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Abstract. Intriguing new results of F-region irregularities
observed using the Gadanki MST radar during the SAFAR
campaigns, which were conducted during the equinox and
summer of 2008 that corresponds to low solar activity condi-
tion, are presented. The summer observations are first of its
kind from Gadanki. Observations revealed remarkably dif-
ferent morphology of the F-region irregularities in summer
when compared to that in equinox. In summer, the F-region
irregularities were observed as horizontally stratified struc-
tures, while in equinox they were observed as plume struc-
tures. Further, the irregularities in summer commenced dur-
ing the post-midnight hours in contrast to their commence-
ment in the post-sunset hours and occurrence extending to
post-midnight hours in equinox. In addition, an intriguing
observation of the summer time irregularities is that they oc-
curred when the background electron density was remark-
ably low as characterized by the disappearance of the F layer
trace in the ionograms. An interesting event of equinox that
was observed for 10 h and extended beyond the sunrise time
displayed multiple plume structures having periods similar
to those of the E-region velocity variations. These observa-
tions are discussed with due focus on the genesis of post-
midnight F-region irregularities and their possible linkage to
the E-region dynamics.

Keywords. Ionosphere (Equatorial ionosphere; Ionospheric
irregularities)

1 Introduction

One of the important components of a newly initiated pro-
gram named as “Study on Atmospheric Forcing And Re-
sponses” (SAFAR) (Jayaraman et al., 2009) is the investiga-
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tion related to the response of the upper mesosphere, lower
thermosphere and ionosphere (UMLTI) to the lower and mid-
dle atmospheric forcing. The basic intent is to characterize
the neutral- and electro-dynamical variabilities in the UMLTI
region and various manifestations of plasma instabilities in
the E- and F-regions linked with various dynamical forcing
of lower and middle atmospheric origin. Since the E-region
plasma is strongly coupled with the neutral dynamics, which
includes tidal, gravity wave, and planetary-scale winds, the
electrodynamics and plasma processes in the E-region are di-
rectly influenced by the neutral dynamics. Further, the cou-
pling among various waves makes the region more complex
and challenging from both the neutral dynamics and the elec-
trodynamics point of view. In the recent years, the role of var-
ious atmospheric wave forcing from lower atmosphere on the
F layer plasma distribution and plasma irregularity processes
has been well recognized (e.g., Lastovicka, 2006; Immel et
al., 2006; Fritts et al., 2008, and the references therein). In
this context, the low latitude E-region that connects the equa-
torial F-region via the magnetic field lines should be consid-
ered important due to the possible electrodynamical coupling
between the E- and F-regions. To address some of the low
latitude processes, as a first step, two pilot campaigns involv-
ing the MST radar, lidar, ionosonde, and VHF/GPS scintilla-
tions were conducted from Gadanki (13.5◦ N, 79.2◦ E, 6.5◦ N
mag. lat.), a low latitude station in India, during the March
equinox and summer of 2008 to characterize the UMLTI
variabilities and plasma irregularities. This paper is meant to
present and discuss interesting new results of F-region irreg-
ularity structures and dynamics obtained from the Gadanki
MST radar observations made during the SAFAR pilot cam-
paigns.

The current understanding on the genesis of F-region
plasma irregularities extending to the topside of the F-region
relies mainly on the Rayleigh-Taylor (RT) instability. The
rapid loss of molecular ions by recombination after the sun-
set produces a steep vertical plasma density gradient at the
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Table 1. Radar parameters used for studying the F-region irregular-
ities.

Parameter Value

Frequency 53 MHz
Peak Power-Aperture product 3×1010W m2

Beam (3 dB) 3◦

Beam directions 15◦ N
Receiver bandwidth 1.7 MHz
Inter-pulse Period (IPP) 5 ms
Pulse width 16µs
No. of FFT points 256
No. of spectral averaging 8
Range coverage 84–684 km
Range resolution 2.4 km
Nyquist velocity limit ±283 m s−1

Velocity resolution 2.28 m s−1

bottomside of the F-region and the F-region becomes unsta-
ble to the RT instability generating plasma bubbles. These
plasma bubbles evolve nonlinearly and penetrate into the top-
side of the F layer. Plasma irregularities responsible for
strong spread F traces in ionograms and scintillations of
satellite radio signals are generated during the wake of the
plasma bubbles. Plasma irregularities with scale sizes rang-
ing from a few centimeters to a few hundreds of kilometers
are generated.

