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Abstract. We develop an estimator for the magnetic helicity
density, a measure of the spiral geometry of magnetic field
lines, in the wave number domain as a wave diagnostic tool
based on multi-point measurements in space. The estimator
is numerically tested with a synthetic data set and then ap-
plied to an observation of magnetic field fluctuations in the
Earth foreshock region provided by the four-point measure-
ments of the Cluster spacecraft. The energy and the magnetic
helicity density are determined in the frequency and the wave
number domain, which allows us to identify the wave proper-
ties in the plasma rest frame correcting for the Doppler shift.
In the analyzed time interval, dominant wave components
have parallel propagation to the mean magnetic field, away
from the shock at about Alfv́en speed and a left-hand spa-
tial rotation sense of helicity with respect to the propagation
direction, which means a right-hand temporal rotation sense
of polarization. These wave properties are well explained by
the right-hand resonant beam instability as the driving mech-
anism in the foreshock. Cluster observations allow therefore
detailed comparisons with various theories of waves and in-
stabilities.

Keywords. Interplanetary physics (Interplanetary magnetic
fields) – Space plasma physics (Experimental and mathemat-
ical techniques; Waves and instabilities)

1 Introduction

Magnetic helicity is one of the invariants (time- and gauge-
independent) in ideal magnetohydrodynamics and it is given
as an integral of the product of the vector potentialA and the
magnetic fieldB over a volumeV ,
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HM
=

∫
A · B dV . (1)

It is a measure of the topological property of magnetic field
lines (Berger and Field, 1984). In a plasma the magnetic
field lines often take a spiral form as is often seen in coro-
nal mass ejections and interplanetary magnetic clouds. Some
of the electromagnetic waves also exhibit helical field lines
about its propagation direction. Magnetic helicity also plays
a key role in theoretical treatments of plasma dynamics. For
example, the force-free magnetic field geometry is one of
the minimum energy state under the conserved magnetic he-
licity (Woltjer, 1958); the treatment of absolute equilibrium
state suggests a possibility of inverse cascade process of the
magnetic helicity in turbulence (Frisch et al., 1975; Biskamp,
2003). The magnetic helicity can also be used as a diagnostic
tool in the study of magnetic reconnection (Wiegelmann and
Büchner, 2001, 2002).

In contrast to its importance in plasma dynamics, a proper
determination of the magnetic helicity using spacecraft ob-
servations is still a challenge for several reasons. One is that
the vector potential must be determined from the measure-
ment, which requires the knowledge of the electric current
distribution in space. Another difficulty is that the integral
should be performed over a volume bounded by the magnet-
ically closed surface on which the magnetic field is perpen-
dicular to the surface normal direction, otherwise the mag-
netic helicity is not any more time-independent nor gauge-
independent in the system. However, it is presented in this
paper that the density of the magnetic helicityh=A·B can be
still experimentally determined under certain conditions and
furthermore it is demonstrated that the helicity density serves
as a useful wave diagnostic tool in spacecraft observations.
It is worthwhile to note that the determination of the helicity
density can be performed without using gauge-invariant vec-
tor potential if we assume that the magnetic field consists of
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a weakly inhomogeneous background and a random small-
scale magnetic field (Subramanian and Brandenburg, 2006),
while in our method the helicity density is determined for
magnetic field fluctuations using the vector potential.

It is known that electromagnetic waves in general have
two degrees of freedom in polarization perpendicular to its
propagation direction. Waves can be linearly, elliptically or
circularly polarized. The term “polarization” for waves in
plasma is defined such that right- or left-handed polarization
has the sense of rotation of a fluctuating field vector in time
at a fixed point in space, when viewed in the direction par-
allel to the magnetic field at positive frequency (Stix, 1962).
Under this definition, a right-hand polarized wave propagat-
ing either parallel or anti-parallel to the mean magnetic field
B0 possesses fluctuating field vectors that rotate in the same
sense as the gyro-motion of an electron. Similarly, a left-
hand polarized wave rotates in the same sense as a gyrating
ion.

Helicity, in contrast to the concept of polarization, is a
measure of the sense of rotation in the spatial domain at a
fixed time point. The positive helicity is defined to be a left-
hand sense of rotation with respect to the wave vector (or
the propagation direction), while the negative helicity im-
plies a right-handed field structure, see for example,Smith
et al.(1983); Glassmeier et al.(1989); Gary(1993).

