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Abstract. Variations in the total electron content (TEC) of
the ionosphere alter the propagation characteristics of EM ra-
diation for frequencies above a few megahertz (MHz). Spa-
tial and temporal variations of the ionosphere TEC influence
highly sensitive, ground based spatial measurements such as
those used in radio astronomy and Global Positioning Sys-
tem (GPS) applications. In this paper we estimate the mag-
nitudes of the changes in TEC and the time delays of high
frequency signals introduced by variations in the ionosphere
electron density caused by the natural spectrum of ultra-low
frequency (ULF) wave activity that originates in near-Earth
space. The time delays and associated phase shifts depend
on the frequency, spatial structure and amplitude of the ULF
waves.

Keywords. Ionosphere (Ionospheric disturbances; Wave
propagation) – Magnetospheric physics (MHD waves and in-
stabilities)

1 Introduction

The terrestrial ionosphere represents an inner boundary of
the space environment where the transition from the neutral
atmosphere to the ionised gas (plasma state) of space occurs.
The ionosphere is maintained primarily through absorption
of ultra-violet (UV) and X-ray radiation of solar origin (Kel-
ley, 1989). In broad terms, at mid-latitudes the UV and
X-ray energy flux increases while neutral particle densities
decrease with increasing altitude. The resulting parabolic-
like variation of the free electron number density, (Ne) with
altitude forms the ionosphere layers with maximum values
for Ne around 300 km (F2 layer). At high latitudes in the
auroral zones, ionisation by particle precipitation augments
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the solar radiation components. Typical mid-latitude, peak
daytime electron number densities are around 5×1011m−3

(Schunk and Nagy, 1980). All high frequency (HF), electro-
magnetic (EM) signals above a few MHz (maximum plasma
frequency) from any source in space must traverse the iono-
sphere to reach ground based detectors.

Temporal and spatial variations in the ionosphere electron
density alter the HF signal travel time. It is well known that
the electron density in the ionosphere varies on seasonal and
diurnal time scales. In addition to these variations, gravity
waves, traveling ionosphere disturbances (TIDs), magnetic
storm-time particle injections and ultra-low frequency (ULF;
1–100 mHz) oscillations incident from the magnetosphere
perturb the ionosphere. A number of results reported during
the 1970s related geomagnetic variations in the ULF band
with ionosphere total electron content (TEC) fluctuations.
Using the carrier phase of transmissions from the geostation-
ary ATS 6 satellite,Davies and Hartman(1976) reported two
cases where the percentage change in TEC (1TEC/TEC×

100) was 0.03% and 0.006% with associated variations in
the ULF Pc4 range (30–50 s period). A more comprehensive
analysis byOkuzawa and Davies(1981) showed that vari-
ations in TEC over the 10–50 s band had a daytime bias,
ranged from 0.005% up to 0.1% and similar period varia-
tions were seen in ground magnetometer records (see their
Table 1).

ULF wave induced perturbations in ionosphere TEC are
generally regarded to be insignificant for many applications
involving high frequency EM signal propagation through the
ionosphere. These include over-the-horizon radar systems,
applications involving GPS signals and radio astronomy in-
terferometry. However, as these techniques improve in reso-
lution and signal to noise ratio the ever-present ULF oscilla-
tions become detectable and limit further improvements. For
example, ULF geomagnetic variations are a source of noise
in magnetic anomaly detection used in airborne geomag-
netic surveys. Recent attempts to detect this ULF “noise”
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using GPS measurements have shown changes in TEC units
(1 TECU=1× 1016e−m2) up to a factor of 0.1 associated
with geomagnetic variations in the Pc3 band (10–45 s period)
(Skone, 2008).

