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Abstract. This paper provides an analysis of the combined Keywords. Meteorology and atmospheric dynamics (Mid-
theory of gravity-inertial-Rossby waves orgaplane in the  dle atmosphere dynamics)

Boussinesq approximation. The wave equation for the sys-
tem is fifth order in space and time and demonstrates how

gravity-inertial waves on the one hand are coupled to Rossby )

waves on the other through the combined effectgofhe 1 Introduction

stratification characterized by theai&la-Brunt frequency

N, the Coriolis frequencyf at a given latitude, and verti- It is well known that rotating planetary atmospheres permit
cal propagation which permits buoyancy modes to interacthe propagation of different types of wave modes. For ex-
with westward propagating Rossby waves. The correspond@mple gravity-inertial waves propagate anisotropically with
ing dispersion equation shows that the frequency of a westdispersion for frequencies above the Coriolis frequerfcy,
ward propagating gravity-inertial wave is reduced by the cou-and below the Wisala-Brunt frequencyN (see for exam-
pling, whereas the frequency of a Rossby wave is increased!e Eckart 196Q Lighthill, 1980. Rossby waves, which

If the coupling is sufficiently strong these two modes coa- Propagate at lower frequencies € f), are characterized by
lesce giving rise to an instability. The instability condition Mainly horizontal fluid motions in which the total vertical
translates into a curve of critical latitud&. versus effective  Vorticity (fluid plus planet) is conserved along a northward
equatorial rotational Mach numbgf, with the region below ~ moving fluid element and arise because of fheffect de-

this curve exhibiting instability. “Supersonic” fast rotators scribing the latitudinal variation of the vertical Coriolis fre-
are unstable in a narrow band of latitudes around the equaduency (see for exampleedlosky 1987 Gill, 1982. Here

tor. For example®, ~ 12° for Jupiter. On the other hand We presenta combined theory of gravity-inertial and Rossby
slow “subsonic” rotators (e.g. Mercury, Venus and the Sun’sWaves and show that if the coupling constant is sufficiently
Corona) are unstable at all latitudes except very close to thétrong the wave system can be driven unstable. The instabil-
poles where thg effect vanishes. “Transonic” rotators, such ity arises from the interaction between westward propagating
as the Earth and Mars, exhibit instability within latitudes of gravity-inertial waves and Rossby waves which can release
34° and 39, respectively, around the Equator. Similar re- the energy stored in gravitational buoyancy and rotational en-
sults pertain to Oceans. In the case of an Earth’s Ocean dffgy- As we shall see below the instability condition predicts
depth 4km say, purely westward propagating waves are unthat for a given effective equatorial rotational Mach number,
stable up to 26about the Equator. The nonlinear evolution Waves at latitudes less than critical are unstable. For fast ro-
of this instability which feeds off rotational energy and gravi- tators the instability is confined to a narrow belt of latitudes

tational buoyancy may play an important role in atmosphericaround the equator whereas slow rotators exhibit instability
dynamics. at all latitudes except near the poles.

This study does not, of course, claim to be the first to
investigate the properties of linear coupled gravity-inertial-

Correspondence tal. F. McKenzie Rossby waves. The crucial wave equation for the system (see
BY

(mckenziej@ukzn.ac.za) Egs.11 and18 below) appears in, for example, the classical
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text byPedlosky(1987), where his Eq. (3.6.9) is identical ex- to 3% around its equator. We note that Oceans also exhibit
cept that topography assumes a role similar togkeffect. this type of instability. As an example of an Earth’s Ocean,
However, the novelty of the present work is the examina-of depth 4 km yielding a shallow water speed of 200 m/s, the
tion of the nature of the roots of the corresponding disper-equatorial rotational Froude number is 2.3 which yields an
sion equation for values of the coupling parameter whereunstable band of latitudes around the equatéri@évidth.
the dynamics of the two modes overlap in both frequency
and wavenumber. This reveals a convective instability of the
coupled system. Equatorial regions, where the Coriolis fre-2
quency f goes to zero, require special attention on account
of the development of a waveguide systaviopre and Phi-
lander 1977 Cane and Sarachik976.

