
Ann. Geophys., 27, 303–312, 2009
www.ann-geophys.net/27/303/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Annales
Geophysicae

Effect of magnetic activity on plasma bubbles over equatorial and
low-latitude regions in East Asia

G. Li 1, B. Ning1, L. Liu 1, W. Wan1, and J. Y. Liu2

1Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences,
Beijing, China
2Institute of Space Science, National Central University, Chung-Li, Taiwan

Received: 3 April 2008 – Revised: 2 September 2008 – Accepted: 21 October 2008 – Published: 19 January 2009

Abstract. The dependence of plasma bubble occurrence
in the eveningside ionosphere, with magnetic activity dur-
ing the period years 2001–2004, is studied here based on
the TEC observations gathered by ground-based GPS re-
ceivers which are located in the equatorial and low-latitude
regions in East Asia. The observed plasma bubbles con-
sist of the plasma-bubble events in the equatorial (stations
GUAM, PIMO and KAYT), and low-latitude regions (sta-
tions WUHN, DAEJ and SHAO). It is shown that most equa-
torial plasma-bubble events commence at 20:00 LT, and may
last for>60 min. The magnetic activity appears to suppress
the generation of equatorial plasma bubbles with a time delay
of more than 3 h (4–9 h). While in the low-latitude regions,
most plasma-bubble events commence at about 23:00 LT and
last for<45 min. The best correlation betweenKp and low-
latitude plasma-bubble occurrence is found with an 8–9 h de-
lay, a weak correlation exists for time delays of 6–7 h. This
probably indicates that over 3 h delayed disturbance dynamo
electric fields obviously inhibit the development of plasma
bubbles in the pre-midnight sector.

Keywords. Ionosphere (Equatorial ionosphere; Ionospheric
disturbances; Ionospheric irregularities)

1 Introduction

Plasma bubbles are plasma density depletions and accompa-
nying plumes of irregularities that rise in altitude to extend to
a wide band in latitude. These irregularities are formed in the
post-sunset period due to the gravitational Rayleigh–Taylor
(RT) instability processes operating on the steep upward gra-
dient in the bottomside F-region. These are most frequently
observed in the pre-midnight sector, as shown in the large
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quantities of in-situ and ground-based data, such as a range
spread echo in ionogram (Woodman and LaHoz, 1976), ra-
dio scintillation shown as rapid amplitude or phase fluctua-
tions for the radio wave communication between space and
ground (Basu et al., 1985), the pronounced density deple-
tion in airglow (Kelley et al., 2002; Sahai et al., 2004), sig-
nificant bite-outs in density from in-situ observation (Hysell
and Burcham, 1998; Huang et al., 2002; Burke et al., 2004;
Su et al., 2006), and their signatures in the magnetic field
(Stolle et al., 2006). After sunset, the equatorial F-layer rises
quickly to higher altitudes owing to the enhanced eastward
electric field, which is known as the pre-reversal enhance-
ment (PRE). When the F-layer has risen to an altitude where
the ion-neutral collision frequency is small, the local RT in-
stability becomes susceptible to triggering and the condition
is favorable for the development of irregularities.

In addition to the effects of day-to-day variability, the
equatorial electric fields could be affected by two main high-
latitude sources during magnetic disturbances, namely the
solar wind-magnetosphere dynamo (Senior and Blanc, 1984)
and the ionospheric disturbance dynamo (Blanc and Rich-
mond, 1980). The former is due to dynamic interactions be-
tween the solar wind and the magnetosphere that leads to
changes in the polar cap potential causing prompt penetra-
tion of electric fields into low latitudes (Kelley et al., 1979;
Fejer and Scherliess, 1997), and giving rise to perturbations
in the zonal electric fields. The direct or prompt penetra-
tion electric fields are short-lived (1–2 h) and propagate al-
most instantly to equatorial and low-latitudes (Fejer, 1991).
Whereas, the later is due to global thermospheric circulation
induced by joule heating at auroral latitudes that generates
long-lived electric field disturbances at mid and low latitudes
by ionospheric wind dynamo (Sherliess and Fejer, 1997).
In the equatorial region, the neutral winds drive long-lived
(several hours) electric fields, which are westward in the pre-
midnight sector. According to Blanc and Richmond (1980),
the delay time to the strongest disturbances in the equatorial
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Table 1. GPS stations (station code, geographic longitude/latitude
and magnetic latitude are listed).