In radio astronomy, the Murchison Widefield Array
(MWA) in Australia and the LOw Frequency ARray (LO-
FAR) (e.g., Bastian, 2004) in Europe are new generation
telescopes that operate over the 70–300 MHz band and
are regarded as technology “demonstrators” for the Square
Kilometre Array (SKA) (e.g.,Carilli and Rawlings, 2004).
These instruments consist of spatial antenna arrays that pro-
vide improved resolution using interferometry methods (e.g.,
Pawsey and Bracewell, 1956). The LOFAR is sensitive to
variations in TEC less than a fraction of a percent (Kassim
et al., 1993). Horizontal gradients of 0.1% TEC per km pro-
duce 1 radian differential phase over a 10 km baseline. Using
LOFAR to detect ionosphere disturbances and waves has also
been discussed byGaussiran et al.(2004) while TEC data
obtained from GPS receivers will assist in the calibration of
the MWA. The MWA antenna network has a maximum base-
line around 3 km while the SKA has planned baselines over
3000 km. The performance of these instruments depends on
the quality of data obtained during calibration cycles and a
large amount of research has focussed on removing effects
related to ionosphere disturbances (e.g.,Thompson et al.,
2001; Erickson et al., 2001).

For large spatial antenna arrays the received signals tra-
verse the ionosphere at different locations and may also have
different slant angles. A differential phase (phase difference)
arises when the TEC differs along the different signal traver-
sal paths. Radio telescope antenna arrays that depend on in-
terferometry techniques need to calibrate out relative phase
differences at each antenna caused by spatial variations in
the ionosphere TEC (Hinder and Ryle, 1971). GPS meth-
ods use the phase information from the L1 (1575.42 MHZ)
and L2 (1227.60 MHz) frequencies and details of GPS based
methods for estimating TEC are readily available (e.g.,Er-
ickson et al., 2001). In this paper we use recent results from
ULF wave research to provide estimates of the changes in
TEC due to Pc3–4 activity in the ionosphere to inform GPS
applications and we present differential phase estimates ex-
pected from ULF wave activity over ULF spatial scale sizes
for radio astronomy relevant signals.

2 ULF waves and the ionosphere

The near-Earth space environment extends from the iono-
sphere into the plasmasphere and magnetosphere. Beyond
this, the solar magnetic field and solar wind dominate the dy-
namics. The composition and dynamics of the ionosphere
are known to be directly influenced by solar radiation. There
are less direct processes that produce electric fields in the
ionosphere that also alter the electron density, including ULF
waves. The interaction between the solar wind and magne-

tosphere provides a rich source for ULF wave energy and
the properties of ULF perturbations that propagate through a
magnetised plasma were derived by Hannes Alfvén (Alfv én
and F̈althammar, 1963). In most of the magnetosphere the
plasma is regarded as “cold” (10 eV or less) and the two rel-
evant ULF Alfvén waves are the fast or compressional mode
and the transverse or shear Alfvén mode. These two wave
modes can exhibit quite different spatial structures resulting
in a range of differential phases across a spatial antenna ar-
ray.

Energy from ULF wave activity is always present in the
magnetosphere and its inner boundary, the ionosphere. Un-
derstanding the generation and energy propagation pathways
and processes of ULF waves in the magnetosphere has been
an active research field since the 1950s as in-situ measure-
ments became available. Examples of reviews of ULF wave
research may be found inOrr (1973), Yumoto(1985), Taka-
hashi(1991), Allan and Poulter(1992), andTakahashi et al.
(2006). From these efforts, we know that ULF wave ampli-
tudes vary with the frequency of oscillation, latitude of de-
tection on Earth, wave mode, interplanetary magnetic field
properties and geomagnetic activity. Historically, ULF wave
properties have been deduced from ground-based magne-
tometer array time series, supplemented by magnetic pertur-
bation measurements from various spacecraft. While other
instruments such as HF radars, Doppler sounders, electric
field and particle detectors now provide important ULF wave
information, extensive magnetometer arrays are still the ma-
jor data source for ULF wave research. Limitations and ad-
vantages of various ULF wave detection instrumentation is
related to the spatial scale size of the perturbation and will
be discussed in this paper in due course.