The instability described here appears to be a new resul
which may be of some importance in atmosphere-ocean dyip,
namics. The instability arises from the coupling between two ;. ~Po8- @)
different modes whose frequencies overlap in certain wave
number regimes if the coupling is sufficiently strong. We em- At a given latitudet the vertical component of the planet’s
phasize however that the present instability is not the same agngular frequencg2; is given by
that studied by SakaS@akaj 1989 where a Rossby-Kelvin )
instability arises by virtue of the resonant interaction betweent?z = $2SIn. (22)
a Rossby and a Kelvin wave in a two layered latitudinally We make thes-plane approximation in which the latitudinal

sheared zonal flow. In this latter case instability is due to the . . . : )
; : o ; variation of the Coriolis frequency 2, about a given latitude
interaction between positive and negative energy waves o

either side of a vortex sheet brought about by Doppler shift—g" is describedfedlosky 1987 Gill, 1982 by

ing of the wave frequencies on either side. f=2Qsind~ f,+ By, (2b)

In Sect. 2 we derive the wave equation for coupled gravity-
inertial-Rossby waves in a rotating, stratified atmosphere uswhere
ing the B-plane approximation (which simplifies the spheri-
cal geometry whilst retaining the essential dynamics) and th% =2Qsing,, p= M. (2¢c)
Boussinesq approximation which filters out higher frequency R
acoustic waves. This coupled wave equation is fifth order injere g is the radius of the planet,= R$6 is a local Carte-
space and time (second in space and third in time). The corsjan northward coordinate, andis the eastward coordinate
responding “local” dispersion relation for plane waves is an-on the g-plane drawn tangent to the surfacefat The lin-

alyzed in Sect. 3. Itis a cubic equation for the frequency earized equations of motion, with the Coriolis acceleration,
for given wave number vectdrin which the three roots rep- 5re

resent an eastward propagating gravity-inertial mode (modi-
fied somewhat by th@g effect) and two westward propagat- , duy fu ) __ dpe 3)
ing modes. In these latter coupled modes the frequency of ~ \ 97 Y ax’

Combined theory of gravity-inertial-Rossby waves on
a g plane

We consider a background atmosphere stratified hydrostati-
(f‘ally according to

the Rossby wave is increased whereas the frequency of the (du, pe
gravity-inertial mode is decreased. If the coupling is suffi- Po <W+f”X) =T ay )
ciently strong these two modes coalesce and the system is du, Ape
driven unstable. In Sect. 4 we apply this stability condition Pogy = T Pe: (5)

to Solar System Atmospheres (the Planets and the Sun). In

terms of the stability condition, in the parameter space of afor the perturbed velocity, pressurep, and densityp,. We
critical latitude versus an effective equatorial rotational Machmake the Boussinesq approximation in which the variations
number, we find that the outer gaseous giants are “supetin perturbationo, are quasi-incompressible in the sense that
sonic” rotators with instability confined to a fairly narrow continuity approximates to

belt of latitudes around the equator. For example in the case

of Jupiter the instability is confined to within about°18f i(p u)=—p <3Mx N 3&) ©)

the equator. It must of course be borne in mind that the equadz =~ - \ax oy )’

torial region requires special treatment as already noted. On | . - . :

the other hand slow “subsonic” rotators (Mercury, Venus andV_Vh'ISt retalr_ung the buoygncy forg@g n the vertical equa-
the Sun) exhibit instability at all latitudes except very close t|o_n of _mot|_on. In addition Ve“_'ca' T“O“O”S are buoyant-
to the poles. The Earth is slightly supersonic with a band ofadlabatlc with (seé&ckart 196Q Lighthill, 1980,

latitudes up to 34 of the equator subject to instability, whilst e )

