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Abstract. This paper provides an analysis of the combined
theory of gravity-inertial-Rossby waves on aβ-plane in the
Boussinesq approximation. The wave equation for the sys-
tem is fifth order in space and time and demonstrates how
gravity-inertial waves on the one hand are coupled to Rossby
waves on the other through the combined effects ofβ, the
stratification characterized by the Väis̈alä-Brunt frequency
N , the Coriolis frequencyf at a given latitude, and verti-
cal propagation which permits buoyancy modes to interact
with westward propagating Rossby waves. The correspond-
ing dispersion equation shows that the frequency of a west-
ward propagating gravity-inertial wave is reduced by the cou-
pling, whereas the frequency of a Rossby wave is increased.
If the coupling is sufficiently strong these two modes coa-
lesce giving rise to an instability. The instability condition
translates into a curve of critical latitude2c versus effective
equatorial rotational Mach numberM, with the region below
this curve exhibiting instability. “Supersonic” fast rotators
are unstable in a narrow band of latitudes around the equa-
tor. For example2c ∼ 12◦ for Jupiter. On the other hand
slow “subsonic” rotators (e.g. Mercury, Venus and the Sun’s
Corona) are unstable at all latitudes except very close to the
poles where theβ effect vanishes. “Transonic” rotators, such
as the Earth and Mars, exhibit instability within latitudes of
34◦ and 39◦, respectively, around the Equator. Similar re-
sults pertain to Oceans. In the case of an Earth’s Ocean of
depth 4km say, purely westward propagating waves are un-
stable up to 26◦ about the Equator. The nonlinear evolution
of this instability which feeds off rotational energy and gravi-
tational buoyancy may play an important role in atmospheric
dynamics.
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1 Introduction

It is well known that rotating planetary atmospheres permit
the propagation of different types of wave modes. For ex-
ample gravity-inertial waves propagate anisotropically with
dispersion for frequencies above the Coriolis frequency,f ,
and below the V̈ais̈alä-Brunt frequencyN (see for exam-
ple Eckart, 1960; Lighthill , 1980). Rossby waves, which
propagate at lower frequencies (ω <f ), are characterized by
mainly horizontal fluid motions in which the total vertical
vorticity (fluid plus planet) is conserved along a northward
moving fluid element and arise because of theβ-effect de-
scribing the latitudinal variation of the vertical Coriolis fre-
quency (see for examplePedlosky, 1987; Gill , 1982). Here
we present a combined theory of gravity-inertial and Rossby
waves and show that if the coupling constant is sufficiently
strong the wave system can be driven unstable. The instabil-
ity arises from the interaction between westward propagating
gravity-inertial waves and Rossby waves which can release
the energy stored in gravitational buoyancy and rotational en-
ergy. As we shall see below the instability condition predicts
that for a given effective equatorial rotational Mach number,
waves at latitudes less than critical are unstable. For fast ro-
tators the instability is confined to a narrow belt of latitudes
around the equator whereas slow rotators exhibit instability
at all latitudes except near the poles.

This study does not, of course, claim to be the first to
investigate the properties of linear coupled gravity-inertial-
Rossby waves. The crucial wave equation for the system (see
Eqs.11 and18 below) appears in, for example, the classical
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text byPedlosky(1987), where his Eq. (3.6.9) is identical ex-
cept that topography assumes a role similar to theβ-effect.
However, the novelty of the present work is the examina-
tion of the nature of the roots of the corresponding disper-
sion equation for values of the coupling parameter where
the dynamics of the two modes overlap in both frequency
and wavenumber. This reveals a convective instability of the
coupled system. Equatorial regions, where the Coriolis fre-
quencyf goes to zero, require special attention on account
of the development of a waveguide system (Moore and Phi-
lander, 1977; Cane and Sarachik, 1976).

