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Abstract. The multi-spacecraft timing method, a data anal-
ysis technique based on four-point measurements to obtain
the normal vector and velocity of an observed boundary, has
been widely applied to various discontinuities in the solar
wind and the magnetosphere studies. In this paper, we per-
form simulations to analyze the errors of the timing method
by specifying the error sources to the uncertainties in the de-
termination of the time delays between each spacecraft pair.
It is shown that the timing method may have large errors if
either the spacecraft tetrahedron is largely elongated and/or
flattened, or the discontinuity moves much slower than the
constellation itself. The results, therefore, suggest that some
of the applications of the timing method require reexami-
nation with special caution, in particular for the studies of
the slow-moving discontinuities associated with, for exam-
ple, the plasmaspheric plumes.

Keywords. Interplanetary physics (Instruments and tech-
niques) – Magnetospheric physics (Plasmasphere; Instru-
ments and techniques)

1 Introduction

Multi-spacecraft missions, such as the Cluster (Escoubet
et al., 1997), THEMIS (Angelopoulos, 2008), and the fu-
ture MMS mission, were designed with the potential to un-
ambiguously separate the spatial and temporal variabilities.
Since the idea of the Cluster mission with four identical satel-
lites making simultaneous measurements at different loca-
tions was proposed in the 1980s, many data analysis tech-
niques have been developed, based on time series of four-
point observations, to enable the three-dimensional exami-
nation of the observed structures in space plasma. Among
these techniques, the one most widely used is probably the
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multi-spacecraft timing method, sometimes referred to as the
triangulation method and/or the time-delay method, in the
studies of the orientation and motion of planar discontinuities
(Russell et al., 1983; Harvey, 1998; Sonnerup et al., 2008).

Assuming that a one-dimensional discontinuity moves
with a constant velocity (which registers a pure spatial vari-
ation as a set of time-series variations), the multi-spacecraft
timing method (hereinafter referred to as the timing method)
makes use of the measured time differences between the pas-
sage of the discontinuity over satellites, along with the rel-
ative positions between the crossing locations, to calculate
the normal unit vectorN and the normal velocityV. Tak-
ing the four-spacecraft Cluster mission as the example, if the
discontinuity can be identified unambiguously, i.e., all of the
discontinuity passage timestα are well determined, we have:

Rα1 · N = V(tα − t1), 2 ≤ α ≤ 4 (1)

where spacecraft 1 is arbitrarily taken as the reference, and
Rα1 represents the relative position between the discontinuity
crossing locations observed by spacecraftα and spacecraft 1.
As long as the four satellites are not coplanar, the equation
yields a unique solution of the normal vector and the normal
velocity.

It should be kept in mind that the position vectors of dif-
ferent satellites are not simultaneous as the crossings occur
at different times. Therefore, the instantaneous interspace-
craft distancesDα1, which can be directly obtained (from
the European Space Operations Centre for the Cluster mis-
sion), cannot simply be used to replace the relative position
vectorsRα1 in Eq. (1). Instead, the position changes of the
spacecraft during these time intervals have to be taken into
account, with the terms of(tα − t1)VC being added toDα1 to
obtain the correspondingRα1 vectors, whereVC represents
the velocity of the Cluster constellation.

In practice, however, the observed discontinuity can hardly
be unambiguously time-stamped on each spacecraft, either
because there are generally other local structures superposed
on the discontinuity, the discontinuity may not be a perfect
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one-dimensional structure, or the discontinuity itself may
evolve in time. One way to improve the results is to deter-
mine the optimal relative time delay for each spacecraft pair,
which can be calculated either by maximizing the value of
the cross-correlation (e.g.,Song and Russell, 1999) between
these data streams, or by the application of the Local Wavelet
Correlation (LWC) technique (Soucek et al., 2004). A total
of six time delaystαβ (1<α≤4, 1≤β<α) can be calculated,
and the six corresponding relative position vectorsRαβ are
also obtained, by adding thetαβVC term to the interspace-
craft distancesDαβ . Thus we can obtain an over-determined
equation set containing three unknowns and six independent
equations. By minimizing the function

S=

4∑
α=1

α−1∑
β=1

[N · Rαβ − Vtαβ ]
2

=

4∑
α=1

α−1∑
β=1

[N · Dαβ − (V − N · VC)tαβ ]
2 (2)

a least-squares approach can be used to determine the opti-
mal solution, i.e., the normal vector and the normal velocity
of the observed discontinuity (Harvey, 1998).