The small-scale (centimeter to a few tens of meters) irregu-
larities are responsible for radar backscatter, which manifest
as plumes in radar observations linking the top and bottom
of the F-region. It must be stressed that it is Woodman and
LaHoz (1976) who, using the radar observations from Jica-
marca, proposed for the first time that the F-region plasma
irregularities are generated by the RT instability. Since then
extensive investigations have been carried out using radar ob-
servations to study the height-time distribution of the irreg-
ularities, and local time dependence of their occurrence and
dynamics, which are linked with sunset terminator and pre-
reversal enhancement of zonal electric field (PRE).

Interestingly, radar observations have also provided enor-
mous amount of evidence that suggested the role of grav-
ity waves as the seed perturbation for the RT instability to
grow into plasma bubble (e.g., Roettger, 1973; Kelley et al.,
1981; Tsunoda and White, 1981; Hysell et al., 1990; Rao
et al., 1997; Patra et al., 2005). Computer simulations of
gravity wave seeded RT instability have also successfully re-
produced many of the radar observations (e.g., Huang and
Kelley, 1996). It is, however, not known how the gravity
wave seeds are provided at the bottom of the F layer. Prakash
(1999) suggested that seed perturbation of the type of grav-
ity wave could be provided by the low latitude E-region. He
suggested that the perturbation electric field associated with
gravity wave winds in the E-region could map along the mag-

netic field lines to the bottom of the equatorial F-region seed-
ing F-region bubbles. On the other hand, experimental and
theoretical studies made in the recent past (Kudeki and Bhat-
tacharyya, 1999; Hysell and Kudeki, 2004; Kudeki et al.,
2007) suggested that the shear flow at the bottom of the F
layer could generate plasma structures capable of seeding the
RT instability. Importantly, the growth rate of the RT insta-
bility seeded by such plasma structures is shown to be 14 e-
folds larger than its gravity wave counterpart (Kudeki et al.,
2007). This mechanism, however, does not account for the
long wavelength (∼1000 km) undulation of the bottomside
irregularities and plume separation, leaving the role of grav-
ity wave in the physics of F-region irregularity generation to
be still important (Kelley et al., 2009).

Investigations have revealed that PRE, which occurs soon
after the sunset, plays a crucial role for the growth of the
RT instability manifesting plasma bubbles (Fejer et al., 1999;
Hysell and Burcham, 2002). The PRE pushes the F layer up
and the steep gradient in the bottomside electron density pro-
file after the sunset provides conducive conditions for the RT
instability to grow. This quite successfully explains the max-
imum occurrence of plasma bubble during 20:00–21:00 LT.
The decrease in the occurrence of plasma bubble during the
later part of the night, except during the magnetically dis-
turbed conditions, is thus understandable considering the fact
that the background ionosphere during that time descends,
which is not conducive for the growth of the RT instabil-
ity. Plasma irregularities, however, have been observed in
the post-midnight hours by both radio and optical techniques
even during geomagnetically quiet conditions. Thus it is not
clear at this moment whether the post-midnight F-region ir-
regularities observed during magnetically quiet conditions
are freshly generated ones or due to the overhead passage of
irregularities generated elsewhere or the reactivation of fossil
plasma bubbles.

Two important aspects addressed in this paper are: (1) ori-
gin of the required seed perturbations for the generation
of the F-region irregularities and their linkage with the E-
region dynamics, and (2) the genesis of post-midnight F-
region irregularities. Both of these are poorly understood
at this moment. For the second aspect, intriguing new ob-
servations of post-midnight F-region irregularities displaying
different morphological features, which came from summer
campaign, are presented. Notably, the summer observations
are the first of its kind from Gadanki and are expected to shed
light on the genesis of the post-midnight F-region irregulari-
ties.