The instability described here appears to be a new result
which may be of some importance in atmosphere-ocean dy-
namics. The instability arises from the coupling between two
different modes whose frequencies overlap in certain wave
number regimes if the coupling is sufficiently strong. We em-
phasize however that the present instability is not the same as
that studied by Sakai (Sakai, 1989) where a Rossby-Kelvin
instability arises by virtue of the resonant interaction between
a Rossby and a Kelvin wave in a two layered latitudinally
sheared zonal flow. In this latter case instability is due to the
interaction between positive and negative energy waves on
either side of a vortex sheet brought about by Doppler shift-
ing of the wave frequencies on either side.

In Sect. 2 we derive the wave equation for coupled gravity-
inertial-Rossby waves in a rotating, stratified atmosphere us-
ing theβ-plane approximation (which simplifies the spheri-
cal geometry whilst retaining the essential dynamics) and the
Boussinesq approximation which filters out higher frequency
acoustic waves. This coupled wave equation is fifth order in
space and time (second in space and third in time). The cor-
responding “local” dispersion relation for plane waves is an-
alyzed in Sect. 3. It is a cubic equation for the frequencyω

for given wave number vectork in which the three roots rep-
resent an eastward propagating gravity-inertial mode (modi-
fied somewhat by theβ effect) and two westward propagat-
ing modes. In these latter coupled modes the frequency of
the Rossby wave is increased whereas the frequency of the
gravity-inertial mode is decreased. If the coupling is suffi-
ciently strong these two modes coalesce and the system is
driven unstable. In Sect. 4 we apply this stability condition
to Solar System Atmospheres (the Planets and the Sun). In
terms of the stability condition, in the parameter space of a
critical latitude versus an effective equatorial rotational Mach
number, we find that the outer gaseous giants are “super-
sonic” rotators with instability confined to a fairly narrow
belt of latitudes around the equator. For example in the case
of Jupiter the instability is confined to within about 12◦ of
the equator. It must of course be borne in mind that the equa-
torial region requires special treatment as already noted. On
the other hand slow “subsonic” rotators (Mercury, Venus and
the Sun) exhibit instability at all latitudes except very close
to the poles. The Earth is slightly supersonic with a band of
latitudes up to 34◦ of the equator subject to instability, whilst
Mars appears to be transonic with its unstable belt stretching

to 39◦ around its equator. We note that Oceans also exhibit
this type of instability. As an example of an Earth’s Ocean,
of depth 4 km yielding a shallow water speed of 200 m/s, the
equatorial rotational Froude number is 2.3 which yields an
unstable band of latitudes around the equator 26◦ in width.

2 Combined theory of gravity-inertial-Rossby waves on
a β plane

We consider a background atmosphere stratified hydrostati-
cally according to

dpo

dz
= −ρog. (1)

At a given latitudeθ the vertical component of the planet’s
angular frequency�z is given by

�z = �sinθ. (2a)

We make theβ-plane approximation in which the latitudinal
variation of the Coriolis frequency 2�z about a given latitude
θo is described (Pedlosky, 1987; Gill , 1982) by

f = 2�sinθ ≈ fo +βy, (2b)

where

fo = 2�sinθo, β =
2�cosθo

R
. (2c)

HereR is the radius of the planet,y = Rδθ is a local Carte-
sian northward coordinate, andx is the eastward coordinate
on theβ-plane drawn tangent to the surface atθo. The lin-
earized equations of motion, with the Coriolis acceleration,
are

ρo

(
∂ux

∂t
−f uy

)
= −

∂pe

∂x
, (3)

ρo

(
∂uy

∂t
+f ux

)
= −

∂pe

∂y
, (4)

ρo

∂uz

∂t
= −

∂pe

∂z
−ρeg, (5)

for the perturbed velocityu, pressurepe and densityρe. We
make the Boussinesq approximation in which the variations
in perturbationρe are quasi-incompressible in the sense that
continuity approximates to