Polarization and helicity are different representations of
wave structure and closely related to each other. For exam-
ple, a wave propagating parallel to the mean magnetic field
with a positive helicity is represented as a right-hand polar-
ized wave in the time domain (Fig.1 top panels). It is worth-
while to note that there is an ambiguity when relating polar-
ization with helicity, that is a wave propagating anti-parallel
to the mean magnetic field with a negative helicity also ex-
hibits right-hand polarization in the time domain (Fig.1 bot-
tom panels). It is possible to determine the polarization prop-
erty using a single point measurement in space, but it is not
possible to determine the wave helicity uniquely because the
single point measurement does not provide the propagation
direction of waves in general.

Here we point out that the multi-point measurements of the
magnetic fields in space such as the Cluster mission (Balogh
et al., 2001; Escoubet et al., 2001) or the Themis mission
(Angelopoulos, 2008; Auster et al., 2008) have the potential
to determine the magnetic helicity density. We develop an
estimator of the magnetic helicity density in the wave number
domain and present a numerical test as well as an application
to wave analyses in the Earth foreshock region ahead of the
bow shock using Cluster data.

2 Estimator of magnetic helicity density

There are two tasks in order to construct an estimator for the
magnetic helicity density. The first is to estimate the vector
potentialA. This can be done by uncurling the definition of

the vector potential, which allows us to express the vector
potential explicitly as a function of the wave vector and the
amplitude of magnetic field fluctuation. The second task is
to estimate the amplitude as a function of the wave vector.
This can be accomplished by the use of multi-point measure-
ments.

2.1 Estimating vector potential

The vector potential for a fluctuating magnetic field can be
obtained by uncurling the definition of the vector potential

B = ∇ × A. (2)

We multiply Eq. (2) by the curl operator,

∇ × (∇ × A) = ∇(∇ · A) − ∇
2A. (3)

Here the first term on the right hand side vanishes under the
Coulomb gauge

∇ · A = 0, (4)

in which case we obtain

∇ × B = −∇
2A. (5)

For a plane wave geometryB=b exp[ik·r] and
A=a exp[ik·r] Eq. (5) becomes

ik × b = −k2a, (6)

wherek=|k|. The vector potential amplitudea is therefore
given as

a = −
i

k2
k × b. (7)

The magnetic helicity density can be determined by building
a product betweena andb,

h = 〈a†
· b〉, (8)

where the angular bracket denotes the operation of averaging
either in the time domain or in the frequency domain. Using
the expression of the vector potentiala (Eq.7), the estimator
for the helicity density is given as a combination of cross
correlation of magnetic field fluctuations between different
components:

〈a†
· b〉 = −

i

k2

[
kx

(
〈b∗

ybz〉−〈b∗
zby〉

)
+ky

(
〈b∗

zbx〉−〈b∗
xbz〉

)
+kz

(
〈b∗

xby〉 − 〈b∗
ybx〉

)]
. (9)

Here we define the helicity density such that the positive he-
licity 〈a†

·b〉>0 has a left-hand sense of rotation with respect
to the wave vector direction. When viewed at a fixed point
in space as time varies, it has the right-handed sense of po-
larization about the propagation direction. The dagger † and
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Fig. 1. (a)Wave propagating forward to the mean magnetic field (B0) with a positive helicity, left-handed field rotation with respect to the
propagation direction, corresponding to the field rotation with the order fromz1 to z4 (top left panel), appears as right-hand polarization
about the mean field in the time domain (corresponding to the order fromt1 to t4). (b) Wave propagating backward to the mean field with a
negative helicity also appears as right-hand polarization in the temporal domain.

the asterisk∗ denote the Hermitian and the complex conju-
gate operation, respectively. Equation (9) implies also that
the magnetic helicity density can be interpreted as a mea-
sure of asymmetry in cross correlation betweeni-th andj -th
component of the magnetic field,

Pij (k) − Pji(k) = 〈b∗

i (k)bj (k)〉 − 〈b∗

j (k)bi(k)〉. (10)

The task to obtain the helicity density from the measurements
now reduces to evaluate the amplitude or the correlation ma-
trix in the wave vector domain.