2 Radar experiments

The new observational results presented and discussed in this
paper were made using the Gadanki MST radar during the
March equinox and summer of 2008. The radar antenna was
phased to form the main beam at a zenith angle of 15◦ due
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Fig. 1. Height-time variation of(a) SNR, (b) radial Doppler velocity, and(c) spectral width of the E- and F-region echoes observed on 6
February 2008. Positive (negative) velocity represents line-of-sight irregularity motion away from (towards) the radar.

magnetic north. Since Gadanki is a magnetically low lati-
tude station, this beam direction is essential for detecting the
F-region echoes arising from the field-aligned electron den-
sity irregularities. Other important radar parameters used for
the observations are given in Table 1. Radar returns were
sampled pulse by pulse and power spectra were computed
online using 256 pulse returns. Also, 8 spectra were aver-
aged online before storing the data for post-processing. For
the specifications given in Table 1, power spectral data were
obtained with range and time resolutions of 2.4 km and 30 s,
respectively. Signal-to-noise ratio (SNR), mean Doppler ve-
locity, and spectral width (2σ , whereσ is the standard devia-
tion of the velocity distribution) were obtained by estimating
the three lower order moments. SNR computation was made
using noise power reckoned over the entire spectral window
of ±283 m s−1.

3 Observational results

3.1 Observational overview

F-region irregularities were observed on 10 nights out of 29
night in the March equinox, while in summer they were ob-
served on all 20 nights of observations. In the equinox, they
were observed predominantly in the pre-midnight hours ex-
cept a few that extended well into the post-midnight hours.
Interestingly, F-region irregularities were observed predom-
inantly in the post-midnight hours in summer, except on
two events, which commenced at∼22:00 LT. It may also
be mentioned that no irregularities were observed soon after
the sunset during summer unlike those in equinox. Further,
an important aspect noted in ionosonde observations (not
shown here) during the summer campaign is that no F layer
trace was observed during 22:00–05:30 LT. Although similar
ionosonde observations were reported earlier by Chandra and
Rastogi (1971), radar observations made during those hours
are new and intriguing. In the following, three case studies,
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Fig. 2. (a)Line-of-sight Doppler velocities of the E-region echoes
observed above 105 km.(b) Amplitude of different periods in the
occurrence of plumes (red line) and in the E-region velocities (ma-
genta line).

which correspond to magnetically quite conditions (Kp<3)
are presented to illustrate the issues described in the intro-
duction.

3.2 Equinoxial observations

Figure 1a–c shows SNR, radial velocity and spectral width
of the radar echoes observed on 6 February 2008. The F-
region irregularities commenced soon after the F-region sun-
set (19:30 LT) and in close coincidence with the local time
of occurrence of pre-reversal enhancement of zonal electric
field (Hari and Krishnamurthy, 1995). The most striking re-
sult of the F-region irregularities observed on this night is
the occurrence of periodic plume structures for 10 h (20:00–
06:00 LT). The time gaps between two consecutive plumes
are between 15 min and∼1 h. Another important aspect
is the periodic descent (during 20:00–22:00 LT and 23:00–
02:00 LT) and ascent (during 22:00–23:00 LT and 02:00–
06:00 LT) of the base of the echoing region. Note that a
large number of plumes are observed during the descent
of the layer consistent with earlier observations made from
Gadanki (Patra et al., 2005). Note that the highest altitude
plume event occurred after the F-region sunrise (05:10 LT)
and during the descending phase of the bottomside echo-
ing envelope. Strongest echo (displayed as SNR=25 dB) was
∼40 dB above the noise (echoes having SNR≤−15 dB are
noise) and was observed during 20:00–22:00 LT. It is inter-
esting to note that although the post-sunrise echoes extended
to maximum altitude, echo SNR was limited to only 10 dB
(about 15 dB lower than the strongest signal).

Coming to the radial Doppler velocities, they were in the
range of−25 m s−1 to 50 m s−1. Positive (negative) veloc-

ities represent upward/northward (downward/southward) ir-
regularity motion. Since the echoing region is mostly below
350 km (where the buoyancy force to the bubble motion can
be neglected), the irregularity drift perpendicular to magnetic
field in the magnetic meridian plane essentially represents the
zonal electric field of−0.75–1.5 mV m−1. The velocities in
the early phase of the event were generally larger than those
observed later. For the post-sunset F-region irregularities ob-
served at Gadanki, Patra et al. (2005) reported that the up-
ward/northward Doppler velocities are often 100 m s−1 and
at times could be as high as 300 m s−1. Thus in the present
observations, the Doppler velocities were rather small. It is
interesting to note that although the plumes were observed
for 10 h, the plumes did not extend to altitude higher than
430 km. Note that the Doppler velocities in the plumes oc-
curring during 00:00–02:00 LT and 04:00–06:00 LT, how-
ever, are larger than the rest of the structures observed dur-
ing the post-midnight hours. Since the bubble velocity is a
function of electric field and collision frequency (which de-
creases with height), bubble velocity is expected to be large
at higher altitudes. Thus low velocities in low altitude plumes
and large velocities in high altitude plumes observed in our
observations are consistent with the understanding.