Station Region Geographic Geographic Magnetic
code longitude latitude latitude

GUAM
Equatorial latitude

144.9 13.6 5.2
PIMO 121.1 14.6 4.5
KAYT 121.0 14.0 3.9

WUHN
Low latitude

114.3 30.5 20.2
DAEJ 127.4 36.4 26.5
SHAO 121.2 31.1 21.0

region is 9 h, but studies on radar measurements suggest de-
lays of only a few hours (Fejer and Scherliess, 1995). Taking
into consideration the added penetration or dynamo electric
field tends to enhance or diminish the effect of PRE near sun-
set, and determines the favorable or unfavorable conditions
for the development of plasma bubbles, many authors have
made efforts to examine the influence of magnetic activity
on the occurrence of ionophseric irregularities (e.g. Singh et
al., 1997a; Martinis et al., 2005; Tulasi Ram et al., 2008).

Earlier studies of the effects of geomagnetic storms on the
development or inhibition of ionospheric irregularities have
shown that there is a general consensus that magnetic activ-
ity tends to suppress the generations of spread-F or plasma
bubbles in the pre-midnight period, whereas the possibility
of observing spread-F or plasma bubbles during the post-
midnight period increases with magnetic activity. The en-
hancement or suppression of pre-midnight equatorial spread-
F depends on the relative contributions from the prompt pen-
etration and ionospheric disturbance dynamo induced elec-
tric field disturbances with respect to local time effects dur-
ing the geomagnetic storms (Martinis et al., 2005; Basu et al.,
2007). By analyzing the universal time (UT) of the storm’s
peak effect (|Dst |), Aarons (1991) explored the irregulari-
ties occurrence versus longitude and storm time. Basu et
al. (2001) related the occurrence of strong irregularities with
rate of change ofDst larger than−50 nT/h. Using large num-
bers of scanning photometers and imagers data of the atomic
oxygen 630 nm nocturnal airglow, Sobral et al. (2002) ana-
lyzed theKp index and plasma bubbles and found a correla-
tion existing between largeKp values in the 19:00–21:00 LT
period and the occurrence of irregularities. Based on the
Dynamics Explorer (DE) 2 satellite observations from Au-
gust 1981 to February 1983, Palmroth et al. (2000) investi-
gated the occurrence of equatorial plasma bubbles and found
that magnetic activity appears to suppress the generation of
eveningside plasma bubbles with a delay of 2–3 h. However,
as Palmroth et al. (2000) suggested, owing to the effects that
the satellite can not continuously position – when the DE 2
observed a plasma bubble – the bubble probably had been
generated a few hours before it was observed by the satellite.

Therefore, an uncertainty on the exact time delays probably
exists.

Besides space-based satellite observations, the ground-
based GPS receivers provide a new observational technique
for investigating the effect of magnetic activity on plasma
bubbles. They measure total electron content (TEC) contin-
uously with little lack of data. Since plasma bubbles can
cause TEC fluctuations when the satellite beacon crosses the
density depletions, Rama Rao et al. (2006) found that the
TEC depletion can reach 15 TEC units. Beach et al. (1999)
reported that the small scale fluctuation of TEC with a five
minute period has larger amplitude inside of plasma bubbles,
while outside of the plasma bubble, the amplitude is small.
Therefore it is a strong tool to obtain the first occurrence time
and duration of plasma-bubble events. In this paper, we in-
vestigate the effect of magnetic activity on plasma bubbles
by utilizing measurements of ground-based GPS receivers in
years 2001–2004. Exact time delays ofKp index, inhibiting
the generation of plasma bubbles have been obtained.

2 Data selection and processing

The six ground-based GPS receivers used here were located
in East Asia, as shown in Table 1. These six were chosen
because they extend both equatorial and low-latitude near the
same longitudinal meridian 120◦ E (except GUAM), and the
data were available during the period years 2001–2004.