The McIlwain number (McIlwain, 1961), L, is used to
identify the latitude in ULF wave research. TheL parameter
is defined by the distance in Earth radii from the Earth centre
to the equatorial crossing location in space of a given geo-
magnetic field line. For example, the present SKA proposal
is to locate the array at low latitudes either in South Africa or
Australia in radio quiet areas. The location of the MWA and
the proposed centre of the SKA in Australia is 38.6◦ south
(geomagnetic latitude) with L=1.6. Additional antennae in
the SKA may be located at latitudes as high as L=2.5 and
3500 km away on the east coast of the continent. The centre
core for LOFAR in the Netherlands is around L=2.4.

The amplitude and spectral content of ULF waves
recorded on the ground are related to the latitude due to prop-
erties of the shear Alfv́en mode which forms field line res-
onances (FLRs). Basically, the direction of energy propaga-
tion for the shear Alfv́en mode is along the geomagnetic field
in space where reflection at the north and south ionospheres
yield resonant structures analagous to a stretched string (Sug-
iura and Wilson, 1964; Cummings et al., 1969). The ULF
resonant frequencies and associated enhanced amplitudes de-
pend on the geomagnetic field strength, plasma mass load-
ing and geomagnetic field line length. Higher frequencies
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are favoured at lower latitudes. Typical FLR frequencies at
L=1.8 are around 50 mHz while FLRs at L=2.8 often con-
tain multiple harmonics with the fundamental around 10 to
15 mHz (Waters et al., 1991a).

Fluctuations in TEC associated with properties of ULF
waves have been known for some time (Rishbeth and Gar-
riott, 1964; Davies and Hartman, 1976; Okuzawa and Davies,
1981) and the possible physical mechanisms were discussed
by Poole and Sutcliffe(1987). The TEC evaluated along the
line between a source (S) and receiver (R) is given by

TEC=

∫ R

S

Nedz (1)

while temporal variations in the TEC are described by (Poole
and Sutcliffe, 1987)

∂TEC

∂t
=

∫ R

S

∂Ne

∂t
dz (2)

with the electron continuity equation (Rishbeth and Garriott,
1969)

∂Ne

∂t
= q − l−v ·∇Ne −Ne∇ ·v (3)

whereq and l are the electron production and loss rates re-
spectively andv is the plasma velocity from the ULF pertur-
bation. Assumingq and l are negligible (or equal) then the
variations in TEC arise from the remaining advection and di-
vergence terms in Eq. (3).

Variations in TEC along the signal path introduce
time/phase delays for high frequency EM wave propagation
through the ionosphere. These may be estimated from the
resulting perturbations in the refractive index using the usual
Appleton-Hartree relations (e.g.,Stix, 1962)
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Nee
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,
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. The refractive index,n, depends onθ , the angle
between the HF wave propagation direction and the geomag-
netic field (B0), ν, the electron collision frequency,ωN , the
plasma frequency andωB , the electron gyro-frequency.

The link between TEC variations and ULF waves is
through the plasma velocity in Eq. (3). However, mea-
surements of ULF waves are most commonly obtained us-
ing ground magnetometer data. We therefore require a way
to obtain the ULF wave fields throughout the ionosphere
from the ground level ULF magnetic field data. This has
recently become possible through the development of ULF
wave models that allow for the geomagnetic dip angles and
both shear and fast Alfv́en mode incident waves at low lati-
tudes (Sciffer and Waters, 2002; Sciffer et al., 2005).