Equation (2) further highlights the different rolesRαβ and
Dαβ play in the application of the timing method, namely, if
one select the instantaneous interspacecraft distancesDαβ in-
stead of using the relative position vectorsRαβ in the timing
method, the resulting velocity would be in the frame moving
with the Cluster constellation. As we know that in most cases
the velocity of the discontinuity should be cast in the Earth’s
frame for physical significance and usefulness, it is important
to make sure that the relative position vectorsRαβ are used
(instead ofDαβ ) when performing the timing analysis.

Since the launch of the Cluster constellation, the timing
method has been applied to various types of discontinuities
in the near-Earth space, e.g., the interplanetary discontinu-
ities (Knetter et al., 2003, 2004), the terrestrial bow shock
(Bale et al., 2003; Maksimovic et al., 2003), the magne-
topause (Haaland et al., 2004; Owen et al., 2004), the plasma
sheet (Dewhurst et al., 2004; Runov et al., 2005), the cusp re-
gion (Taylor et al., 2004; Zong et al., 2004), and the plasma-
pause/plume (Darrouzet et al., 2004, 2006). The timing
method has also been modified (Zhou et al., 2006a; Zhou
et al., 2006b) to determine the orientations and the veloci-
ties of 2-D structures, such as flux ropes. Furthermore, it
should be noted that there are modified versions of the tim-
ing method to consider the acceleration term and/or the cur-
vature term (Chanteur, 1998; Dunlop et al., 2002; Haaland
et al., 2004), although in this paper, we will focus only on
the classical version (with a planar discontinuity moving at a
constant speed) of the method described above.

In order to avoid the improper usage of the timing method,
the estimation of the errors both in the normal direction and
in the velocity becomes very important. However, only a
few attempts have been made on this issue (Chanteur, 1998;

Cornilleau-Wehrlin et al., 2003; Vogt et al., 2008). One of
the most extensive studies was made byKnetter(2005), who
applied the timing method on fast solar wind discontinuities
and analyzed the parameters affecting the error of the timing
method. As was noted in their works, the detected instanta-
neous satellite distancesDαβ contain very minor uncertain-
ties, and the error of the timing method mostly arises from
the uncertainties in the determination of the six time delays
tαβ .

In this paper, we examine the error introduced in the time
delay determination, which is assumed to be normally dis-
tributed with zero mean and a standard deviation of 1 s (in
comparison with the typical time-resolution of 4 s which is
the Cluster spin period). This random error, being treated as
the only error source, is embedded in the performance of the
timing method on a set of simulated Cluster crossings over a
discontinuity moving at a constant velocity, to compare the
resulting normal directions and velocities with the modeled
ones. We find that the error depends not only on the shape
of the Cluster tetrahedron, but also on the speed of the dis-
continuity compared with that of the Cluster constellation.
For those cases in which the discontinuity moves at a lower
speed, the error would be significantly enlarged, which re-
quires the application of timing method with special caution,
to the slow-moving discontinuities such as the plasmaspheric
plumes.

2 Accuracy of the timing method

For the Cluster mission, the tetrahedron composed by the
four spacecraft has the configurations varying continuously
along its orbit around the Earth. Typically, the tetrahedron
appears to be fairly regular at the apogee of the Cluster
constellation, but it is significantly stretched at the perigee,
which can be also seen in Fig. 16.1 ofRobert et al.(1998a).

The best way to describe the geometry of the Cluster tetra-
hedron is to use a 2-D geometric factor, as the combination
of the elongation parameterE and the planarity parameterP
(Robert et al., 1998b). Both of the parameters are derived
from the eigenvalues of the tetrahedron volumetric tensor,
which can be also determined by the six interspacecraft dis-
tance vectorsDαβ (for more detail, seeRobert et al.(1998b)
andHarvey(1998)). The values ofE andP vary from 0 to 1:
for a regular tetrahedron,E andP are both zero; if the tetra-
hedron is stretched, the value ofE will increase, untilE=1
when the satellites are on a straight line; if the tetrahedron is
squashed, the value ofP will increase, and the satellites will
lie in a plane ifP equals 1.

To study the relationship between the tetrahedron geome-
try and the accuracy of the timing method, we first construct
a “homogeneous tetrahedron reservoir,” which contains 1600
tetrahedra with a wide variety of configurations. In generat-
ing the reservoir, the procedures described inRobert et al.
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(1998b) are applied to ensure that theE andP values of these
tetrahedra cover the wholeE-P plane homogeneously.