2.2 Estimating fluctuation amplitude

The cross correlation can be determined by the four-point
measurements of Cluster using the wave telescope technique
(also referred to as thek-filtering), developed byPinçon
and Lefeuvre(1991); Motschmann et al.(1996); Glassmeier
et al. (2001). In this method we construct a generalized
cross spectral density (CSD) matrix in the frequency domain
and project it into the wave vector domain using a suitable
weight. It is also presented that this technique allows to de-
termine various kinds of cross correlation, for example a bis-
pectrum (a triple correlation) using the magnetic field and

the electron density data serves as a diagnostic tool of wave-
wave interactions (Narita et al., 2008).

The CSD matrix is constructed from the measurements as

M(ω) =
1

T
〈S(ω)S†(ω)〉, (11)

whereω denotes the angular frequency,T the length of the
measurement time.S(ω) is the state vector of the measured
magnetic field fluctuations that are Fourier transformed from
the time domain to the frequency domain. Here the back-
ground field is assumed to be constant. In the case of the
Cluster magnetic field measurement, the state vector consists
of 12 elements (3 magnetic field components times 4 mea-
surement points):

S(ω) =


B1(ω)

B2(ω)

B3(ω)

B4(ω)

 , (12)

where the subscript refers to the measurement point (i.e.,
spacecraft). The CSD matrix (Eq.11) is projected into a 3×3
matrix using a dimensionless weight matrixW(ω, k):

P(ω, k) = W†(ω, k)M(ω)W(ω, k). (13)
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Here we choose the minimum variance weight, which has the
form

W(ω, k)=M−1(ω)H(k)V(k)
[
V†(k)H†(k)M−1(ω)H(k)V(k)

]−1
,

(14)

whereH(k) is a 12×3 matrix and called the steering matrix:

H(k) =


I exp(ik · r1)

I exp(ik · r2)

I exp(ik · r3)

I exp(ik · r4)

 (15)

with I the 3×3 unit matrix. The steering matrix reflects the
periodic spatial pattern characterized by the wave vectork

with amplitude unity. The matrixV(k) in Eq. (14) is given
as

V(k) = I +
kk

k2
, (16)

wherek=|k|. The weight matrix (Eq.14) is optimized to
minimize the trace of the projected matrix (Eq.13) under
two constraints. The first is that the weight matrix satisfies
the unit gain condition:

W†(ω, k)H(k) = I . (17)

The second is the divergence-free nature of the magnetic
field, ∇·B=0, which results in the matrixV(k). It is worth-
while to note that the weight matrix is determined by the
measurement itself (the CSD matrix in Eq.11). The matrix
projected to the wave vector domain may be given analyti-
cally from Eq. (13) and (14) as

P(ω, k) =

[
V†(k)H†(k)M−1(ω)H(k)V(k)

]−1
. (18)

This estimator ofP(ω, k) is the essence of the wave tele-
scope ork-filtering technique (Pinçon and Lefeuvre, 1991;
Motschmann et al., 1996; Glassmeier et al., 2001), which was
developed particularly for the multi-point measurements of
the Cluster mission. Note that the projection in Eq. (13) does
not change the units of the matrix elements, and therefore
the projected matrixP(ω, k) has the same unit as that of the
CSD matrix (Eq.11), for example nT2/Hz in the case of the
magnetic field (the same dimension as the spectral density
in the frequency domain). The trace of the projected matrix
gives an estimate of the fluctuation energy at a given set of
frequency and wave vector. The cross correlation matrix in
the wave vector domain is obtained by integrating the matrix
P(ω, k) over the frequency,

Pij (k) =

∫
Pij (ω, k)dω, (19)

which is given in units of squared amplitude (nT2).

3 Applications

3.1 Analytical model

For a spiral magnetic field geometry it is possible to express
the magnetic helicity density analytically. The spiral mag-
netic field can be expressed as

B =

 δBxe
ikzz

δBye
i(kzz±π/2)

B0

 , (20)

whereδBx and δBy denote the fluctuation amplitudes and
they are positive finite. The sign in front of the phaseπ/2 in
theBy component denotes the sense of rotation such that the
minus and the plus sign give the left-hand and the right-hand
spatial rotation about the z-axis, respectively. The wave vec-
tor has only the z-component parallel to the mean magnetic
field direction,

k =

 0
0
kz

 . (21)

It is straightforward to calculate the magnetic helicity density
using Eq. (9),

h = ±
2

kz

δBxδBy . (22)