Consider a coordinate system whereX is northward,Y is
westward andZ is radially outward from the surface of the

Earth. The geomagnetic field,B0, lies in theXZ plane at an
angle,I to the horizontal (see Fig. 1 of Sciffer and Waters,
2002). ULF wave energy is described as an electromagnetic
disturbance and the relevant Maxwell equations are

∇ ×E = −
∂B
∂t

(5)

∇ ×H = J+
∂D
∂t

(6)

where the current density,J and magnetic flux density,B are
given by

J = σ̄E (7)

B = µH (8)

For zero background electric field,(E0 = 0) the zero and first
order perturbation fields are

B = B0+b = (B0cos(I),0,B0sin(I))+(bx,by,bz) (9)

E = e= (ex,ey,ez) (10)

Assuming ULF wave fields with horizontal spatial and time
dependence of the formei(kxx+kyy−ωt), the governing equa-
tions are
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∂ey

∂z
=−

ikyε31

ε33
ex−

ikyε32

ε33
ey−i

(
ω−

k2
yc

2

ε33ω

)
bx−

ikxkyc
2

ε33ω
by (12)
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The εij are elements of the dielectric tensor,ε̄, which is
related to the conductivity tensor,σ̄ , by (Zhang and Cole,
1994)

ε̄ = Ī +
i

ε0ω
σ̄ (15)

The elements of the conductivity tensor are functions of al-
titude and were computed according to the expressions in
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Fig. 1. ULF wave fields at L=1.6 for local midday summer. The
solid lines are the X (north-south), the dotted lines are the Y (east-
west) and the dashed lines are the Z (vertical) ULF field com-
ponents. The values for the ULF wave model weref =50 mHz,
kx = 3.5×10−6m−1, ky = 7.0×10−7m−1 with an incident shear
Alfv én mode at 1000 km altitude.

Prince and Bostick(1964). Equations (11) to (14) represent a
system of four, first order differential equations. To complete
the set, theez andbz ULF wave components are

ez = −
ε31

ε33
ex −

ε32

ε33
ey +

kyc
2

ε33ω
bx −

kxc
2

ε33ω
by (16)

bz = −
ky

ω
ex +

kx

ω
ey (17)

and we require four boundary conditions to solve the system.
Two of the boundary conditions are specified at the ground.
We assume the Earth is a uniform, homogeneous conductor
of finite conductivity. The ULF waves decay in amplitude in
this medium and are described by

∂ex

∂z
−γ

(
σg,kx,ky,ω

)
ex = 0 (18)

∂ey

∂z
−γ

(
σg,kx,ky,ω

)
ey = 0 (19)

whereγ specifies the ground to be a uniform medium with
conductivity,σg = 10−2 Mho/m. The top boundary was set at
1000 km altitude where ideal magnetohydrodynamic (MHD)
conditions were assumed. The model allows for the existence
of both the shear Alfv́en and fast mode waves up to the top
boundary. Details of the derivation for this type of boundary
condition are given bySciffer et al.(2005).

Equations (11) to (14) were solved using a second or-
der finite differencing scheme and the Numerical Algorithms
Group (NAG) package FO4ADF. The composition of the
atmosphere was calculated from the thermosphere model
based on satellite mass spectrometer and ground-based in-
coherent scatter data (MSISE90) (Hedin, 1991). The iono-
sphere composition was obtained using the International Ref-
erence Ionosphere (IRI2007) model andB0 was obtained
from the International Geomagnetic Reference Field (IGRF-
2005).

3 Results

The geographic coordinates for the proposed site of the main
hub of the radio astronomy large antenna array in Western
Australia are 26.9◦ S and 116.6◦ E. Representative profiles of
the ULF wave fields vertically through the ionosphere for this
location (L=1.6) at 12:00 MLT during summer conditions (31
January 2005) are shown in Fig.1. The ULF wave ampli-
tudes have been scaled to give a 5 nT magnitude calculated
from the three components of the perturbation magnetic field

at the ground, i.e.
√

b2
x,g +b2

y,g +b2
z,g=5 nT. The horizontal

spatial structure of the ULF wave must be specified in the
model. The azimuthal (east-west) scale size may be esti-
mated using the m-number defined byOlson and Rostoker
(1978) as

m =
2πRE1φ

360S
cosλ (20)

whereRE is the Earth radius and1φ is the measured phase
difference between ULF signals detected at two azimuthally
spaced locations separated by a distanceS km at a colati-
tude ofλ. Measurements of m-numbers for ULF perturba-
tions at low latitudes from ground magnetometer data have
yielded values around 3 to 4 (Ostwald et al., 1993). For
L=1.6, m = 4 translates to an azimuthal wave number,ky =

7.0×10−7m−1. The north-south spatial structure is compli-
cated by resonance effects (FLRs) that enhances the ampli-
tude and reduces the spatial scale size. One approximation is
to treat the resonant profile as a gaussian shaped spectrum of
wave numbers and select the peak in this k-space.