As the second step, we simulate a planar discontinuity
moving along its normal direction (the−x-direction) with the
speed of 50 km/s, and we have all of the tetrahedra moving
in the +x-direction, with a relatively smaller speed of 5 km/s.
The time delays between each spacecraft pair when they ob-
serve the discontinuity, along with their relative position vec-
tors, can thus be unambiguously determined. Here we further
normalize the size of each modeled tetrahedron to have the
averaged absolute value of the six corresponding time delays
equal to 30 s, which is the typical value and of practical inter-
est in the timing method application to the real Cluster data:
in those cases with much longer time delays, any real discon-
tinuities would evolve significantly which might invalidate
the timing method, while those cases with much shorter de-
lays would suffer from the quantization effects owing to the
limited time resolution of the data (typically 4 s which is the
spin period of the Cluster satellites).

As we discussed before, there are further error sources
in the determination of the six time delays, e.g., the non-
planar properties of the discontinuity as well as the super-
posed structures and/or fluctuations. In fact, the classical way
to obtain the time delays requires a process of maximizing
the cross-correlation function, and the uncertainties in the re-
sulting time delays, according to Eq. (1.7) ofSonnerup et al.
(2008), depend on several factors: the number of data points,
the obtained maximum correlation coefficient, the average
slope square of the signal, and the average magnitude square
of the signal deviation from its average value. Furthermore,
the cross-correlation process is somewhat arbitrary: the data
window selection and the interpolation method selection may
both produce errors (Song and Russell, 1999). To reduce
these errors, a more sophisticated technique, called the Lo-
cal Wavelet Correlation (Soucek et al., 2004), was also pre-
sented. However, as was admitted bySoucek et al.(2004),
the error cannot be fully eliminated unless the signals are
identical up to a shift in time.

Here, as an example, we assume a normally distributed
random error with zero mean and a standard deviation of 1 s,
for each spacecraft pair, to adjust the six “theoretical” time
delays. As the interspacecraft distance vectorsDαβ remain
unchanged, the relative position vectorsRαβ between each
two satellites can be accordingly adjusted based on the result-
ing time delays and the modeledDαβ values, which is impor-
tant as the uncertainties in the determination of the time delay
would also produce uncertainties in the relative positions of
the corresponding spacecraft pair. The timing analysis can
thus be performed through Eq. (2) to calculate the normal di-
rection and the normal velocity of the certain discontinuity.

The last step is to compare the results obtained by the
timing method with the modeled ones (50 km/s in the−x-
direction), to estimate the reliability of the timing method.
For each of the 1600 tetrahedra, the second step is performed
1000 times with the time delays adjusted with random errors,

and the averaged relative error of the normal velocity com-
ponent can be expressed as

ε =
1

N

N∑
n=1

[
(VT − VM)2

VM
2

]
1/2, N = 1000 (3)

whereVT andVM represent the calculated normal compo-
nent of the velocity and the modeled one (50 km/s), respec-
tively.

The relation between the relative error of the normal veloc-
ity and the tetrahedron geometry is shown in the left panel of
Fig. 1. The sizes and the colors of the circles indicate the
values of the relative errors: for those cases with the error
less than 10%, the circles are very small, while the largest
circles correspond to a relative error of greater than 100%.
Note that the circles are sorted by size before being plotted,
so there are no small circles hidden behind larger ones.

The uncertainty in the determination of the normal direc-
tion, on the other hand, is shown in the right panel of Fig.1.
The uncertainty is inferred by the 90-percent confidence in-
terval (CI) of the angle between the calculated normal direc-
tion and the modeled one (along the−x-axis). The small-
est circles correspond to the CIs of less than 10◦, which
means that we are 90% confident that the angular error is
less than 10◦, while the largest ones suggest the uncertainties
of greater than 90◦.

It is clear that the errors are generally small except for
the cases when the four spacecraft lie approximately along
a straight line or within a plane. In these two extreme cases,
the component equations in Eq. (1) degenerate to one and two
component equations, respectively, leaving some unknowns
undetermined. The result, therefore, is not surprising: for the
cases ofE close to 1, the separation vectors between each
pair of satellites are in very similar directions, and therefore
can hardly provide the information in the perpendicular di-
rections; for the cases of highP, the separation vectors are
generally coplanar, and the speed normal to the plane cannot
be determined.

Note that here we use the discontinuity speed of 50 km/s
which is ten times greater than the speed of the Cluster
constellation (5 km/s). However, if the discontinuity moves
much slower, say, 0.5 km/s (still in the−x-direction), the un-
certainties of the timing method can be calculated to be quite
different, as shown in Fig.2.

The relative errors on the normal velocities shown in the
left panel of Fig.2, although not solely dependent on the val-
ues ofE andP because of the differences in the orientations
of these tetrahedra, are always greater than 20% even in the
cases of regular tetrahedra. ForE or P values greater than
0.8, the errors are generally greater than 100%, and even as
large as 1000% forE or P close to 1. Similarly, the uncer-
tainties in the normal directions (right panel of Fig.2) are
also much greater than those in the previous case.