Using the worldwide GPS network, Pi et al. (1997) moni-
tored, firstly, the global ionospheric irregularities. To iden-
tify and to statistically present the smaller scale irregular-
ities, they defined a rate of TEC index (ROTI) based on
the standard deviation of ROT within five minutes, and sug-
gested that ROTI can be used to detect the presence of iono-
spheric irregularities. The index is often used to investi-
gate ionospheric fluctuations (Bhattacharyya et al., 2000).
Recently, using ROTI derived from the GPS TEC data ob-
tained from IGS, JAMSTEC and SOPAC networks, Nishioka
et al. (2007) investigated the characteristic of global-scale
plasma-bubble occurrence rates. Taking into account the dif-
ferent noise level of ROTI for each GPS receivers, Nishioka
et al. (2007) used the difference of the day time ROTI (Rday)

and the evening ROTI (Rev) for detecting the occurrence of
plasma bubbles, and found that most ofRev–Rday were be-
tween−0.05 TECU/min and 0.05 TECU/min. A threshold
value of 0.075 TECU/min was proposed.

Here we shall use the difference value ofRev–Rday for de-
tecting the occurrence of plasma bubbles.Rev means ROTI
value within the period 18:00–06:00 LT for a single GPS
satellite, andRday is the mean value of ROTI within the pe-
riod 11:00–14:00 LT for all satellites. In the following sec-
tions, ROTI means the difference value ofRev–Rday, and the
GPS satellite elevation angle is confined to greater than 30◦.
Experiments indicate that the threshold of 0.075 TECU/min
with elevation angle 30◦ is appropriate for identifying plasma
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Figure 1. IMF Bz, AE, Kp and Dst indices, and hmF2 obtained from Wuhan and Chungli during 363 
21-23 January, 2004. The horizontal thick lines marked in the bottom two panels indicate the times 364 
when the spread-F irregularities are detected. 365 
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Fig. 1. IMF Bz, AE, Kp andDst indices, andhmF2 obtained from Wuhan and Chungli during 21–23 January 2004. The horizontal thick
lines marked in the bottom two panels indicate the times when the spread-F irregularities are detected.

bubble occurrence frequency. The determination of plasma-
bubble occurrence frequency is based on whether or not
plasma-bubble signatures were detected on a given night.
If there are two ROTI values greater than 0.075 TECU/min
within one hour for a single GPS satellite, it was decided that
plasma bubbles were present on that day. And the time will
be attributed to the first occurrence time of plasma-bubble
events. The decision that plasma bubbles were absent has
been taken on the basis that no plasma-bubble signature was
apparent all night. Therefore the observational data for the
entire night is required.

3 Results and discussion

3.1 Example of plasma-bubble events

Figures 1–3 present an example of plasma-bubble events
which occurred over equatorial and low-latitude regions in
East Asia, during the magnetic storm of 22 January 2004.
As shown in the top three panels of Fig. 1, the varia-
tion of interplanetary magnetic field (IMFBz), AE, Kp in-

dex andDst index are depicted, respectively, during 21–
23 January 2004. On 22 January, the IMFBz turned
southward around 09:57 UT and showed a strong nega-
tive component of−20 nT at 10:07 UT. During the same
time, the Dst value started decreasing and attained the
lowest value of−150 nT at 13:00 UT. TheKp index var-
ied up to 7. It is seen from the bottom two panels that
the peak height of F-layer obtained from low-latitude sta-
tions WUHN (114.3◦ E/30.5◦ N; Mag., 20.2◦ N) and Chung-
Li (121.1◦ E/24.9◦ N; Mag., 14.8◦ N) increased rapidly to
over 400 km during the period 10:30–12:00 UT, which cor-
responds to local postsunset hours (18:30–20:00 LT) over
the two stations. The sudden simultaneous turn in IMF
Bz and increase inhmF2 possibly suggests that there is a
prompt penetration of eastward electric fields into low lati-
tudes that augmented the normal F-region dynamo induced
PRE, thereby lifting the F-layer to higher altitudes and cre-
ating conditions favorable for the development of spread-F.
And then intense spread-F irregularities have been observed
as shown in the bottom two panels, marked by horizontal
thick lines.
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map of percentage occurrence of plasma bubbles for pre- and post-midnight (the yellow lines show 373 
the F15 orbits, the white areas in the map represent regions of data lack, and the GPS receivers 374 
used in this figure are labeled as red asterisks). 375 
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Fig. 2. In situ ion density measurements and plasma-bubble occurrence probability during 21–23 January 2004. The left panel shows the
measurements of ion density from DMSP F15 near 21:30 LT (F15 passes the equator from the south to the north), and the middle and right
panels show the map of percentage occurrence of plasma bubbles for pre- and post-midnight (the yellow lines show the F15 orbits, the white
areas in the map represent regions of data lack, and the GPS receivers used in this figure are labeled as red asterisks).