Mars appears to be transonic with its unstable belt stretching -~ = N=(pouz), (7)
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in which N2, the square of the Msala-Brunt frequency, is
given by

po(z) g ¥Po
N2:—g< ——2>, Cg: . (8)
Po(z) 5 Po

4223

have the two-dimensional Rossby wave equation Red-
losky, 1987 Gill, 1982,

a (9% 92 dqy
J— +—>qy=—ﬂ ",

— — 13
ar\ ox2  9y2 dx (13)

We shall assume the atmosphere is stably stratified with
N2> 0. In effect the Boussinesq approximation ignores AssumingN? is constant and north-south length scajes

variations in perturbatiomp,, unless it is multiplied byg,

very much less thaRtangp, the wave Eq. (11) admits IWKB

and therefore filters out the higher frequency acoustic wavesplane wave solutions

Equations §), (6) and (7) combine to yield

33p, 92 o\ (3qx gy
=|—+N -z 9
dz20t <8t2+ <8x + 8y> ©

inwhichg = p, (ux,uy,u_) is the perturbed mass flux vector.

Hence Eq.9) can be used in Eqs3)and @), operated upon
by 83/9229¢, to eliminatep, and yield the following coupled
equations fog, andg,, namely,

a4 32 5\ 92
—_ N2 = = 10a,
0202 \a2 T a2 | & (102)
f_a3qy (2 ye) P
0z23t  \ 912 dxdy’
a4 32 5\ 92
——+|—=+N?|— |g,= 10b
|:8z28t2+<8t2+ >8y2 qy (100)

—f 83%6 _ 8—2+N2 anx
0z20t  \ 912 dxdy’
Obvious operations on, for example, E40) to eliminate
gx, using Eq. 109, and noting thad f/dy = 8 from Eq. @b),

and factoring oud®/9z23t, yields the wave equation fa,,
namely

ala? a2 3?2
4= —+N
8t{8z2<8t2+f>+<8t2+ x
92 92 92 5\ gy
4 =gl —= 4+ nN%) L2
<8x2+3y2>}qy ﬂ<8t2+ 0x

(11)

This equation describes the coupling between the inertial -3,
gravity waves on the one hand and Rossby waves on thea—t"'

other. Note that in the limi{s8 = 0 the zero of the curly
bracket on the left hand side of E4.1j, namely,

32 (a2 3?2

{a?(ﬁ”“)Jr(W“’ x
3% 92
(W*a_yz)}‘fyzo

is the classic gravity-inertial wave equation (sEekart
196Q Lighthill, 1980. Similarly in the limit N2 — co we

(12)
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% [exp(ii /kydyﬂ expli(wt —kyx —k;2)1, (14)
ky

in which the north-south wave numblrsatisfies the “local”
dispersion equation, written in the form of a wave normal
surface Eckart 1960, namely,

_(@=1?

2 2
2,72 2 ﬁ _ ﬁ
(N2—w2)kz+ky+<kx+2w) _(2w> '

In fact for y <« Rtandp, f may be replaced byyp, the cen-
tral value of f at the latitudep, in Eq. (11). Ifw < f,
this represents an ellipsoid ik Epace) of revolution about
an axis parallel to thek, axis, but displaced by-£/2w
units along thek, axis. It may be viewed as providing the
two-dimensional Rossby wave normal circleh@rney and
Drazin 1961), namely,

BN’ _ (B
() ()
with a vertical propagation structure. Similarly,Nf > w >
f, Eq. (5 represents a hyperboloid which describes the
Rossbyg effect on inertial-gravity waves which, in the ab-
sence of3, describes propagation on a cone. These surfaces
are particularly useful in ray theory within the JWKB ap-
proximation appropriate to weakly inhomogeneous media.