For the moment, assume that resonance effects confine the
north-south structure by a factor of 5 times the azimuthal
structure. The effects of the horizontal spatial structure of
ULF waves on the ionosphere TEC are discussed later. For
these parameters, the ULF magnetic fields in Fig.1 show
the characteristic transition from aby dominant oscillation
in the magnetosphere to abx component at the ground.
This arises from the ability of the shear Alfvén mode to
carry field aligned current in the magnetosphere (∇ ×b 6= 0)
while the neutral atmosphere does not support electric cur-
rent (Hughes, 1983). These magnetic field oscillations may
be related to values measured using ground magnetometers
by the appropriate linear scaling.
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The ULF wave fields drive the plasma velocities to give
the advection and divergence terms in Eq. (3). The advec-
tion term describes variations inNe from movement of ex-
isting ionisation gradients (Poole and Sutcliffe, 1987). The
∇Ne term has horizontal and vertical gradient components.
If there are no horizontal gradients then the advection term
becomesvz

∂Ne

∂z
. If Ne is zero at both the HF signal receive

(ground) and source locations then the integral of∂Ne

∂z
over

the receive/source path is zero. This is why only the diver-
gence term was used byPilipenko and Fedorov(1995) to es-
timate changes in TEC from ULF wave activity.

For GPS applications,Ne is not zero at geostationary
heights but it is much smaller than the F layer peak so the
advection integral is much smaller than the integrated diver-
gence term. However, there are often horizontal gradients in
Ne and these contribute to the advection term. Large scale
horizontal gradients inNe occur around sunrise and sunset,
at high latitudes due to auroral processes and are associated
with the equatorial anomaly. Smaller scale horizontal gradi-
ents are known to be produced by other ionosphere distur-
bances such as TIDs and gravity waves. As pointed out by
Poole and Sutcliffe(1987), horizontal gradient contributions
from the advection term are comparable with the divergence
term for Pc3–4 ULF induced TEC variations of 0.1% change
in TEC per km, estimated using a ULF horizontal electric
field of 1mVm−1 in the direction of the maximum gradient.

For a 70 MHz signal propagating vertically through the
ionosphere, the associated differential phase horizontally
across the ULF perturbation structure for the parameters in
Fig. 1, from the divergence term only is 8◦. However, this
value may be much larger depending on the parameters of
the ULF disturbance and properties ofNe. There are a num-
ber of assumptions that have been used in the literature for
estimating ULF wave fields from the magnetosphere to the
ground. Many assume vertical geomagnetic fields, electro-
static ionosphere reflection physics and only shear Alfvén
mode incident waves into the system. ULF waves inter-
act with the anisotropic ionosphere plasma and produce fast
mode oscillations, the source of plasma compression and the
main process identified byPoole and Sutcliffe(1987) in the
divergence term of Eq. (3). A full analysis of the parameters
that determine ULF mode conversion has recently been dis-
cussed bySciffer et al.(2005). The geomagnetic dip angle,
wave frequency, spatial scale and ULF wave mode mix all
contribute to the final wave structure and this is the first ap-
plication of this improved ULF wave model to the estimation
of associated TEC perturbations.

The first parameter we consider is the ULF wave mode
mix. Figure1 shows the ULF fields for an incident shear
Alfv én mode only, a common assumption in the literature
that is argued on the basis of choosing the FLR frequency.
However, FLRs are regularly observed over all latitudes
greater thanL ≈ 1.3 and persist throughout the whole day-
time and therefore require energy input to sustain oscillation.