The plasma-bubble occurrence rates during this storm pe-
riod are also shown in Fig. 2. The left panel of Fig. 2
shows the DMSP-F15 plasma density measurements. The
satellite is a three-axis stabilized spacecraft that flies in Sun-
synchronous circular polar orbits at∼840 km altitude. The
orbital planes are near 21:30–09:30 geographic LT meridi-
ans with the ascending nodes on the duskside of the earth.
The plasma data used here are from the observations of Spe-
cial Sensor-Ions, Electrons, and Scintillation (SSIES) pack-
ages on board the satellite (Rich and Hairston, 1994). We
can see from the panel that the apparent plasma depletions
(indicated by the rectangle) were observed on the storm day.
Based on the GPS networks in the China and adjacent re-
gions, a method (within a square grid of 1◦ in geographic
longitude and latitude, the number of ROTI≥0.075 is divided
by the total number of ROTI to obtain the plasma-bubble oc-
currence rate in that square area at pre- and post-midnight,
and then obtain the grid map of low-latitude plasma-bubble
occurrence rates) was employed to yield the plasma-bubble
occurrence map, as presented in the middle and right panels.
The middle two panels of Fig. 2 on the storm day show that
plasma bubbles were observed at a wide latitude region, and
were found to extend to post-midnight sector.

Figure 3 presents the results of ionospheric scintillations
and irregularities observed at WUHN. The scintillation mea-
surement was performed using the GPS Ionospheric scintil-
lation/TEC Monitor (GISTM), model GSV4004. The sys-
tem is NovAtel’s Euro4 dual-frequency receiver version of
the OEM4 card with special firmware, which was especially
developed to maintain lock even under strong scintillation
conditions (Van Dierendonck et al., 1993). A close com-
parison of amplitude scintillation index S4 and ROTI for all
satellites indicates that the enhanced scintillation structures
correspond well with fluctuations of ROTI. From the figure,
we can note that plasma bubbles can be identified with the
above presented threshold value, 0.075 TECU/min for ROTI.
The first occurrence of plasma-bubble events on this day is
12:00 UT, and the maximum duration is about 3 h.

3.2 Statistical results

The local time distribution of the first occurrence of the
plasma-bubble events, and duration distribution at equatorial
and low latitudes are plotted in Figs. 4 and 5, respectively.
They display that most equatorial plasma bubbles start grow-
ing at 20:00 LT, and may last for>60 min. However, the
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Figure 3. GPS ionospheric scintillations/irregularities observed at WUHN on 21-23 January 2004. 379 
(top) Amplitude scintillation index S4 (S4≥0.1 marked as red color) for all satellites. (middle) Rate 380 
of TEC index (ROTI>0.075 marked as red color) for all satellites. (bottom) Maps of GPS satellite 381 
tracks in the 400 km altitude (red traces represent the scintillation occurrence). 382 
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Fig. 3. GPS ionospheric scintillations/irregularities observed at WUHN on 21–23 January 2004. (top) Amplitude scintillation index S4
(S4≥0.1 marked as red color) for all satellites. (middle) Rate of TEC index (ROTI>0.075 marked as red color) for all satellites. (bottom)
Maps of GPS satellite tracks in the 400 km altitude (red traces represent the scintillation occurrence).

dependence of the first occurrence of low latitude plasma
bubbles on local time is at its maximum at 23:00 LT, and
most plasma bubble events last for<45 min. It indicates
that the duration of plasma bubbles becomes greater as one
approaches the equator (Chandra et al., 1993; Singh et al.,
2004). In addition, a time delay of about 3 h exists be-
tween the first occurrence time of equatorial and low-latitude
plasma bubbles. Although the fact that equatorial plasma
bubbles can extend to a wide band in latitude along the mag-
netic field lines, and the low-latitude plasma bubble occur-
rence can be influenced by equatorial plasma bubble devel-
opment, the time delay of 3 h seems to be too long for an
equatorial plasma bubble to elongate along the magnetic field
lines to low latitudes. It probably indicates that these low lat-
itude bubbles are locally generated plasma bubbles.