This estimator can be used to evaluate the magnetic helicity
density for single spacecraft measurements (Matthaeus and
Goldstein, 1982; Matthaeus et al., 1982; Glassmeier et al.,
1989). In a supersonic or super-Alfvénic flow such as the
solar wind the temporal variation in the measurement rea-
sonably reflects the spatial variation along the flow velocity
and Taylor’s hypothesis can be used, that is relabeling the
frequency as the wave number,

ωsc = kVf (23)

whereVf denotes the flow speed. However, it should be
noted that one cannot distinguish between two propagation
directions in the single point measurements, i.e., if the wave
number is positive or negative and therefore the estimate of
the helicity density reflects essentially polarization and the
ambiguity remains about the sign of the wave helicity as
shown in Fig.1.

3.2 Numerical test

The estimator Eq. (9) is numerically tested using an arti-
ficially generated data set. We put two wave components
on a mean magnetic fieldB0=10.0 nT in the z-direction.
The first wave component has the following properties: for-
ward propagation to the mean field, wavelength 604 km,
period 30 s, positive helicity with amplitudesδBx=2.5 nT
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Fig. 2. Magnetic field data that are numerically generated and used
for the test of the estimator of the magnetic helicity density. The
plot displays spatial variation of the magnetic field at the initial time
t=0.

andδBy=2.5 nT. The second component has the following
properties: backward propagation, wavelength 253 km, pe-
riod 8 s, negative helicity with amplitudeδBx=2.0 nT and
δBy=2.0 nT. In addition to the two wave components we put
a random fluctuation field as noise in the observation when
generating the time series data of the wave form. The spa-
tial variation of the generated magnetic field is displayed in
Fig.2 at the initial timet=0 s. TheδBx andδBy components
show the superposed wave field in the range from−5 nT to
5 nT, whereas theBz component exhibits the mean magnetic
field with noise. The magnetic field fluctuation is then sam-
pled at four different points (virtual sensors) on the z-axis:
z1=100 km,z2=180 km,z3=290 km,z4=375 km. The dis-
tance between the sensors is chosen not to be exactly regular
and small enough to resolve the wavelengths of the generated
waves.

Figure3 displays the magnetic field measured at the posi-
tion of sensor 1 (z1=100 km). The two waves can be identi-
fied as different periods in theBx andBy components, while
theBz component exhibits merely the mean magnetic field.
The magnetic field measured at the other sensor positions (z2
to z4) also exhibit the same characteristics (fluctuations in the
x- and y-component with two different periods) but the wave
phases are different at the four sensor positions.

In the analysis the wave telescope technique is extensively
used. The fluctuation energy is investigated by determin-
ing the trace of the projected CSD matrixP(ω, k) at vari-
ous frequencies and wave numbers in the mean field direc-
tion. The energy distribution in the frequency and the wave

Fig. 3. Generated magnetic field data used for the test of the helicity
estimator. The plot displays temporal variation of the magnetic field
at sensor 1.

number domain (hereafter, theω–k domain) is displayed in
Fig. 4 top panel. Two peaks can be identified in the en-
ergy distribution, one around the frequencyf =0.033 Hz (pe-
riod 30 s) and the wave numberk=0.010 rad/km (wavelength
604 km in the positive z-direction), and another peak around
the frequencyf =0.125 Hz (period 8 s) and the wave num-
berk=−0.025 rad/km (wavelength 253 km in the negative z-
direction). The two peaks represent properly the frequencies
and the wave numbers of the generated waves.

The estimator of the magnetic helicity density is then
applied to the test data set, which also makes use of the
wave telescope technique. Figure4 middle panel displays
the magnitude of the helicity density in theω–k domain.
Again, two peaks can be identified in the helicity density
at the frequencies and the wave numbers used for the syn-
thetic data set. The helicity density is then summed over
the frequencies. The two wave components can again be
identified in the one-dimensional helicity density distribu-
tion (Fig. 4 bottom) at the wave numbersk=0.010 rad/km
andk=−0.025 rad/km, respectively. The determined helic-
ity densities areh=378.9 nT2km andh=−47.8 nT2km at the
former and the latter wave numbers. For comparison, the
analytical model in the previous subsection yields the helic-
ity densityh=1201.6 nT2km andh=−322.2 nT2km for the
former and the latter wave components, respectively. There-
fore the helicity densities estimated using the wave telescope
technique are somewhat lower than that of the analytical
model.
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Fig. 4. Energy distribution (top) and magnetic helicity density dis-
tribution (middle) in the frequency and wave number domain de-
rived from the test data set. The bottom panel displays the helicity
averaged over the frequencies. The wave number is parallel to the
mean magnetic field.