Fig. 2. ULF wave fields at L=2.4 for local midday winter (North
Hemisphere). The solid lines are the X (north-south), the dotted
lines are the Y (east-west) and the dashed lines are the Z (vertical)
ULF field components. The parameters for the ULF wave model
weref =15 mHz,kx = 3.5×10−6m−1, ky = 7.0×10−7m−1 with
an incident shear Alfv́en mode at 1000 km altitude.

This energy comes from coupling with fast mode waves and
so we expect some mix of the two ULF modes, even at the
FLR frequency. Results from the ULF model for the same
parameters as Fig.1 but with the ULF input wave mode mix
at 80% shear Alfv́en and 20% fast mode increases the asso-
ciated differential phase to 20◦ and 0.016% change in TEC.

Moving now to the Northern Hemisphere, the LOFAR
centre is located in the Netherlands near 53◦ geographic lat-
itude (L=2.4). This higher latitude supports lower ULF first
harmonic (fundamental) FLRs around 15 mHz. The ULF
wave fields for a 100% incident shear Alfven, 15 mHz os-
cillation are shown in Fig.2 for the same date and horizontal
spatial structure as Fig.1 at local noon. For these parame-
ters and a vertically propagating HF signal, the differential
phase from the divergence term is 11◦ with a 0.01% change
in TEC.

Figures1 and2 show the ULF fields for local noon where,
for the 5 nT magnetic field magnitude at the ground, the elec-
tric fields are around 1mVm−1. The ratio of the ULF elec-
tric and magnetic fields in the magnetosphere depends on the
Alfv én speed. This suggests that the ULF fields will depend
on diurnal changes inNe which may be illustrated by con-
sidering the ULF fields and associated differential phase and
fractional TEC around sunrise. Using the same ULF param-
eters as Fig.2 and running the IRI model for 06:00 LT gives
the ULF fields shown in Fig.3. For this case, the differential
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Fig. 3. ULF wave fields at L=2.4 for early morning (06:00 LT) win-
ter (North Hemisphere). The solid lines are the X (north-south), the
dotted lines are the Y (east-west) and the dashed lines are the Z (ver-
tical) ULF field components. The values for the ULF wave model
weref =15 mHz,kx = 3.5×10−6m−1, ky = 7.0×10−7m−1 with
an incident shear Alfv́en mode at 1000 km altitude.

phase across the horizontal ULF structure due to the diver-
gence term is 227◦. Most of this arises from the presence of
a large vertical gradient invz in the E region.

In addition to the divergence term, the early morning (and
sunset) case must also consider horizontal gradients from the
advection term. WhilePoole and Sutcliffe(1987) acknowl-
edged that the advection term might be important, depending
on the gradients and the ULF electric field magnitude, pre-
vious estimates have discarded contributions from this term.
For the same parameters as Fig.3, the IRI model was used
to estimate the east-west gradients inNe as a function of al-
titude. These data were multiplied by the ULFvy and in-
tegrated to yield the advection term. For the parameters in
Fig. 3 the divergence term is 4 times greater than the advec-
tion term and the differential phase for the 70 MHz signal
increases to 283◦ with a 2.2% change in TEC. However, it
is not yet clear in ULF wave research that a 100% incident
shear Alfv́en wave mode is realistic. For 90% input shear
Alfv én mode mix the differential phase from both the di-
vergence and advection contributions is 105◦ with a 0.8%
change in TEC while for an 80% shear Alfvén ULF mode
mix, the differential phase and change in TEC are 54◦ and
0.5%, respectively.

4 Discussion

The magnitude of the change in ionosphere TEC due to ULF
wave activity depends on properties of the ULF disturbance.
While many of the ULF wave properties can be directly mea-
sured there are a number that require further research in or-
der to quantify them more accurately. The amplitudes of
the magnetic field perturbations at the ground over the ULF
band are easily measured. A number of studies of low lat-
itude ULF waves have shown the tendency for the ampli-
tude to increase during the local day time (Waters, 1992;
Bloom and Singer, 1995), particularly around noon with
a general decrease in amplitude with increasing frequency
(Campbell, 1966), except where the local field line resonance
enhances the amplitude. Enhanced geomagnetic activity, pa-
rameterised by theKp index, increases the amplitude and
widens the frequency band of ULF oscillations.