It is of interest to note that a similar analysis can be car-
ried out for an ocean of depthusing shallow water theory
(see for exampl&toker 1969. In this case the perturbed el-
evationn of the surface wave enters the linearized continuity
equation and horizontal momentum equations in the form

(15)

(16)

duy 9
p( 2 20 _g (17)
ox dy
oty an ouy an
— fuy=—g 2 Ty =g 18
or T =T8g  Tlue=—sy (18)

in which the perturbation pressugg is in hydrostatic pres-
sure balance at the surface, ipg.= —p,gn. Equations 17)
and (18) yield the following wave equation for the surface
elevationn or (u,), namely,

a8 3% 92 duy
at |:8t2 MR (8x2 + 9y2 uy=Pps ox (19)
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w(az —5,-2) — _mk, (23)

m— (i_‘zj) |cosp|, k=k(cosp,sing). (24)

'3 L 2 | In the definition of the coupling parameter, we have taken
§ the modulus of cag and reversed the sign in ER3) to
m=2 indicate that we consider waves propagating in the second

or third quadrant corresponding to westward propagation for

s — | w > 0. Equation 23) readily lends itself to the graphical so-
;//‘"‘”’2\\ lution, as shown in Fig. 1, in which the roots are given as
o . L . ! . intersections between the left hand side plotted as a func-
| K K, tion of w and the constant;mk, represented by a horizontal

line. It is clear that ifjm|k < wa’/ (3\/1_%) the latter being

Fig. 1. The diagnostic diagramzx k) plot, for the coupled modes, the modulus of the minimum of the left hand side occurring
including a stable casei=1/2), an unstable case:=2), andthe  atw,, = wi/\/§, there are two positive real roots fer cor-
critical case f1 =1). The higher frequen_cy curve segments (above responding to westward propagation ¢os 0, and a third
the locuse = w; /+/3) describe the gravity-inertial mode, and the negative real root corresponding to eastward propagation of
lower frequency segments the Rossby mode. The coupling of thesgn inertial-gravity wave at a frequency greater than its “nor-
modes leads to a convective instability for> 1. mal” value| i
—wjl.
The two positive roots fow, describing the combined ef-

The corresponding dispersion equation, which combines]cects offs andN, represent a Rossby wave with its frequency

two-dimensional inertial waves with Rossby waves in shal-Irlcreased and an inertial-gravity wave with its frequency re-
. y duced. As the couplingn|k increases the roots move toward
low water may be written

each other and coalesce when the line togches the minimum
of the left hand side. A further increaselin|k leads to com-

2 2 2
w(w —w; )=ﬂV kcosp, (20)  plex conjugate roots
in which 372
+i w;
By = —— |m|k———’:| =+iy. (25)
2= 24 VA2 VEi=gh, (21) 3‘%[ R
and k, = kcosp, so that westward propagation implies Hence the system is unstable if
cosp < 0. 3
2 -2\ 2
m|>——=(14+k" ) =F|(k). 26
ml> 2= (14F) = F () (26)

3 The general dispersion equation: stability analysis , _ o _ )
SinceF (k) has a minimum value of 1 &tz =1/2 the insta-

Here our main aim is to examine the stability of the system, Pility condition is simply

for which purpose we re-write Eq1l9) as one determining 1 27
the frequencyw, as a function ok. For frequencies « - (273)
N Eg. (15 may be cast in the form of the shallow water \ynhen condition 274 is satisfied there is a band of unstable

dispersion Eq.20) in which the wave speedgh is replaced \ave numbers lying betweei andk, where these are the
by its atmospheric counterpaMékki and McKenzie1977),

. roots of
ie.

N Im|=F (k). (27b)
V=—. (22)

k: The central frequency of the instability (occurring_lagtz

1/2) is the local Coriolis frequency divided by2, i.e.
Normalizingw with respect tof, andk = /k2+kZ withre-  ¢/./2. The corresponding instability growth rate is given
spect tof/ V, the dimensionless form of the dispersion equa-by 7 = F(m — 1)2/?/4/3 and is shown as a function &f for
tion is different values of the coupling parameier> 1 in Fig. 2.
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Fig. 2. The normalized growth rafg as a function ok for m = 1.2,
2 and 3. Fig. 3. The instability condition, relations (29), with the critical

latitude . as a function of the effective rotational Mach number,

M, separating the parameter space into stable and unstable regions.
The instability conditionm| > 1 can be interpreted in vari-
ous ways, for example it can take the form

