best fit
which is very close to the perfect fit.

5 Monte-Carlo simulations

We have until now looked at the results of fitting an observed
elongation variation defined by one pair of input parameters,
with a set of normally distributed errors dependent on elonga-
tion. As the addition of errors invokes a random number gen-
erating technique, it is clear that it can be done many times,
with the resultant profile being fitted for each. Thus we use
a Monte Carlo method to determine the mean absolute errors
between the retrievedVr andβ and the initial values over a
range of simulated events. Here, instead of comparing the
observed elongation values with the theoretical elongation
values, the best fitVr andβ are compared to the input value.
Equation (2) is used to find the best fit and this is done 1000
times for each input combination. The mean absolute error
between the best fit values ofVr andβ and the input values
(for each combination of the latter) is stored. This is done for
a range of inputVr values from 100 km s−1 to 900 km s−1 in
steps of 50 km s−1 and a range ofβ values of 10◦ to 90◦ in
5◦ steps. To simplify matters a 2◦ standard deviation error
is applied to the entire elongation range and the analysis is
applied over the same elongation extents as for Fig. 5. The
mean absolute error inVr , contoured as a function ofVr and
β is shown in Fig. 6. Similarly the mean absolute error inβ

is shown in Fig. 7.
Figure 6 shows in descending order the error in fitting of

Vr as a function of the inputVr andβ for fits to elongations
of 4◦ to 74◦ (a), 4◦ to 64◦ (b), 4◦ to 54◦ (c), 4◦ to 44◦ (d), 4◦

to 34◦ (e), 4◦ to 24◦ (f) and 4◦ to 14◦ (g). Note that the colour
scale on each of the panels is different, with the scale increas-
ing as the range of elongations used in the fit decreases; this
can be seen from the overlaid contours. Looking at Fig. 6 as
a whole it is interesting to note that the value ofβ with the
smallest error inVr increases as the elongation range over
which the event is fitted decreases. Figure 6 appears to show
that in all cases that the error inVr , for any givenβ, decreases
with decreasingVr . However, Fig. 6 presents absolute errors
and if we consider percentage errors, there is no variation
with Vr for any givenβ, only with changingβ does the er-
ror change to any appreciable degree. Figure 6 also shows
two error populations present, one at high values ofβ, 65◦
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Fig. 6. Contour plots of the mean absolute error inVr as a function
of Vr and β. Each panel is derived from fitting tracks over the
elongation range given. The mean absolute error is colour coded,
with black (red) corresponding to small (large) values, and values
are also marked on the overlaid contours. Note that the panels in
the left hand column are on a common colour scale, and those on
the right are on a common but different colour scale.

and higher, and another at mid-range value ofβ, 30◦ to 40◦.
It can be seen that one is normally more prominent than the
other and the prominence of one error population over the
other is dependent on the visible extent of the event.

Panel (a) of Fig. 6 shows the absolute mean error inVr

when the fitting is done over the elongation variation of the
full HI field of view, from 4◦ to 74◦, and has smaller values
than any of the other panels. Here the smallest errors occur
for β=40◦, while the largest errors are in the region where
β >= 60◦. Panels (b), (c) and (d) of Fig. 6 with maximum
elongation extents of 44◦ to 64◦ show what errors you get
when fitting out to approximately halfway through the HI-

Fig. 7. Contour plots of the mean absolute error inβ as a function
of Vr and β. Each panel is derived from fitting tracks over the
elongation range given. The mean absolute error is colour coded,
with black (red) corresponding to small (large) values, and values
are also marked on the overlaid contours. Note that the panels in
the left hand column are on a common colour scale, and those on
the right are on a common but different colour scale.

2 field-of-view. The errors here are of the similar scale but
slightly larger than that in panel (a), but the location of mini-
mum error has shifted to the region ofβ=50◦ toβ=60◦, while
a second region of maximum error forms at lower values ofβ

as previously mentioned. Clearly this shows that the method
works best when an event is seen throughout the elongation
range of the HI-1 and HI-2 instruments.

Panels (e), (f) and (g) of Fig. 6, where fitting is done
to a maximum elongation of 34 ˚ , show much larger errors
than panels (a–d). Here, the error is at a minimum in the
region of β=60◦ to β=70◦ and a maximum in the region
β=30◦ to β=40, while the error population at largerβ values
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disappears entirely. Clearly this shows that the important part
of the fit for smaller values ofβ occur at larger elongations,
whereas for larger values ofβ the early region of the fit de-
scribes the event quite well. Again note the increasing size
of the errors with diminishing elongation extent.