Noise and sampling effects

The numerical test is then performed under different condi-
tions to see (1) effects of noise in the data set and (2) effects
of time series sampling. For the noise effects we generate
synthetic data with the noise amplitude from 0% to 200% to
that of the first wave component, 2.5 nT. The data are sam-
pled with the rate 1 s at four sensor positions and the energy
and the helicity density are estimated from the four time se-
ries data sets. Figure5 displays two examples of the deter-
mined energy and helicity density in the wave number range
between 0.000 rad/km and 0.020 rad/km for the noise level
10% (noise amplitude 0.25 nT, solid lines) and 100% (am-
plitude 2.5 nT, dotted lines) in the top and bottom panels,
respectively. Both the energy and the helicity density curves
show a peak at the right wave number (0.010 rad/km), but
the background levels are different between the two data sets.

Fig. 5. Energy (top panel) and helicity density (bottom panel) for
the synthetic data sets with noise 10% and 100% relative to the am-
plitude of the first wave component, 2.5 nT.

The background level is much lower and the peak is clearer
for the data set with 10% noise level. Table 1. summarizes
the energy, the helicity density, and their respective ratios to
the background levels at the wave number of the first wave
component, 0.010 rad/km. The background levels are mea-
sured at the wave number 0.004 rad/km. We find the follow-
ing features in the results.

(1) The peak can be identified even under 200% noise level
in the both energy and helicity density. In our tests the peak
can be identified up to the noise amplitude 5 times as large
as the signal amplitude (500% noise amplitude). In other
words, our method can detect a helical wave even if the sig-
nal amplitude is only 20% of that of noise. Of course, the
background level increases for larger noise amplitudes in the
spectra. (2) If the noise is not given in the data set, the estima-
tor gives a smaller value of the energy and the helicity den-
sity. This effect stems from the inversion of the CSD matrix
in Eq. (18), that is the matrix cannot be inverted for a data set
with a pure plane wave because at least one eigenvalue in the
matrix is very small in such a data set and the inversed ma-
trix diverges (Vogt et al., 2008). (3) Estimate of the helicity
density is more stable than that of the energy against noise.
While the energy exhibits a monotonous increase for larger
noise levels, the helicity density is almost constant above the
noise level 10%. Also, the ratio to the background level is
larger in the helicity density, which means a clearer peak in
the spectrum.

For the investigation of the sampling effects we per-
form the same numerical test for different sampling rates
1t=0.5 s, 1 s, 2 s and with the fixed time lengthT =1024 s
(Table 2). We find that the estimated energy and helicity den-
sity become diminished for higer sampling rates and that the
ratio to the background level becomes larger, i.e. the peak
is clearer. The reason for larger values of the energy and
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Table 1. Estimated energy and its ratio to the background level,
and helicity density and its ratio to the background under various
conditions of noise in the synthetic data sets.

Noise (%) E (nT2) E/E0 h (nT2 km) h/h0

0 0.076 1.94×105 7.32 3.60×105

1 1.24 2.28×104 119.4 6.98×104

10 3.79 7.56×103 363.6 3.84×103

50 4.01 33.4 379.1 234.4
100 4.40 9.14 379.3 72.6
200 5.74 3.02 378.2 24.8

Table 2. Energy and helicity density analysis with different sam-
pling rates.

1t (s) E (nT2) h (nT2 km)

2 6.70 629.1
1 4.08 381.1

0.5 3.71 351.1

the helicity for lower sampling rates is that their spectra are
broader around the peak when the analysis is performed with
a smaller number of data points. The wave telescope estima-
tor is based on a minimization procedure of the power and
the minimization works better with a larger number of data
points. The energy distribution near the peak (particularly
in the frequency domain) gives a larger value of the energy.
Figure6 top panel compares the helicity density in the two
cases,1t=0.5 s and 2 s. The peak is clearer with a mod-
erate decrease for a higher sampling rate. We also perform
the numerical test for different time length (T =512 s, 1024 s,
and 2048 s) with the fixed sampling rate1t=1 s. The results
are very similar to the investigation of the different sampling
rates, that is the peak becomes clearer for a longer time in-
terval in the analysis, while the peak value itself becomes
moderately diminished (Table 3 and Fig.6 bottom panel).