The spatial structure of ULF variations produces a similar
spatial variation inNe causing differential phase for interfer-
ometry based radio astronomy techniques. While some mea-
surements of ULF wave spatial structures are available, there
are details that are not fully understood. The azimuthal struc-
ture may be estimated using Eq. (20). Reported m-numbers
at low latitudes range from zero up to 15 while most reports
seem to favourm=3 to 5 (Ostwald et al., 1993; Waters et al.,
1991b; Ziesolleck et al., 1993). These measurements come
from ground based magnetometer arrays and assume a dom-
inant value for the spatial structure,k. The ULF azimuthal
spatial structure should be more realistically described by a
k spectrum.

There is an upper limit to the m-number of ULF signals
that can be detected using ground magnetometers. This is
related to the exponential decay of the ULF signal as it con-
verts into an EM wave in the atmosphere. The ULF sig-
nals are exponentially attenuated for spatial scale sizes of the
order of the ground to ionosphere E-region height (Hughes
and Southwood, 1976; Ponomarenko et al., 2001) so that the
ionosphere/atmosphere acts as a spatial, low pass filter. This
means that it is possible that small scale ULF perturbations
may be present in the ionosphere but little ULF signal will
be detected at the ground. At present, ground magnetometer
measurements of ULF waves are used to ensure that varia-
tions seen in the ionosphere data are due to ULF wave ac-
tivity rather than by other processes such as gravity waves
or TIDs (Menk et al., 2007). This is clearly not possible for
the small spatial scale ULF waves. Measurements of ULF
properties in the ionosphere at low latitudes are required in
order to determine the properties of small scale ULF activity.
Gaussiran et al.(2004) discuss one possible method using
LOFAR for obtaining suitable data.

Quantifying the spatial structure in the geomagnetic north-
south direction is more problematic. Around the local field
line resonant frequencies, the spatial structure may be mea-
sured using the ULF magnetic field amplitude data from
an array of north-south spaced magnetometers with the
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Fig. 4. The differential phases for noon and summer at L=1.6
(South Hemisphere) for a 70 MHz signal due to changes in TEC
from a 50 mHz ULF wave as a function of the ULF wave spatial
scale size. The ionosphere and neutral atmosphere parameters are
the same as those used for Fig.1. The upper boundary wave mode
mix is 80% shear Alfv́en mode.

amplitude versus latitude data approximated by a gaussian
function. Fourier transforming this profile yields the spec-
trum for kx . These properties suggest limits on the likely
values forkx and ky so we have calculated the ULF wave
solutions for a range of ULF spatial structures as shown in
Figs.4 and5, keeping in mind that the values forkx derived
from ground based magnetometer data are also influenced by
the ionosphere/atmosphere spatial low pass filter described
above.

One final parameter is required to yield a ULF wave solu-
tion. This is the ULF wave mode mix at the upper bound-
ary of the model. It is generally accepted that for the larger
spatial scale waves seen at the ground, the fast mode pro-
vides the energy source for the excitation of FLRs. Around
the local FLR frequencies we would expect the shear Alfvén
mode to dominate the mode mix. At low latitudes, a partic-
ular geomagnetic field trace has a greater proportion of the
path affected by ionosphere plasma compared with a field
trace from higher latitudes. This tends to dampen FLRs at the
lower latitudes, increasing the resonance width (spatial scale
size) which reduces the differential phase over a given dis-
tance. Efforts to obtain more realistic estimates of the ULF
wave mode mix are presently being pursued using higher
dimensional ULF wave modeling studies (e.g.,Waters and
Sciffer, 2008).