∂

∂z
(ρouz) = −ρo

(
∂ux

∂x
+

∂uy

∂y

)
, (6)

whilst retaining the buoyancy forceρeg in the vertical equa-
tion of motion. In addition vertical motions are buoyant-
adiabatic with (seeEckart, 1960; Lighthill , 1980),

g
∂ρe

∂t
= N2(ρouz), (7)
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in which N2, the square of the V̈ais̈alä-Brunt frequency, is
given by

N2
= −g

(
ρ′

o(z)

ρo(z)
−

g

c2
o

)
, c2

o =
γpo

ρo

. (8)

We shall assume the atmosphere is stably stratified with
N2 > 0. In effect the Boussinesq approximation ignores
variations in perturbationρe, unless it is multiplied byg,
and therefore filters out the higher frequency acoustic waves.
Equations (5), (6) and (7) combine to yield

∂3pe

∂z2∂t
=

(
∂2

∂t2
+N2

)(
∂qx

∂x
+

∂qy

∂y

)
(9)

in whichq = ρo

(
ux,uy,uz

)
is the perturbed mass flux vector.

Hence Eq. (9) can be used in Eqs. (3) and (4), operated upon
by ∂3/∂z2∂t , to eliminatepe and yield the following coupled
equations forqx andqy , namely,[

∂4

∂z2∂t2
+

(
∂2

∂t2
+N2

)
∂2

∂x2

]
qx = (10a)

f
∂3qy

∂z2∂t
−

(
∂2

∂t2
+N2

)
∂2qy

∂x∂y
,

[
∂4

∂z2∂t2
+

(
∂2

∂t2
+N2

)
∂2

∂y2

]
qy = (10b)

−f
∂3qx

∂z2∂t
−

(
∂2

∂t2
+N2

)
∂2qx

∂x∂y
.

Obvious operations on, for example, Eq. (10b) to eliminate
qx , using Eq. (10a), and noting thatdf/dy = β from Eq. (2b),
and factoring out∂3/∂z2∂t , yields the wave equation forqy ,
namely

∂

∂t

{
∂2

∂z2

(
∂2

∂t2
+f 2

)
+

(
∂2

∂t2
+N2

)
× (11)(

∂2

∂x2
+

∂2

∂y2

)}
qy = −β

(
∂2

∂t2
+N2

)
∂qy

∂x
.

This equation describes the coupling between the inertial -
gravity waves on the one hand and Rossby waves on the
other. Note that in the limitβ = 0 the zero of the curly
bracket on the left hand side of Eq. (11), namely,{

∂2

∂z2

(
∂2

∂t2
+f 2

o

)
+

(
∂2

∂t2
+N2

)
× (12)(

∂2

∂x2
+

∂2

∂y2

)}
qy = 0

is the classic gravity-inertial wave equation (seeEckart,
1960; Lighthill , 1980). Similarly in the limit N2

→ ∞ we

have the two-dimensional Rossby wave equation (seePed-
losky, 1987; Gill , 1982),

∂

∂t

(
∂2

∂x2
+

∂2

∂y2

)
qy = −β

∂qy

∂x
. (13)

AssumingN2 is constant and north-south length scalesy

very much less thanR tanθ0, the wave Eq. (11) admits JWKB
plane wave solutions

1

k
1/2
y

[
exp

(
±i

∫
kydy

)]
exp[i(ωt −kxx −kzz)], (14)

in which the north-south wave numberky satisfies the “local”
dispersion equation, written in the form of a wave normal
surface (Eckart, 1960), namely,

−
(ω2

−f 2)

(N2−ω2)
k2
z +k2

y +

(
k2
x +

β

2ω

)2

=

(
β

2ω

)2

. (15)

In fact for y � R tanθ0, f may be replaced byf0, the cen-
tral value off at the latitudeθ0, in Eq. (11). If ω < f ,
this represents an ellipsoid in (k space) of revolution about
an axis parallel to theky axis, but displaced by−β/2ω

units along thekx axis. It may be viewed as providing the
two-dimensional Rossby wave normal circle (Charney and
Drazin, 1961), namely,

k2
y +

(
kx +

β

2ω

)2

=

(
β

2ω

)2

(16)

with a vertical propagation structure. Similarly, ifN > ω >

f , Eq. (15) represents a hyperboloid which describes the
Rossbyβ effect on inertial-gravity waves which, in the ab-
sence ofβ, describes propagation on a cone. These surfaces
are particularly useful in ray theory within the JWKB ap-
proximation appropriate to weakly inhomogeneous media.