To summarize the analysis with the synthetic data, (1) the
energy and the helicity density can be determined in the fre-
quency and wave number domain using four point measure-
ments; (2) the analysis method provides reasonable results
even under a high noise level; (3) but estimated energy and
helicity density are moderately dependent on how the statis-
tical analysis is done (total time lengthT and sampling rate
1t).

3.3 Cluster spacecraft in the foreshock region

The analysis method is then applied to the real spacecraft
observation. We use the four-point magnetic field measure-
ments of the Cluster spacecraft where the spacecraft encoun-
tered the Earth foreshock region (upstream of the Earth bow
shock) from 08:10 to 08:30 UT on 18 February 2002, and de-

Fig. 6. Sampling effect analysis.

Table 3. Energy and helicity density analysis with different sam-
pling time lengths.

T (s) E (nT2) h (nT2 km)

512 6.18 578.6
1024 4.08 381.1
2048 2.67 251.4

tected large amplitude waves in the magnetic field. Figure7
displays the time series of magnetic field data provided by
Cluster-1 spacecraft in this time interval. The coordinate sys-
tem in the plot is the mean-field aligned coordinate, in which
the z-axis is parallel to the mean magnetic field direction and
the xz-plane is spanned by the mean magnetic field and the
plasma bulk flow direction. The bulk flow is provided by
the ion measurements on board Cluster (Rème et al., 2001).
Cluster forms an almost regular tetrahedron with the inter-
spacecraft distance about 100 km in this time interval.

The foreshock region is of great interest for studying
waves in space plasma. The collisionless nature of the Earth
bow shock serves as a scatterer and reflector of the incom-
ing solar wind particles (ions and electrons) as one of the
shock dissipation mechanisms. The reflected ions become a
backstreaming beam along the magnetic field against the so-
lar wind flow and form an unstable two-beam distribution in
the velocity domain together with the incoming solar wind
flow. This beam component provides free energy for driving
an instability and excites waves in front of the shock.

The investigation of the energy and the helicity density
with the Cluster data is performed in the plasma rest frame of
reference. This is a co-moving frame with the mean plasma
flow. Transformation from the spacecraft to the plasma rest
frame is made by the Doppler shift equation,

ωre = ωsc − k · V f . (24)

www.ann-geophys.net/27/3967/2009/ Ann. Geophys., 27, 3967–3976, 2009
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Fig. 7. Time series of magnetic field data observed by Cluster-1 in
the Earth foreshock region. The data are presented in the mean field
aligned coordinate system. The z-axis is aligned with the mean field
direction and the xz-plane is spanned by the plasma flow direction
and the mean magnetic field direction.

Hereωre andωsc denote the angular frequency in the plasma
rest frame and the spacecraft frame, respectively. The mean
flow velocity V f is determined by the measurement of the
bulk velocity using the electrostatic particle analyzer on
board Cluster (CIS-HIA,Rème et al., 2001). We restrict our
analysis in the positive frequency regime such that the di-
rection of the wave vector agrees with the wave propagation
direction, and therefore the signs of the frequency and the
wave vector are reversed when the rest-frame frequency be-
comes negative after the Doppler shift correction. The sign
reversal does not alter the wave propagation speed and direc-
tion (the phase speed vector is the same before and after the
sign reversal).

Figure8 top panel displays the energy distribution in the
ω–k domain in the plasma rest frame. The wave number is
aligned with the mean magnetic field direction in this analy-
sis and the mean magnetic field is established from the time
average (constant field) without detrending. We note that de-
trending of the data may reduce low-wave-number power in
an ad hoc fashion as discussed byMatthaeus and Goldstein
(1982).