Egs. (29b) and (29c), which combines the rotational Mach
sirf6, |cosp| /gH o8 M., with the configuration of the wave through the parame-
co9, = (k.H) 2(QR)" (28) terk, H/|cosp|. In supersonically rotating planet&f(, > 1)

such as in the outer giants, the instability is confined to a
The angleg is defined by Eq.24), H is the density scale  fajrly narrow band of latitudes around the equator, whereas
height andr is the radius of the body under study. Given the sybsonically rotating bodies (Sun, Mercury and Venus — the
vertical wavelengthk. H, and the planetary characteristics, |ast with an astonishingly slow rotation in which a day is
(VeH andQR), Eq. 28) predicts the angular width of the |onger than a year) for whicht,,, < 1, instability occurs at
latitudinal band around the equator giving rise to unstablegimost all latitudes, with the fastest growing mode near the
waves. We examine this interpl’etation in the next SeCtionequator_ Table 1 presents a summary of p|anetary charac-
with application to the Solar System. teristics for the solar system, especially the equatorial Mach
numberM.,,, which yields the corresponding critical latitude
Q. for instability. Note that Earth and Mars are “transonic”
planets in which®, is around 34 and 39, respectively.
The equivalent atmospheric shallow water spe&d is in (The_numbers given should be taken as “baI.I .park" since they
fact very nearly the sound speed.,in the atmosphere since Féquire detailed kn(_)wledge of the composition through the
scale heightd ~ ¢?/g (and N ~ g/c). Therefore the insta- Mean molecular weight and the temperaturg.) In the case

4 Application to solar system planets (and the Sun)

bility condition Eq. 8) may be written as of an Ocean the instability condition takes the same form as
Eqg. (29) except that the effective Mach number M is now

0, <sinto,, (29a)  given by

in which M Meq QR (30)

= N M :—,
|cosp| 4T Jgh

V1+16M?2-1
( 5 ) (29b)  in which \/gh is the shallow water wave speed. In an
8M Earth’s ocean of depth 4km say, this speed is 200 m/s so that
Moy = @, M=M,, < k. H ) (29¢) M., =2.3. Therefore pur_ely westward propagating waves
¢ cosp (lcosp| = 1) are unstable in a band of latitudes around the

The Mach numbed,, (ratio of the equatorial rotation speed equator 26 in width.
to the sound speed) plays a crucial role in the instability con-

dition, which is shown in Fig. 3 as the region below the curve

of the critical latitude®,. The latter is plotted in Fig. 3

as a function of an effective Mach numba,, defined by

Sif@, =
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Table 1. Properties of the planets and the Sun required in the calculation of the stability condition and the critical &titude

Planet QR g u T c~+gH
Mercury 3.03m/s 3.7mfs 16 90-700K 220-570m/s
\Venus 2.00m/s 8.9mds 43 400-738K 280-380 m/s
Earth 465 m/s 10 mfs 29 300K 350m/s
Mars 242m/s  3.7mfs 32 230K 246 m/s
Jupiter  12.6km/s 25mfs 1.3 165K 1.13km/s
Saturn 9.9km/s 8.96nmds 1.0 135K 1.33km/s
Uranus 2.60km/s 8.7mfds 1.44 76K 0.8km/s
Neptune 2.67km/s 11.2nf/s 1.56 7PK 0.77 km/s

Sun 2.00km/s 274mfs 1.0 6x103—10%K 120-9.3km/s

QR

Planet N H Megq =2 ®.°
Mercury  0.017-0.006 13-91km 0.014-0.005 ~9C°
Venus  0.031-0.023 9km 0.007-0.005 ~9C°
Earth 0.03 12km 1.33 ~ 34
Mars 0.015 16 km 0.98 ~ 3%
Jupiter 0.022 51km 11.2 ~ 12
Saturn 0.067 195km 7.4 ~14.8°
Uranus 0.011 74km 3.3 ~22°
Neptune 0.0145 53km 3.8 ~20°