The resulting much greater relative errors can be un-
derstood as an error amplification effect produced in the
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Fig. 1. Influence of the tetrahedron configuration, parameterP andE, on the error of the timing method, denoted by the size and color of
the circles, when the modeled discontinuity moves ten times faster than the Cluster constellation. Left and right panels correspond to the
relative error in the determination of the normal velocity component and the 90-percent confidence interval of the angle between the normal
direction and the modeled one, respectively.
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Fig. 2. Same format as in Fig.1, but the modeled discontinuity speed is 1/10 of the Cluster speed.

transformation process between two reference systems. If we
are in the frame moving along with the Cluster constellation,
as was suggested before, the relative position vectorsRαβ

in Eq. (2) could be replaced by the interspacecraft distance
vectorsDαβ . Therefore, if the previous two test runs are per-
formed in the Cluster’s frame, it is not necessary to adjust the
Dαβ values to obtainRαβ , and the latter run differs from the
former one by having a discontinuity velocity of 5.5 km/s ten
times smaller than that in the former run. Note that theDαβ

values in the latter run are also ten times smaller, which is
produced in the normalization process to have the averaged
absolute value of the six time delays equal to 30 s.

The factors of ten, however, can be eliminated by substi-
tuting theV andDαβ values to Eq. (2), which suggests the
relative errorsε0 in the determination of the discontinuity
velocity be the same for the two test runs if both performed
in the Cluster’s frame. As we know that the transformation

to another frame of reference would not change the value of
the absolute error, we have

ε1|VD1| = ε0|VD0| = ε0|VD1 − VC1| (4)

whereVD0, VD1, and VC1 represent the discontinuity ve-
locity in the frame moving with the Cluster constellation,
the discontinuity velocity in the Earth’s frame of reference,
and the Cluster velocity in the Earth’s frame, respectively.
Therefore, if the discontinuity moves much slower than the
Cluster constellation in the Earth’s frame, the satisfaction of
Eq. (4) results in significant amplification of the relative error
ε1 in the Earth’s frame. In other words, since the velocity of
the discontinuity should be cast in the Earth’s frame for any
physical usefulness, a small error in the velocity derived in
the satellite frame can be translated into a very large relative
error if the velocity of the discontinuity is small.
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Fig. 3. The plasmapause/plume crossings of the Cluster constellation, adapted fromDarrouzet et al.(2004). The densities for an inbound
and an outbound are shown with a factor-of-10 shift in the upper traces. The labeled speeds of the moving structures were derived from the
timing method.

The error amplification effect, therefore, suggests that the
uncertainties of the timing method may be large not only in
the cases when the Cluster tetrahedron is greatly elongated or
flattened, but also when the discontinuity moves much more
slowly than the Cluster constellation. One example of the
appearance of possible greater uncertainties occurs when the
Cluster satellites move relatively faster with elongated con-
figurations near their perigees and encounter slow moving
plasmaspheric structures, and the applications of the timing
method under these conditions should be carried out with
special caution.

3 Example of applications

On 11 April 2002, between 04:15 and 06:30 UT, the Cluster
satellites experienced a plasmasphere crossing and observed
a plasmaspheric plume outside the plasmasphere (Darrouzet
et al., 2004). Darrouzet et al.used the EFW (Gustafsson
et al., 1997) and WHISPER (Décŕeau et al., 1997) measure-
ments to obtain the electron densities and applied the timing
method to determining the normal velocity of the plume.

However, it can be clearly seen in Fig.3 that there are fluc-
tuations superposed on the discontinuity, and the time differ-
ences between the observations of different satellites contin-
uously evolve in time, especially during the Cluster inbound
pass. Therefore, it might be relatively hard to determine the
time delays accurately.

The small error in the determination of the time delays,
on the other hand, can be significantly enlarged in the ap-
plication of the timing method. As is shown in Fig.3, the
estimated velocity of the discontinuity is typically one order

smaller than that of the Cluster constellation (4.6 km/s), and
the averaged absolute value of the time delays between each
spacecraft pair is around 30 s (see Fig. 5 ofDarrouzet et al.,
2004). Therefore, Fig.2 can be used to estimate the error
in the application of the timing method. During this time
period, the Cluster tetrahedron elongation parameterE was
0.8, and the planarity parameterP was 0.2, which suggests
that the uncertainties in the velocity determination could be
as large as 100%, as the direction determination might be
more reliable.