As regard to the spectral widths, they are mostly in
the range of 10–100 m s−1 and occasionally as high as
200 m s−1. Large spectral widths were observed mostly
in the initial phase of the event (i.e., during 20:00–
21:00 LT). After 21:00 LT, the spectral widths are mostly be-
low 30 m s−1, except for the two high altitude plume struc-
tures, when spectral widths as well as upward/northward ve-
locities are relatively large.

Considering that the E-region over Gadanki is connected
to the bottom of the F-region over the magnetic equator
through the magnetic field lines, and the observed plumes
are representative of the equatorial plasma bubbles mapped
to the low latitude via the magnetic field lines, the Doppler
velocities of the low latitude E-region assume importance.
Also, for the E-region type-2 irregularity velocities above
100 km altitude observed by the north bearing of the Gadanki
radar, Krishnamurthy et al. (1998) have shown that they rep-
resentE×B drift, whereE represents zonal electric field.
According to Prakash (1999), perturbation electric field from
the low latitude E-region, when map to the equatorial F-
region, could provide the seed for the plasma bubble forma-
tion. To examine whether the periodic plume structures have
any relationship to the E-region perturbation, we present
the Doppler velocities of the E-region irregularities observed
above 105 km in Fig. 2a. Noteworthy is the periodic vari-
ations in the Doppler velocities (i.e., periodic variation in
zonal electric field) throughout the observational run. This
observation is intriguing considering that the periodic plumes
were also observed throughout the night.

To examine the common periodicities in the plume oc-
currence and the E-region electric field perturbation, spec-
tral analysis has been performed on the SNR observed at
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Fig. 3. Same as Fig. 1, but for 5 July 2008. Note that the scales are different from those in Fig. 1.

300 km and the E-region irregularity velocities. The re-
sults are shown in Fig. 2b. One can clearly see two periods
(∼30 min and∼50 min) dominating in the plume occurrence
and the lower periods are less prominent. In the E-region
Doppler velocities, significant periods are 35 min, 25 min,
15 min and 10 min. We may recall that 10–15 min periodic-
ity in Doppler velocity is similar to those observed in the E-
region quasi-periodic (QP) echo occurrence (Venkateswara
Rao et al., 2009). The observed common periodicities in both
E- and F-regions imply that E-F-region coupling processes
may be in place and thus it is quite possible that the F-region
structures were related to the plasma bubbles seeded by the
E-region (Prakash, 1999). This aspect is discussed in detail
later.

3.3 Summer observations

In summer, however, the irregularity structures are found to
be very different from those shown in Fig. 1. Figure 3a–c
shows the radar observations made on 5 July 2008. Echo
SNR was limited to 5 dB and most of the echoes had SNR
well below 0 dB. It may be mentioned that a SNR of−15 dB
represents noisy signal. This implies that these echoes were
about 20–25 dB weaker than their equinoxial counterpart.

However, when compared with the equinoxial post-midnight
echoes (for which SNR is∼5 dB), they are found to be
∼5 dB weaker than their equinoxial counterpart. The most
striking aspect of the SNR map is the morphology of the
echoes. The structures show horizontal stratification instead
of plumes as observed on 6 February 2008, which display
vertical structures occurring discretely as a function of time.
The structures observed in summer have close resemblance
to the bottom side band structures often observed at the mag-
netic equatorial location Jicamarca (e.g., Hysell and Bur-
cham, 2002). Also in the initial and final stages of the event,
irregularities were observed right from the E-region to the F-
region. It may be stressed that neither of the echo morpholo-
gies observed during the post-midnight hours on 6 February
and 5 July has commonality.

The Doppler velocities were limited to±30 m s−1

and were upward/northward until 02:30 LT and down-
ward/southward afterwards. It is interesting to note that even
during the post-midnight hours, the irregularity velocities
were upward/northward, representing the presence of east-
ward electric field. Further the irregularities in between the
E- and F-regions showed upward velocities in the initial stage
in association with seemingly ascending irregularity struc-
tures and downward/southward velocities at the descending
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Fig. 4. Same as Fig. 3, but for 3 August 2008.

phase with the descending irregularity structures. Interest-
ingly, the E-region irregularity velocities also showed similar
behavior.