Taking into account that most plasma-bubble events com-
mence at pre-midnight, and the sample for post-midnight is
not enough to perform a statistical analysis, especially for
equatorial regions, in this paper we limit our attention to the
dependence of plasma bubble occurrence for different mag-
netic activity conditions in the pre-midnight sector (18:00–
24:00 LT). Figures 6 and 7 present the results for evening-
side at PIMO and WUHN, respectively (the results at other

stations are similar). TheKp index delayed by 4 (9) h is used
to characterize plasma bubble dependence on magnetic activ-
ity, where a 4-h (9-h) delayedKp means theKp value 4 (9) h
before the hour of the first occurrence time of plasma bub-
bles. Figure 6a displays the distribution of 4-h delayedKp

values during all days with data collected. Figure 6b shows
the number of days with plasma-bubble events, and Fig. 6c
is the normalized plasma bubble occurrence rate, obtained by
dividing Fig. 6a by Fig. 6b. From the last bin of Fig. 6a and
b we can note that the number of nights for data collected
and bubble observations are 170 and 46, respectively. These
numbers are significant enough to investigate the effects of
magnetic activity on plasma bubble occurrence. As shown in
Fig. 6c, the occurrence distribution decreases with increas-
ing magnetic activity. On the basis of the statistics presented
by Figs. 6 and 7, we conclude that the magnetic activity de-
creases the number of bubbles in the pre-midnight sector at
PIMO (WUHN) with a delay time of 4 (9) h.

The plasma bubble dependence onKp with other time de-
lays was also studied. Figures 8 and 9 show the normalized
plasma bubble occurrence rates as functions of 0–9 h delayed
Kp for the equatorial station PIMO and low latitude station
WUHN. The panels have been obtained using the same way
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Figure 4. Number of days with the first occurrence time of plasma bubble events at each local 388 
time sector.  389 

 390 
Figure 5. Distribution of duration of plasma bubble events. 391 

Fig. 4. Number of days with the first occurrence time of plasma bubble events at each local time sector.
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Figure 4. Number of days with the first occurrence time of plasma bubble events at each local 388 
time sector.  389 

 390 
Figure 5. Distribution of duration of plasma bubble events. 391 Fig. 5. Distribution of duration of plasma bubble events.

as Fig. 6c. Notice first that at PIMO, the probability of ob-
serving plasma bubbles is independent on magnetic activity
for 0–2 h delay. For more than 3 h (4–9 h) delay, the plasma
bubble occurrence is best suppressed by magnetic activity.
The observations presented here indicate that the best inverse

correlation between magnetic activity and plasma bubbles
appears at over 3 h delay at equatorial latitudes. This sup-
ports the in-situ observational results reported by Palmroth et
al. (2000). By using DE 2 plasma density observations, they
reported the best inverse correlation appeared at 2–3 h delay,
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 392 

Figure 6. (a) Number of 4-hour delayed Kp indices during all days with data collected. (b) 393 
Number of days with plasma bubble events plotted against 4-hour delayed Kp index. (c) Plasma 394 
bubble occurrence probability versus 4-hour delayed Kp index. (PIMO observations) 395 

Fig. 6. (a)Number of 4-h delayedKp indices during all days with
data collected.(b) Number of days with plasma bubble events plot-
ted against 4-h delayedKp index. (c) Plasma bubble occurrence
probability versus 4-h delayedKp index. (PIMO observations).

however with time delays of 4–8 h, only weak inverse corre-
lation is seen. From this figure, we can note that the inverse
correlation is also presented for 4–9 h delayedKp. On the
other hand, Fig. 9 shows the results obtained at WUHN. The
best correlation between bubble occurrence and magnetic ac-
tivity is seen with 8–9 h delayedKp. Weak correlation is
observed with time delays 6–7 h, whereas for time delays 0–
5 h, the magnetic activity does not affect the probability of
observing plasma bubbles. This is consistent with equato-
rial observational results since there is a time delay about 3 h
between the first occurrence of equatorial and low-latitude
plasma bubbles.