The uncertainty levels of∼100%, therefore, suggest that
one should avoid directly comparing two resulting velocities
during different time intervals, although it is safe to claim
that the plume moves very slowly. In other words, it is quite
possible that some of the conclusions drawn byDarrouzet
et al.(2004), e.g., the velocities measured along the inbound
pass being larger than those along the outbound pass, are
within the error bar of the data analysis if the obtained time
delays have the uncertainties of∼1 s or more. Therefore, it
may be necessary to carefully reexamine the case, for exam-
ple, by using the Eq. (1.7) ofSonnerup et al.(2008), to make
sure that all of the time delays are accurately determined with
the errors much smaller than 1 s despite the effect of the ir-
regularities and the fluctuations shown in Fig.3.

Besides estimating the time delay errors based on Eq. (1.7)
of Sonnerup et al.(2008), another way to assess the reliability
of the timing method is to calculate all of the four time delay
residuals

τα = tβγ + tγ δ + tδβ , α 6= β 6= γ 6= δ (5)

which suggest the delay time departures from linear indepen-
dency, and smaller residual values are believed to correspond
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Fig. 4. Same format as in Fig.2, but only those cases with all of the four residuals smaller than 1 s are selected in the simulation.

to higher reliabilities of the timing method. Here we perform
the same simulation steps, again with the modeled discon-
tinuity moving at 0.5 km/s in the−x-direction and the time
delay standard deviation of 1 s, but select only those cases
with all of the four residuals smaller than 1 s, to calculate the
uncertainties of the timing method. The results are shown in
Fig. 4, which may be directly compared with the uncertain-
ties shown in Fig.2.

It is shown that the uncertainties in Fig.4 are reduced, es-
pecially those in the velocity determination. Given theE and
P values of 0.8 and 0.2, respectively, the uncertainties in the
velocity determination would be∼30−40%, which are much
smaller than the∼100% ones suggested in Fig.2. In other
words, to ensure the appropriate usage of the timing method
in this particularDarrouzet et al.(2004) event, one has to
make sure that either the time delays are accurately deter-
mined (with uncertainties much smaller than 1 s), or all of
the time delay residuals are adequately small (less than 1 s).
Without these reexaminations, as we suggested before, some
of theDarrouzet et al.(2004) conclusions, e.g., the plume ve-
locities during the inbound pass being larger than those along
the outbound pass, may be less convincing as they are likely
to be within the error bar of the timing method.

4 Summary

In this study, we have performed simulations to estimate the
uncertainty of the multi-spacecraft timing method, to inves-
tigate its dependence on the configuration of the spacecraft
tetrahedron and the speed of the observed discontinuity in
comparison with the constellation speed. By limiting the er-
ror sources of the timing method to the random errors pro-
duced in the determination of the time delays between each
spacecraft pair, we have found that the uncertainty of the
timing method could be very significant if the tetrahedron
is largely elongated or flattened. Furthermore, if the dis-
continuity moves much more slowly than the constellation,

a small error in the determination of the speed in the satellite
frame of reference can be translated to a large relative error.
The error estimation, therefore, provides a way for the users
of the timing method to evaluate their result based on the es-
timated uncertainty levels in the determination of the time
delays. For instance, in the study of slow-moving disconti-
nuities, such as the plasmaspheric plumes (Darrouzet et al.,
2004), even a minor error in the determination of the time
delays may result in huge errors, a result that suggests that
the timing method should be used with caution and the pre-
dictions from an analysis should be made with due attention
to the uncertainties in the method.
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Darrouzet, F., D́ecŕeau, P. M. E., De Keyser, J., Masson, A., Gal-
lagher, D. L., Santolik, O., Sandel, B. R., Trotignon, J. G., Rauch,
J. L., Le Guirriec, E., Canu, P., Sedgemore, F., André, M., and
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Georgescu, E., Hasegawa, H., Klecker, B., Paschmann, G., Puhl-
Quinn, P., R̀eme, H., Vaith, H., and Vaivads, A.: Four-spacecraft
determination of magnetopause orientation, motion and thick-
ness: comparison with results from single-spacecraft methods,
Ann. Geophys., 22, 1347–1365, 2004,
http://www.ann-geophys.net/22/1347/2004/.

Harvey, C. C.: Spatial Gradients and the Volumetric Tensor,
in: Analysis Methods for Multi-spacecraft Data, edited by:
Paschmann, G. and Daly, P., pp. 307–322, ISSI/ESA, Nether-
lands, 1998.

Knetter, T.: A new Perspective of the Solar Wind Micro-Structure
due to Multi-Point Observations of Discontinuities, PhD Thesis,
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