As for the spectral widths, they were limited to 30 m s−1

and were observed to be somewhat larger prior to 02:30 LT
than those observed later. Although the spectral width values
are smaller than their equinoxial counterpart, the decreasing
trend in the spectral width with time appears to be very sim-
ilar to that observed in equinoxial observations.

Figure 4a–c shows the observations made on 3 August
2008. In this example also, irregularities appeared in the
post-midnight hours. Although the echoing morphology in
this case is broadly similar to those of 5 July, the periodic
descending striations observed after 03:30 LT are the added
features. They resemble closely the E-region quasi-periodic
echoing striations (e.g., Venkateswara Rao et al., 2009). In
this example also, the irregularities in between E- and F-
regions appear to ascend in the initial stage and descend at
the final stage.

Doppler velocities in this case also were in the range of
±30 m s−1 and upward/northward until 03:00 LT and down-
ward/southward afterwards. The upward/northward and
downward/southward velocities again are very much con-
sistent with the seemingly upward motion and downward
motion of the irregularity structures, respectively. Spectral

widths were limited to 30 m s−1 and were observed to be
somewhat larger prior to 02:30 LT than those observed later,
which are similar to those observed on 5 July 2008.

4 Discussion

Firstly, the SAFAR pilot campaign results clearly revealed
that the morphology of the F-region irregularities observed
in equinox and summer are distinctly different. In equinox,
they are observed as plume structures, which are very com-
mon in the Gadanki observations and have been reported
earlier. In summer, they are observed as horizontally strat-
ified structures instead of plume type structures observed in
equinox. Further, in equinox, the F-region irregularities are
observed soon after the sunset and the occurrence of plume
structures extend to the post-midnight hours at times. In the
example shown in this paper, not only the irregularities have
been observed during the post-midnight hours but also have
been observed after the sunrise. The irregularities in summer,
however, have been observed mostly from midnight to sun-
rise and no echoes have been seen near sunset. Further, their
appearance during the absence of F layer trace in ionograms
makes their genesis more curious.
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According to the current understanding, the topside irregu-
larities are accounted for by the RT instability. Sudden height
rise of the F layer, which occurs after the sunset due to the
action of the PRE, and the steep gradient at the bottom of
the F-region provide favorable conditions for the RT insta-
bility to take place. It is also assumed that the RT instabil-
ity requires a seed perturbation. Such instability produces
plasma bubbles, which manifest as plumes in the radar ob-
servations. While the observations in equinox are consistent
with this picture, the observations made in summer are not.
Thus question arises whether the irregularities observed in
summer are due to the involvement of other processes that
remained overlooked. We will discuss this aspect later.

Coming back to the specifics of 6 February 2008 observa-
tions, we have two important aspects: (1) common period-
icities in the plume occurrence and in the E-region velocity
variations, (2) undulation of the bottomside envelope of the
echoing region with periods of∼3 h, and (3) occurrence of
plumes during the post-midnight hours and beyond the time
of sunrise. It may be mentioned that Chandra et al. (1992)
observed dominant periodicity of 20 and 67 min in their VHF
scintillation observations from SHAR, a location 110 km east
of Gadanki, which are similar to the plume separations re-
ported here. The common periodicity in the plume occur-
rence and in the E-region Doppler velocity variations re-
ported here, however, is intriguing since it suggests the possi-
ble role of the low latitude E-region electric field perturbation
as seed for the growth of the RT instability. Prakash (1999)
suggested that electric field perturbation associated with the
dynamo action of gravity wave winds in the low latitude E-
region could map to the equatorial F-region seeding the RT
instability. Hysell and Kudeki (2004), however, showed that
collisional shear instability can give rise to structures that can
be seed for the RT instability. The zonal wavelengths of those
structures are of the order of 100 km. The question is whether
the plume structures were generated due to the seed pertur-
bation coming from the low latitude E-region electric field
structures originated by the gravity wave action (Prakash,
1999) or in-situ F-region plasma structures generated by the
collisional shear instability (Hysell and Kudeki, 2004). As-
suming the zonal plasma drifts to be 100 m s−1 (or 50 m s−1),
the observed periods of 15–50 min translate into horizontal
scales of 90–300 km (or 45–150 km). In terms of horizontal
scales of the structures, both possibilities exist since some of
these structures are of the order of those expected from the
shear instability (Hysell and Kudeki, 2004) and also to those
which can map from the E-region to the F-region along the
magnetic field lines. Thus the key question lies in the fact
that whether there existed a shear flow capable of generating
plasma structures of the type that manifested multiple plume
structures. Although such a possibility is likely, we have no
direct proof for it since we have no measurement of the shear
flow in the F-region.