The mean field has mostly the sunward component,
(8.1 nT sunward,−3.8 nT dawn-to-dusk, 2.1 nT ecliptic
north component) and earlier Cluster data analyses using
the wave telescope technique identified that the waves prop-
agate almost parallel to the mean magnetic field in the
presented interval (Narita et al., 2004; Narita and Glass-

Fig. 8. Energy distribution (top) and magnetic helicity density (mid-
dle and bottom) for the foreshock wave observation of Cluster in the
time interval on 18 February 2002, from 08:10 to 08:30 UT. Fre-
quency and wave number (parallel to the mean magnetic field) are
presented in the plasma rest frame. The vertical bar in the bottom
panel is the 95% confidence interval.

meier, 2005), which justifies the choice of the parallel wave
number for presentation of the energy and helicity distri-
bution. The energy distribution exhibits two major peaks.
One is located around the frequencyωre=0.04 rad/s and the
wave numberk=0.0010 rad/km. The second peak is found
around the frequencyωre=0.15 rad/s and the wave number
k=0.0017 rad/km. (Note that the analysis method is different
from the one used inNarita et al.(2004): the energy is de-
termined in the plasma rest frame in this manuscript and fur-
thermore it is smoothed in the frequency and the wave num-
ber domain after the Doppler shift correction) Both peaks
are located on the positive wave number side, parallel to
the mean magnetic field direction and in the direction away
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from the shock to the interplanetary space. The phase speeds
are therefore aboutvph=40 km/s andvph=88 km/s for the
first and the second peak, respectively. The second peak is
close to the Alfv́en speed of the background plasma, about
77 km/s, while the first one is about half of the Alfvén speed.

The distribution of the magnetic helicity density in theω–
k domain is displayed in the middle panel of Fig.8. Since
the helicity density can take both a positive and a negative
value, magnitude of the helicity density is plotted here, too.
The helicity density distribution again exhibits two peaks that
are identified in the energy distribution, though the frequen-
cies and the wave numbers at the peaks are slightly differ-
ent: the first peak around the frequencyωre=0.03 rad/s and
the wave numberk=0.0009 rad/km, and the second around
ωre=0.11 rad/s and the wave numberk=0.0017 rad/km. The
helicity density has an extended distribution from the first
peak to the negative wave number regime, while the helicity
density near the second peak is not large.

The helicity density is then averaged over the rest-frame
frequencies to obtain the one-dimensional helicity density.
The result is displayed in Fig.8 bottom panel. The con-
fidence interval with 95% confidence is also shown in the
panel, which is determined by the degrees of freedom used
in the wave telescope analysis. 100 degrees of freedom are
used in the analysis.

An asymmetry in the helicity density is clearly seen be-
tween the parallel and the anti-parallel direction to the mean
field. The helicity density is positive in the investigated wave
number range, both in the parallel and anti-parallel direc-
tions. Larger values of the helicity density are found in the
parallel direction than in the anti-parallel direction. The one-
dimensional helicity density exhibits the maximum at the
wave number aboutk=0.0008 rad/km which comes from the
major peak identified in the two-dimensional energy and he-
licity distributions (top and middle panels). There are also
other peaks in the one-dimensional helicity density. The peak
at k=0.0017 rad/km again comes from that already identi-
fied in the two-dimensional distributions. A minor peak at
k=−0.0014 rad/km originates from the helicity density pop-
ulation at the rest-frame frequencies nearly zero.

To summarize the analysis, the dominant waves (identified
as the peaks in the energy distribution) are propagating paral-
lel to the magnetic field in the plasma rest frame, which is in
the direction from the Earth to the sun. The helicity density
distribution confirms the dominance of the parallel propaga-
tion but on the other hand exhibits some anti-parallel propa-
gation components (from the sun to the Earth). The helicity
density is positive in the both directions. The dominant wave
components are parallel-propagating and have the left-hand
rotated sense of helicity, corresponding to positive polariza-
tion (right-hand temporal rotation about the magnetic field).
There are minor, anti-parallel propagating wave components
that have also the left-hand rotated sense of helicity. The
anti-parallel propagating waves are therefore associated with

negative polarization (left-hand temporal rotation about the
magnetic field).

The characteristics of the dominant wave components are
well explained by the right-hand resonant beam instability
(Gary, 1993), and confirm the results of earlier Cluster data
analyses (Narita et al., 2003; Narita and Glassmeier, 2005;
Narita et al., 2007). The characteristics of the minor, anti-
parallel propagating waves can be explained by the non-
resonant beam instability (Gary, 1993) or wave-wave inter-
actions (Narita et al., 2007).

The helicity distribution in theω–k domain reflects a lot
the energy distribution. This is, however, not surprising be-
cause both the energy and the helicity density are the sec-
ond order moment of probability distribution of fluctuation,
and it is proportional to the square of fluctuation amplitude.
The difference between the energy and the helicity density is
that the former is a measure of variance (squared amplitude),
while the latter is a measure of cross correlation between dif-
ferent components.