It is of interest to note that a similar analysis can be car-
ried out for an ocean of depthh using shallow water theory
(see for exampleStoker, 1965). In this case the perturbed el-
evationη of the surface wave enters the linearized continuity
equation and horizontal momentum equations in the form

∂η

∂t
+h

(
∂ux

∂x
+

∂uy

∂y

)
= 0, (17)

∂ux

∂t
−f uy = −g

∂η

∂x
,

∂uy

∂t
+f ux = −g

∂η

∂y
, (18)

in which the perturbation pressurepe is in hydrostatic pres-
sure balance at the surface, i.e.pe = −ρogη. Equations (17)
and (18) yield the following wave equation for the surface
elevationη or

(
uy

)
, namely,

∂

∂t

[
∂2

∂t2
+f 2

−gh

(
∂2

∂x2
+

∂2

∂y2

)]
uy = βgh

∂uy

∂x
. (19)
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ω ω

ω

Fig. 1. The diagnostic diagram, (ω, k) plot, for the coupled modes,
including a stable case (m = 1/2), an unstable case (m = 2), and the
critical case (m = 1). The higher frequency curve segments (above
the locusω = ωi/

√
3) describe the gravity-inertial mode, and the

lower frequency segments the Rossby mode. The coupling of these
modes leads to a convective instability form > 1.

The corresponding dispersion equation, which combines
two-dimensional inertial waves with Rossby waves in shal-
low water may be written

ω
(
ω2

−ωi
2
)

= βV 2kcosφ, (20)

in which

ω2
i = f 2

+V 2k2, V 2
= gh, (21)

and kx = kcosφ, so that westward propagation implies
cosφ < 0.

3 The general dispersion equation: stability analysis

Here our main aim is to examine the stability of the system,
for which purpose we re-write Eq. (15) as one determining
the frequency,ω, as a function ofk. For frequenciesω �

N Eq. (15) may be cast in the form of the shallow water
dispersion Eq. (20) in which the wave speed

√
gh is replaced

by its atmospheric counterpart (Mekki and McKenzie, 1977),
i.e.,

V =
N

kz

. (22)

Normalizingω with respect tof , andk =

√
k2
x +k2

y with re-

spect tof/V , the dimensionless form of the dispersion equa-
tion is

ω
(
ω2

−ωi
2
)

= −mk, (23)

ωi
2
= 1+k

2
,

m =

(
βV

f 2

)
|cosφ|, k = k(cosφ,sinφ). (24)

In the definition of the coupling parameter,m, we have taken
the modulus of cosφ and reversed the sign in Eq. (23) to
indicate that we consider waves propagating in the second
or third quadrant corresponding to westward propagation for
ω > 0. Equation (23) readily lends itself to the graphical so-
lution, as shown in Fig. 1, in which the roots are given as
intersections between the left hand side plotted as a func-
tion of ω and the constant,−mk, represented by a horizontal

line. It is clear that if|m|k < 2ω3
i /
(
3
√

3
)
, the latter being

the modulus of the minimum of the left hand side occurring
at ωm = ωi/

√
3, there are two positive real roots forω, cor-

responding to westward propagation cosφ < 0, and a third
negative real root corresponding to eastward propagation of
an inertial-gravity wave at a frequency greater than its “nor-
mal” value|−ωi |.