Coming to the interpretation of the common periods in
our observations, one good possibility is the E-F-region cou-

pling. Then, we have two possibilities in front of us: (1) map-
ping of the E-region electric field structures to the F-region
providing seed as proposed by Prakash (1999), and (2) the
mapping of the F-region electric field associated with the
multiple plume structures, which might have been generated
by the RT instability with seed perturbation provided by the
collisional shear instability proposed by Hysell and Kudeki
(2004), to the E-region. Both possibilities are likely and thus
need a careful examination as to what is the cause and what is
the effect. In this context, characterization of the low latitude
MLT region with due focus to the gravity wave linked vari-
abilities would provide a valuable clue. Well designed ex-
periments in combination with theoretical/simulation works,
to be carried out under the SAFAR program, are expected to
elucidate this link.

The second important aspect listed is the undulation of
the bottomside echoing region with period of∼3 h. If the
plasma drift is assumed to be 100 m s−1, this time scale trans-
lates into horizontal scale of∼1000 km. This scale appears
to be compatible with the gravity wave horizontal wave-
length. It is interesting to note that the triggering of the first
plume at∼20:00 LT and the high altitude plumes observed
at ∼00:00 LT and 05:00 LT have occurred at the descending
phase of the large scale undulated structure in consistence
with the gravity wave seeding hypothesis. This means that
while the large scale structure seen in the bottomside echoing
envelop is a manifestation of gravity wave, the smaller time
scale plume structures are due to shorter scale processes. As
discussed in the previous paragraph, the short scale struc-
tures may be due to the seed structures generated either by
shear instability (Hysell and Kudeki, 2004) or the mapping of
structured E-region electric field. Based on radar and satel-
lite borne observations, Kelley et al. (2009) came to a conclu-
sion that both gravity waves and shear instabilities need to be
considered to account for the different scales of the irregular-
ities. The current observations provide an additional source
of perturbation, i.e., the short scale electric field perturbation
of gravity wave origin from the low latitude E-region, to this
complexity.

The third and an intriguing aspect of the 6 February obser-
vations is the extension of plume activity well beyond sun-
rise. Usually, the irregularities associated with the bubbles
that occur after the sunset decay by midnight (e.g., Patra et
al., 2004, 2005). The fact that the plume activities contin-
ued well beyond the midnight suggests the availability of free
energy for the sustenance of the F-region irregularities. Ex-
amining the post-midnight observations of radar plumes and
airglow observations from Gadanki, Sekar et al. (2007) have
shown that the plumes are collocated with the western edges
of the depleted regions. They proposed that eastward neutral
wind exceeding plasma drift blowing across the western wall
of the depleted regions could drive the interchange instability
to keep the irregularities sustained during the post-midnight
hours. Saito et al. (2008) also arrived at similar conclusion
for their post-midnight observations made from Indonesia.
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Radar observations analyzed by Sekar et al. (2007) and Saito
et al. (2008), however, were confined to 01:30 LT in the post-
midnight. The plumes observed and reported in this paper
extended up to 06:00 LT and interestingly the highest alti-
tude plume was observed after the sunrise. After the sunrise,
solar photo-ionization is expected to fill up the plasma deple-
tion and reproduce the E-region density that would short cir-
cuit the F-region fields, leading to the decay of the irregulari-
ties inside the depletion. In this context, a recent experimen-
tal investigation based on C/NOFS observations made during
2008 and reported by de La Beaujardiere et al. (2009) is in-
teresting. They provided evidence on the existence of deep
plasma depletion during sunrise. Occurrence of plasma de-
pletion during the post-midnight and dawn hours have been
observed earlier also, but in association with magnetic storm
(e.g., Burke, 1979; Su et al., 2004) and thus it is not surpris-
ing considering that eastward electric field associated with
magnetic storm can produce such depletion during those
structures. The upward/northward velocities in the dawn-
time plume in our observations clearly indicate the presence
of eastward electric field. Further, the spectral width also is
relatively large compared to those observed a little earlier,
signifying that the bubble must be quite active. Then what
made the bubble active during that time? According to Sekar
et al. (2007), eastward neutral wind exceeding the plasma
drift can be very effective to nurture the decaying/dead bub-
bles to become re-active. Then if we were to relate the ob-
served eastward electric field with the required eastward neu-
tral wind, we end up in considering a dusk-type of situation
of zonal conductivity gradient which occurs during the dawn
time so as to be consistent with the observed zonal eastward
electric field. This essentially underlines the necessity of si-
multaneous measurements of plasma and neutral parameters
to understand the physical processes responsible for the sus-
tenance of plasma irregularities in the post-midnight hours
and after the sunrise.