Figure 7, like Fig. 6, shows the mean absolute error inβ as
function of the inputVr andβ for fits to the same ranges of
elongations as shown in Figs. 5 and 6. Again the colour scale
is different in the panels (e–g) to what is used in panels (a–
d), increasing in maximum value as the extent of elongation
used in the fit decreases; again the overlaid contours show
this. Here, similar to the case forVr , the smallest errors occur
whenβ is the smallest and, much like the case ofVr , this is
true for any given velocity. Unlike the error inVr all panels
have a similar pattern of near uniform increases in error inβ

with increasingβ.
While the mean absolute error behaves in a similar man-

ner in each panel, the elongation range over which the fit is
performed has a much larger effect on the size of the mean
absolute error. At large elongation ranges, as in panels (a–d),
the values for the mean fit error are much lower across the
range ofVr andβ, while in the elongation range used in pan-
els (f) and (g) (4◦ to 24◦, 4◦ to 14◦) the mean fit error is much
larger. Compare the maximum errors,≈1.5◦ in the elonga-
tion range 4◦ to 74◦ with ≈25◦ in the elongation range 4◦ to
24◦. This large difference makes accurately identifying the
direction of transient events much more difficult when only
using the HI-1 instrument.

6 Discussion

We have investigated the accuracy of determining the veloc-
ity and direction of solar wind transients observed by the
STEREO HI instrument. As has been shown, events which
are not seen out to a large elongation have a less accurate
fit, such as events which are faint in intensity. One factor
that will influence the elongation out to which a solar tran-
sient can be observed is its direction of propagation relative
to the so-called Thomson Sphere (e.g. Vourlidas and Howard,
2006). The Thomson sphere, the surface from which the HI
cameras will see the most scatter of light from electrons, is
a sphere in which the Sun-Spacecraft line forms a diameter.
Solar transients propagating at a largeβ will move outside
the Thomson Sphere at shorter distances from the Sun and
this will tend to hinder their visibility to large elongations.
Obviously, despite this effect transients with large associated
densities, such as those likely to create adverse conditions on
Earth will still be seen out to over 40◦ elongation. Clearly
Earth-bound events, which could have detrimental effects on
satellite in orbit around the Earth, can be seen and predicted
best while the spacecraft are within 40–50◦ of the Earth. The
combinations of this technique with the images used to make
up a J-map allow for a good estimate of speed, direction and

potentially geo-effectiveness when applied to Earth directed
events.

The Thomson Sphere is also going to reduce the visibil-
ity of most events that do not pass close to the spacecraft at
large elongations. In addition Thomson Sphere effects can
change what part of a transient is imaged as it evolves in
shape and structure throughout the heliosphere. This effect
for wide CMEs, where the leading edge is not necessarily
the same as the observed leading edge, has been noted by
Webb et al. (2009) and Lugaz et al. (2009). If it is the case
that different parts of a CME front are observed with time
it can result in a slightly varying value forβ and will obvi-
ously result in a different profile in a J-map which is clearly
a source of additional error to be aware of when using this
technique. However, analysis of planetary-bound events has
been undertaken with success, through verification by in-situ
measurements, at both Venus (Rouillard et al., 2009b) and
Earth (Rouillard et al., 2009a, c, for example) to track a vari-
ety of transient events.

It has been shown that the extent to which an event can
be seen in the HI cameras has a significant effect on the ac-
curacy of the fit. Indeed the difficulty associated with being
sure of the fit has been noted by Savani et al. (2009), where
they state that only including data from the HI-1 camera in-
troduces large uncertainties in the fitting results. While this
is true for events with a smallβ, we have shown that for
larger β values the error inVr is approximately the same
regardless of the extent to which the event is seen. Obvi-
ously the only way to measure the true velocity of an event
is through the use of in-situ data and this will only be pos-
sible for events that pass over a spacecraft with the tools to
measure the plasma properties. As mentioned previously the
analysis method used here assumes discrete plasma points
and makes no measurement of the angular size of the event
in the ecliptic plane, although this can be estimated if the
event can be seen in both STEREO spacecraft. In this case
each STEREO spacecraft will image different parts of the
same event and so an approximation of the angular size can
be made.