The two positive roots forω, describing the combined ef-
fects ofβ andN , represent a Rossby wave with its frequency
increased and an inertial-gravity wave with its frequency re-
duced. As the coupling|m|k increases the roots move toward
each other and coalesce when the line touches the minimum
of the left hand side. A further increase in|m|k leads to com-
plex conjugate roots

ω−ωm =
±i

√
3ωm

[
|m|k−

2

3

ω3
i

√
3

] 1
2

≡ ±iγ . (25)

Hence the system is unstable if

|m| >
2

3k
√

3

(
1+k

2
) 3

2
≡ F

(
k
)
. (26)

SinceF(k) has a minimum value of 1 atk
2
= 1/2 the insta-

bility condition is simply

m > 1. (27a)

When condition (27a) is satisfied there is a band of unstable
wave numbers lying betweenkl andku where these are the
roots of

|m| =F
(
k
)
. (27b)

The central frequency of the instability (occurring atk
2
=

1/2) is the local Coriolis frequency divided by
√

2, i.e.
f/

√
2. The corresponding instability growth rate is given

by γ = F(m−1)1/2/
√

3 and is shown as a function ofk, for
different values of the coupling parameterm > 1 in Fig. 2.
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γ

Fig. 2. The normalized growth rateγ as a function ofk for m = 1.2,
2 and 3.

The instability condition|m| > 1 can be interpreted in vari-
ous ways, for example it can take the form

sin2θo

cosθo

<
|cosφ|

(kzH)

√
gH

2(�R)
. (28)

The angleφ is defined by Eq. (24), H is the density scale
height andR is the radius of the body under study. Given the
vertical wavelength,kzH , and the planetary characteristics,
(
√

gH and�R), Eq. (28) predicts the angular width of the
latitudinal band around the equator giving rise to unstable
waves. We examine this interpretation in the next section
with application to the Solar System.

4 Application to solar system planets (and the Sun)

The equivalent atmospheric shallow water speed
√

gH is in
fact very nearly the sound speed,c, in the atmosphere since
scale heightH ' c2/g (andN ∼ g/c). Therefore the insta-
bility condition Eq. (28) may be written as

2o ≤ sin−12c, (29a)

in which

sin22c =

(√
1+16M2−1

)
8M2

, (29b)

Meq =
�R

c
, M ≡ Meq

(
kzH

cosφ

)
. (29c)

The Mach numberMeq (ratio of the equatorial rotation speed
to the sound speed) plays a crucial role in the instability con-
dition, which is shown in Fig. 3 as the region below the curve
of the critical latitude2c. The latter is plotted in Fig. 3
as a function of an effective Mach number,M, defined by

θ θ

θ

Fig. 3. The instability condition, relations (29), with the critical
latitudeθc as a function of the effective rotational Mach number,
M, separating the parameter space into stable and unstable regions.

Eqs. (29b) and (29c), which combines the rotational Mach
Meq with the configuration of the wave through the parame-
terkzH/|cosφ|. In supersonically rotating planets (Meq > 1)
such as in the outer giants, the instability is confined to a
fairly narrow band of latitudes around the equator, whereas
subsonically rotating bodies (Sun, Mercury and Venus – the
last with an astonishingly slow rotation in which a day is
longer than a year) for whichMeq � 1, instability occurs at
almost all latitudes, with the fastest growing mode near the
equator. Table 1 presents a summary of planetary charac-
teristics for the solar system, especially the equatorial Mach
numberMeq , which yields the corresponding critical latitude
2c for instability. Note that Earth and Mars are “transonic”
planets in which2c is around 34◦ and 39◦, respectively.
(The numbers given should be taken as “ball park” since they
require detailed knowledge of the composition through the
mean molecular weightµ and the temperatureT .) In the case
of an Ocean the instability condition takes the same form as
Eq. (29) except that the effective Mach number M is now
given by

M =
Meq

|cosφ|
, Meq =

�R
√

gh
, (30)

in which
√

gh is the shallow water wave speed. In an
Earth’s ocean of depth 4km say, this speed is 200 m/s so that
Meq = 2.3. Therefore purely westward propagating waves
(|cosφ| = 1) are unstable in a band of latitudes around the
equator 26◦ in width.
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Table 1. Properties of the planets and the Sun required in the calculation of the stability condition and the critical latitude2c.