In this context, the summer observations of the F-region
irregularities are interesting and should be considered im-
portant. They occurred predominantly in the post-midnight
hours and the morphology of the irregularities is very dif-
ferent from those of the equinoxial observations (i.e., plume,
which is a close representative of plasma bubble). Earlier
studies based on ionosonde observations although showed
that the occurrence of F-region irregularities in summer is
predominantly a post-midnight phenomenon (e.g., Chandra
and Rastogi, 1972; Subbarao and Krishnamurthy, 1994), the
radar observations shown here provide additional informa-
tion on the height time structures of the irregularities. Espe-
cially the multilayer thin descending structures are intriguing
and indicate the existence of kilometer scale plasma struc-
tures. It appears that the structures after their generation were
slowly descending and advecting through the radar beam.
Having said that they were generated at an earlier time and
that time appears to be midnight hours, it is important to iden-
tify the free energy and the instability process causing these

irregularities during midnight hours.
Subbarao and Krishnamurthy (1994) observed height rise

of the F layer prior to their occurrence and suggested that the
RT instability is capable of accounting for their generation.
Sastri (1999) and Niranjan et al. (2003) advocated the possi-
ble role of vertical neutral wind associated with the midnight
temperature maximum (MTM) in the RT instability process
also. Vertical wind (downward), however, is not the primary
parameter. This demands a finite value of eastward electric
field during the midnight hours. While during magnetically
disturbed conditions such a possibility very much exists, it
is generally not expected during quite conditions. The ori-
gin of the in-situ F-region eastward electric field during the
quiet-time midnight hours for the fresh generation of mid-
night irregularities, however, is not known. Recently, using
C/NOFS observations, de La Beaujardiere et al. (2009) re-
ported high occurrence rate of post-midnight F-region irreg-
ularities having no close link with the pre-reversal enhance-
ment of zonal electric field. Their observations also related to
the low solar condition of 2008. One good possibility is the
mapping of the low latitude E-region electric field generated
by neutral dynamics. Since the observations under consider-
ation correspond to local summer when the Es activity is the
strongest and prominent structures are seen after 22:00 LT
(Venkateswara Rao et al., 2009), such a possibility needs a
critical evaluation.

In this context, it may be relevant to consider the mid-
latitude observations of spread F in summer. Haldoupis et
al. (2003) found that the midlatitude spread F observed in
summer were well correlated with the Es activity and pro-
posed that the observed spread F was the manifestation of E-
F-region coupling wherein the electric field associated with
the strong Es activity was the driving agent for the F-region
becoming unstable. They advocated in favor of the gradi-
ent drift instability as the origin of the F-region irregulari-
ties. MacDougall et al. (1998) investigated the pre-sunrise F-
region irregularities observed during low solar condition and
found that majority of them are associated with the down-
ward bulges on the bottomside F-region and surmised that the
irregularities were generated by the gradient drift instability.
The fact that the Doppler velocities in the E- and F-regions
in summer observations has similar polarity indicates that E-
F-region coupling processes is quite likely. Still a question
that will linger is- what is the instability process responsible
for the post-midnight summer time irregularities? In terms
of the RT instability, the morphology of the structures is not
very much appealing. The structures appear close to the bot-
tomside structures, which can be accounted for by the gradi-
ent drift instability. The upward Doppler velocities (although
small) and the stretch of the irregularities from the E- to the
F-region in the initial stage of the events, however, are rele-
vant to consider. Also the irregularities extending to the top-
side indicate the presence of convective process. With the
current dataset, it is difficult to arrive at any conclusion as
to which mechanism the irregularities are related with. This
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needs a detailed investigation incorporating simultaneous ob-
servations of Es activity, and F-region plasma and neutral pa-
rameters, a task to be carried out in detail under the SAFAR
program.
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