Sun 0.023-0.03 210*-180km  0.017-0.22 ~87°—68

5 Summary cept the predictions of the dispersion equatiornsiot 1 (and
alsom « 1) we must also accept those far> 1 since the so-
We have shown that if the coupling parametes 1the com-  |utions forw span the same valuesiafHence the instability
bined system of linear gravity-inertial-gravity-Rossby waves s real and not a consequence of merely arbitrarily allowing
is driven unstable by the interaction between the Westwardn to exceed unity_ As we have a|ready indicated, however,
propagating gravity-inertial mode (whose frequency is low- equatorial regions do require special treatment (not provided
ered by the coupling) and a Rossby wave (whose frequency ifere) but already given bgane and Sarachikl976 and
raised to match that of the gravity—inertial mode). The inSta-Moore and Ph||ande(‘1977) In conclusion it is possib|e
bility condition Eq. @79 or relations (29) is shown in Fig. 3  that the evolution of the instability of these coupled waves
which depicts the unstable/stable regions, in the latitdge  may prove important in the nonlinear dynamics of the atmo-
Mach numbemM parameter space. It shows that fast rOtatOfSSpheres of the p|anet5 (and possib|y of the Earth’s Oceans)_
(M > 1) are only unstable in a fairly narrow band around the
equator whereas slow rotator (< 1) are unstable at all lat- AcknowledgementslFM expresses thanks to the National Re-

itudes except near the poles. It may be argued that permittingearch Foundation (South Africa) and the Pei-Ling Chan Chair of
the parametem > 1 violates theg-plane approximation and  physics (UAH) for their support.

therefore renders invalid the conclusion that the system can  Topical Editor C. Jacobi thanks two anonymous referees for
be driven unstable. Such an argument would be incorrectheir help in evaluating this paper.

since, apart from the directional factor ¢osf the wave, the

crucial quantity is8V/f2, or explicitly,

BV co9, 1 References
o
— = — —. (32)
fz S|n290 2M Cane, M. A. and Sarachik, E. S.: Forced baroclinic ocean motions:
I. The linear equatorial unbounded case, J. Mar. Res., 34, 629—

This number cannot be arbitrarily assigned values very much 665, 1976.

IPTSS thap unity, as is normally a;sumed to Q'Ve m(?de frequenCharney, J. G. and Drazin, P. G.: Propagation of planetary-scale dis-
cies which are well separateGil, 1982, since it is deter- turbances from the lower into the upper atmosphere, J. Geophys.
mined completely by the orientation of the wave, the latitude Res., 66, 83-109, doi:10.1029/JZ066i001p00083, 1961.

of the g-plane and the equatorial rotational Mach number, Eckart, C.: Hydrodynamics of Oceans and Atmospheres, Pergamon
which defines the properties of the body. Therefore if we ac- Press, 1960.

Ann. Geophys., 27, 4224227, 2009 www.ann-geophys.net/27/4221/2009/



J. F. McKenzie: Instability of Rossby waves 4227

Gill, A. E.: Atmosphere Ocean Dynamics, vol. 30 of International Pedlosky, J. P.: Geophysical Fluid Dynamics, Springer Verlag,
Geophysics Series, 1982. 1987.

Lighthill, J.: Waves in Fluids, Cambridge University Press, 1980. Sakai, S.: Rossby-Kelvin instability: a new type of ageostrophic
Mekki, O. M. and McKenzie, J. F.: The Propagation of Atmo- instability caused by a resonance between Rossby waves and
spheric Rossby Gravity Waves in Latitudinally Sheared Zonal gravity waves, J. Fluid Mech., 202, 149-176, doi:10.1017/

Flows, Roy. Soc. London Phil. T. Ser. A, 287, 115-143, 1977. S0022112089001138, 1989.
Moore, D. W. and Philander, S. G. H.: The Sea — Modelling of the Stoker, J. J.: Water Waves: The Mathematical Theory with Appli-
Tropical Oceanic Circulation, vol. 6, Wiley — Interscience, 1977.  cations, Interscience Publishers, Inc. New York, 1965.

www.ann-geophys.net/27/4221/2009/ Ann. Geophys., 27, 422272-2009