Planet �R g µ T c ∼
√

gH

Mercury 3.03 m/s 3.7 m/s2 16 90–700◦K 220–570 m/s
Venus 2.00 m/s 8.9 m/s2 43 400–735◦K 280–380 m/s
Earth 465 m/s 10 m/s2 29 300◦K 350 m/s
Mars 242 m/s 3.7 m/s2 32 230◦K 246 m/s

Jupiter 12.6 km/s 25 m/s2 1.3 165◦K 1.13 km/s
Saturn 9.9 km/s 8.96 m/s2 1.0 135◦K 1.33 km/s
Uranus 2.60 km/s 8.7 m/s2 1.44 76◦K 0.8 km/s
Neptune 2.67 km/s 11.2 m/s2 1.56 77◦K 0.77 km/s

Sun 2.00 km/s 274 m/s2 1.0 6×103
−106

◦K 120–9.3 km/s

Planet N H Meq =
�R
c 2c

◦

Mercury 0.017–0.006 13–91 km 0.014–0.005 ∼ 90◦

Venus 0.031–0.023 9 km 0.007–0.005 ∼ 90◦

Earth 0.03 12 km 1.33 ∼ 34◦

Mars 0.015 16 km 0.98 ∼ 39◦

Jupiter 0.022 51 km 11.2 ∼ 12◦

Saturn 0.067 195 km 7.4 ∼ 14.8◦

Uranus 0.011 74 km 3.3 ∼ 22◦

Neptune 0.0145 53 km 3.8 ∼ 20◦

Sun 0.023–0.03 3×104–180 km 0.017–0.22 ∼ 87◦
−68◦

5 Summary

We have shown that if the coupling parameterm > 1 the com-
bined system of linear gravity-inertial-gravity-Rossby waves
is driven unstable by the interaction between the westward
propagating gravity-inertial mode (whose frequency is low-
ered by the coupling) and a Rossby wave (whose frequency is
raised to match that of the gravity-inertial mode). The insta-
bility condition Eq. (27a) or relations (29) is shown in Fig. 3
which depicts the unstable/stable regions, in the latitude2o,
Mach numberM parameter space. It shows that fast rotators
(M > 1) are only unstable in a fairly narrow band around the
equator whereas slow rotators (M < 1) are unstable at all lat-
itudes except near the poles. It may be argued that permitting
the parameterm > 1 violates theβ-plane approximation and
therefore renders invalid the conclusion that the system can
be driven unstable. Such an argument would be incorrect
since, apart from the directional factor cosφ of the wave, the
crucial quantity isβV/f 2, or explicitly,

βV

f 2
=

cosθo

sin2θo

1

2M
. (31)

This number cannot be arbitrarily assigned values very much
less than unity, as is normally assumed to give mode frequen-
cies which are well separated (Gill , 1982), since it is deter-
mined completely by the orientation of the wave, the latitude
of the β-plane and the equatorial rotational Mach number,
which defines the properties of the body. Therefore if we ac-

cept the predictions of the dispersion equation form < 1 (and
alsom � 1) we must also accept those form > 1 since the so-
lutions forω span the same values ofk. Hence the instability
is real and not a consequence of merely arbitrarily allowing
m to exceed unity. As we have already indicated, however,
equatorial regions do require special treatment (not provided
here) but already given byCane and Sarachik(1976) and
Moore and Philander(1977). In conclusion it is possible
that the evolution of the instability of these coupled waves
may prove important in the nonlinear dynamics of the atmo-
spheres of the planets (and possibly of the Earth’s oceans).
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