The analysis assumes that the event velocity is constant
neglecting any acceleration phase that may occur near the
sun. It is assumed that any acceleration occurs before the
event enters the field of view. Generally transient events tend
to accelerate or decelerate towards the ambient solar wind
speed, as shown by Gopalswamy et al. (2000) and Jones et
al. (2007) for example; in addition there is evidence of cases
of “late accelerating” transient events as reported by Tappin
(2006). In both these cases the profile of the transient in a
J-map will be altered. These changes in the profile on the
J-map will not necessarily be apparent to an observer result-
ing in an additional error in the estimates of Vr andβ. As
the profile of an accelerating or decelerating transient event
is not governed by Eq. (1) the estimates ofVr and β will
have a greater uncertainty. The start of the field of view at
4◦ elongation corresponds to a minimum distance of 16Rsun,
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although this value is dependent on the angle of propagation
of the event. For largerβ values the minimum distance from
the Sun to the field of view of the HI cameras is smallest (see
Fig. 1). This makes the assumption of constant velocity in
the HI field of view less likely to be valid for such events. As
noted by Savani et al. (2009) and Sheeley et al. (1999), ac-
celeration has generally ceased before the event reaches the
C3 coronagraph of the LASCO instrument at a height of ap-
proximately 30Rsun. Conversely for events with a smallβ

the minimum distance between the Sun and the HI field of
view is larger and so the assumption of constant velocity is
more likely to be valid provided that the transient velocity
is not significantly larger than the ambient solar wind speed
when deceleration effects may play an important role. Inter-
estingly when an event is only seen out to small elongations
the area with the smallest error in velocity is that of highβ

and low velocity. As these are the most likely to still be in the
acceleration phase this could be seen as a possible false result
and events which fall into this category should be examined
carefully. This combined with the relatively high errors asso-
ciated with high values ofβ due to the fitting method makes
these events harder to accurately parameterize. The addi-
tional errors associated with the assumptions of the method
as described could result in an error on the values ofVr and
β that is comparable to the error examined here and users
should be aware of this when applying this method to the
analysis of transient events using J-maps.

The method examined here uses observations from only
one of the STEREO spacecraft; from this a direction can be
obtained for the propagation of transient events, although an
elongation range extending over 40◦ is required for an accu-
rate fit. Although observations from one spacecraft are in-
sufficient to determine the longitudinal extent of a transient
event, this method still allows for an estimate of the direction
which can then be used to estimate if the event will impact
on the near-Earth environment. Given STEREOs capabil-
ity to observe an event from multiple angles and so estimate
the longitudinal size it should then be possible to improve
the estimate on the likelihood of impact on the near-Earth
environment. Other methods which make use of CME mod-
els and observations from the coronagraphs on the STEREO
spacecraft such as by Thernisien et al. (2009), de Koning et
al. (2009) and Maloney et al. (2009) can also provide an es-
timate of the longitudinal size of a transient and the J-plot
technique could complement the work done by these authors.

7 Conclusions

The HI cameras on the STEREO spacecraft have the poten-
tial to be a powerful predictive tool for Space Weather. We
have shown that the manual selection of points must be done
with care to ensure the best fit to an elongation profile for
any given transient event. We have also shown how the ex-
tent in the HI instruments to which a transient event is seen

affects the accuracy of the resulting fit. This allows for the
velocity and direction of an event to be stated with a statis-
tical confidence limit for the effect of the method examined
here. Finally we demonstrated how the mean fit error varies
for different values ofVr andβ, finding that, in general, the
error inVr increases with velocity for any givenβ, although
there are some differences when events are fitted out to dif-
ferent elongations. We also found that, in general, the error
in β increases withβ for any givenVr and that unlike the
error inVr the main difference here between events fitted out
to different elongations was the size of the error. Hence we
conclude that to accurately predict when Earth-bound events
will arrive at 1 AU the event must first be seen out to an elon-
gation well into the HI-2 camera range. The beacon data
sent from the STEREO spacecraft could be used to provide
the range required and allow some warning for events which
could strike the near-Earth environment. Ideally the event
should be seen out to a minimum of 40◦, although the further
it can be seen the better the prediction of velocity and direc-
tion can be. Clearly if this is to be used in a space weather
prediction context then a compromise must be reached be-
tween accuracy and allowing sufficient time to give a useful
warning.
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