3.3 Discussion

It has been suggested that the plasma bubble development or
inhibition conditions associated with magnetic activity can
arise from (1) prompt penetration of an electric field that oc-
curs over equatorial latitudes in association with magnetic
disturbances phases, and especially with the build up, growth
and decay phase of auroral substorms, and (2) delayed ef-
fects, due to disturbance of thermosphere global circulation
resulting from magnetospheric energy deposition at auroral
latitude, that involves a few hours of delay with respect to
the high latitude disturbance onsets. The prompt penetrating
electric fields can have significant amplitudes but only for
periods of about 1–2 h. The rapid change ofDst often sig-
nifies the prompt penetration of high latitude electric fields
(e.g. Basu et al., 2005; Li et al., 2008). Returning to Fig. 1, a

 396 

Figure 7. Same as Figure 6 for WUHN observations. 397 
Fig. 7. Same as Fig. 6 for WUHN observations.

rate of change ofDst reached−53 nT/h at 11:00 UT, having
a good time correlation with the simultaneous uplift of the
F-region at the two ionosonde stations. It can be concluded
that a prompt penetration of magnetospheric eastward elec-
tric field caused the postsunset ionospheric disturbances ob-
served at the two stations. Via theE×B drift, the enhanced
eastward electric fields lift the F-layer to a higher altitude
near postsunset, where the RT mode becomes unstable, and
then forms plasma bubbles and spread-F irregularities. This
further confirms the development of spread-F irregularities
or plasma bubbles due to the penetration of eastward electric
fields into low latitudes during postsunset hours.

With increasing magnetic activity, Singh et al. (1997b)
reported the probability of observing equatorial F-region
plasma bubbles decreasing in the pre-midnight sector, and
a westward electric field buildup in the pre-midnight sector
a few hours after the magnetic disturbances was thought of
as a reason. The disturbance dynamo effects must be su-
perimposed upon the normal dynamo effects, which remain
active during magnetic disturbances. Blanc and Richmond
(1980) suggest that the delay time between the onset of a sub-
storm and strongest electric fields in equatorial region is 9 h,
whereas Fejer and Scherliess (1995) suggest a time delay of
only a few hours. The observations presented here reveal that
the best inverse correlation between magnetic activity and
bubble occurrence rate appears at 4–9 h delay. For time de-
lays of 0–2 h, the statistical occurrence rates of plasma bub-
bles are independent of magnetic activity.

The present statistical result agrees with the effect of dis-
turbance dynamo electric field for the evening sector based
on Jicamarca vertical drift data (Scherliess and Fejer, 1997).
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 398 
Figure 8. Plasma bubble occurrence probability versus 0-9 hours delayed Kp index (PIMO 399 
observations). 400 
 401 

Fig. 8. Plasma bubble occurrence probability versus 0–9 h delayed
Kp index (PIMO observations).

Such effects, in fact, occur through the control of magnetic
activity on the PRE that is basically responsible for the post-
sunset plasma bubble development. The results of Fig. 4
show that most of the equatorial plasma bubble events com-
mencing at 20:00 LT, that is, for more than 3 h delayedKp

(4–9 h), the magnetic activity occurring at the local time pe-
riod 11:00–16:00 LT. These results are consistent with ear-
lier studies that the disturbance dynamo electric fields aris-
ing from such activities produce negative effects on PRE, and
then inhibit the plasma bubble occurrence.

4 Conclusions

Using the ground-based GPS receivers, a detailed study has
been carried out on the effects of magnetic activity on plasma
bubble occurrence over equatorial and low-latitude regions
in East Asia during the years 2001–2004. The results have
shown that most equatorial plasma bubble events commence
at 20:00 LT, and may last for>60 min. Magnetic activity
appears to suppress the generation of equatorial plasma bub-
bles with a time delay of more than 3 h (4–9 h). While dur-

 402 
Figure 9. Same as Figure 8 for WUHN observations. 403 

 404 
Fig. 9. Same as Fig. 8 for WUHN observations.

ing low-latitude regions, most plasma bubble events com-
mence at about 23:00 LT and last for<45 min. The best
correlation betweenKp and low-latitude plasma bubble oc-
currence is found with 8–9 h delay, a weak correlation exists
for time delays of 6–7 h. This is consistent with equatorial
observational results since there is a time delay about 3 h be-
tween the first occurrence time of equatorial and low-latitude
plasma bubbles. It appears that over 3 h delayed disturbance
dynamo electric fields obviously inhibit the development of
pre-midnight plasma bubbles in this region.
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