4 Conclusions

The magnetic helicity density can be determined in the wave
number domain on the basis of multi-point measurements
and it serves as a diagnostic tool of the spiral geometry of
magnetic field lines. The numerical test successfully identi-
fied the wavelength and the rotation sense of the generated
waves, though the estimated helicity densities are somewhat
smaller than that of the analytical model. It is also found
that the distribution of the magnetic helicity density resem-
bles that of the energy qualitatively a lot. Using Cluster ob-
servations, the energy and the helicity profiles are uniquely
determined in the plasma rest frame, which allows detailed
comparisons with various theories of waves and instabilities.

If the magnetic field is composed of a weakly inhomoge-
nous background field and random-like fluctuations, then the
helicity density of the field fluctuations can be estimated in-
dependent of gauge over spatial and temporal scales that are
much smaller than those of the background field. Also, it can
be used as a wave diagnostic tool to quantify how the spiral
geometry of magnetic field is configured on various spatial
scales, whether the sense of field rotation is right- or left-
handed with respect to the propagation direction, and how
large its magnitude is, though the estimate of the helicity
density moderately depend on how the statistical analysis is
done.

Many other applications are possible using the presented
estimator of the magnetic helicity density. One of further ap-
plications of the helicity density measurements is the study
of helicity transport in a turbulent medium. It is proposed
that the magnetic helicity density is transported from one
spatial scale to another, leading to a cascade of the helicity
density. Magnetic field fluctuations in the solar wind are be-
lieved to be in a fully developed turbulent state, and it would
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be interesting to investigate how the magnetic helicity den-
sity distribution looks like in such a region.
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Pinçon, J. L. and Lefeuvre, F.: Local characterization of homoge-
neous turbulence in a space plasma from simultaneous measure-
ments of field components at several points in space, J. Geophys.
Res., 96, 1789–1802, 1991.

Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., et al.: First
multispacecraft ion measurements in and near the Earth’s mag-
netosphere with the identical Cluster ion spectrometry (CIS) ex-
periment, Ann. Geophys., 19, 1303–1354, 2001,
http://www.ann-geophys.net/19/1303/2001/.

Smith, C. W., Goldstein, M. L., and Matthaeus, W. H.: Turbulence
analysis of the Jovian upstream ‘wave’ phenomenon, J. Geophys.
Res., 88, 5581, 1983; Correction, J. Geophys. Res., 89, 9159,
1984.

Subramanian, K. and Brandenburg, A.: Magnetic helicity density
and its flux in weakly inhomogeneous turbulence, Astrophys. J.,
648, L71–L74, 2006.

Stix, T. H.: The Theory of Plasma Waves, McGraw-Hill, New York,
1962.

Vogt, J., Narita, Y., and Constantinescu, O. D.: The wave surveyor
technique for fast plasma wave detection in multi-spacecraft
data, Ann. Geophys., 26, 1699–1710, 2008,
http://www.ann-geophys.net/26/1699/2008/.

Wiegelmann, T. and B̈uchner, J.: Evolution of magnetic helicity in
the course of kinetic magnetic reconnection, Nonlin. Processes
Geophys., 8, 127–140, 2001,
http://www.nonlin-processes-geophys.net/8/127/2001/.

Wiegelmann, T. and B̈uchner, J.: Evolution of magnetic helicity in
the course of kinetic magnetic reconnection: Part IIB 6=0 recon-
nection, Nonlin. Processes Geophys., 9, 139–147, 2002,
http://www.nonlin-processes-geophys.net/9/139/2002/.

Woltjer, L.: A theorem on force-free magnetic fields, Proc. Nat.
Acad. Sci. USA, 44, 489–492, 1958.

Ann. Geophys., 27, 3967–3976, 2009 www.ann-geophys.net/27/3967/2009/

http://www.ann-geophys.net/19/1207/2001/
http://www.ann-geophys.net/19/1197/2001/
http://www.ann-geophys.net/22/2315/2004/
http://www.nonlin-processes-geophys.net/14/361/2007/
http://www.ann-geophys.net/26/3389/2008/
http://www.ann-geophys.net/19/1303/2001/
http://www.ann-geophys.net/26/1699/2008/
http://www.nonlin-processes-geophys.net/8/127/2001/
http://www.nonlin-processes-geophys.net/9/139/2002/