In order to determine how the ULF spatial structure af-
fects changes inNe, the differential phase and percentage
change in TEC were calculated over a range ofkx , ky values
and ULF mode mixtures. For a 70 MHz EM signal passing
vertically through the ionosphere, the differential phase over
distances of half the ULF horizontal wavelengths introduced
by a 50 mHz perturbation with 80% shear Alfvén mode mix
at the upper boundary (1000 km) is shown in Fig.4. There is
a hint of symmetry withk. In fact, the plot would be sym-

(a)

(b)

Fig. 5. The variation in differential phase for a 70 MHz signal due
to changes in TEC from a 15 mHz ULF wave with ULF wave mix
of 80% shear Alfv́en mode at 1000 km altitude, as a function of the
ULF wave spatial scale size.(a) Local noon using the divergence
term only,(b) local morning (06:00 LT) including the advection and
divergence terms.

metric if the geomagnetic field dip angle was vertical. Asym-
metries in the response of the ionosphere to ULF wave fields
versus spatial scale arise from the relationship between the
horizontal ULF wave number and the horizontal projection
of the geomagnetic field (north-south direction), as discussed
by Sciffer et al.(2005). The differential phase is up to 22◦

but this excludes the advection term, ignoring horizontal gra-
dients inNe. For GPS applications, the percentage change in
TEC can also be obtained from Fig.4 by changing the phase
axis to %TEC and setting the maximum value at 0.02%.

The ULF wave amplitudes generally decrease with in-
creasing frequency (Campbell, 1966) and typical L=1.6 am-
plitudes are a few nT. An additional amplitude effect at the
higher ULF frequencies, such as 50 mHz, is the inductive
response of the ionosphere discussed byYoshikawa et al.
(2002) andSciffer et al.(2005) which may reduce the ULF
amplitudes sensed at the ground. Studies of the role of this
inductive effect and under what conditions it becomes impor-
tant are part of present ULF wave research.
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For the lower ULF frequency (15 mHz), amplitudes at
the ground easily reach 5 nT. Figure5 shows the differen-
tial phase for the 15 mHz, L=2.4, Northern Hemisphere case.
Figure 5a is for local noon with no advection term contribu-
tion. The maximum differential phase and associated max-
imum percentage TEC is 62◦ and 0.07%, respectively. Fig-
ure 5b shows the differential phase for 06:00 local time at
L=2.4, including the advection contribution. The TEC for
dawn compared with noon reduces by a factor of 10, increas-
ing the ULF electric fields. The maximum differential phase
is found for large positive values forkx and involves almost
5 cycles (1770◦).

Large variations in TEC may been observed for very small
to zero ULF magnetic field amplitudes seen by ground mag-
netometers due to the spatial filtering. Ground magnetometer
data provide many insights into the properties of ULF waves.
However, to obtain more complete information, ULF data
are required over a spatial region in the ionosphere. A few
spatial measurements of ULF waves in the ionosphere have
been obtained using Dopppler sounding techniques (Yeoman
et al., 2000; Baddeley et al., 2005; Waters et al., 2007). ULF
scale sizes down to 50 km have been observed for latitudes
near L=6 (Baddeley et al., 2005). These smaller scale ULF
events are thought to be generated through wave-particle in-
teractions associated with magnetospheric ring current ions.
If this is the case, the occurrence of these small scale waves
may be limited in latitude.

Doppler sounder measurements of ULF waves at low lat-
itudes (L 1.8–2.8) have revealed resonance structures with
scale sizes smaller than those seen in ground magnetome-
ter data (Menk et al., 2007). These observations and recent
modeling show that ULF scale sizes in the ionosphere at low
latitudes may be routinely as small as 150 km, half those de-
termined from ground based data (Waters and Sciffer, 2008).
The spatial scale size appears to be a function of the iono-
sphere Pedersen conductance.

Another recent technique that is being used to understand
the relationship between ULF wave properties in the iono-
sphere compared with those seen at the ground involves over-
the-horizon radars (OTHR). The Super Dual Auroral Radar
Network (SuperDARN) is an international consortium that
operate and conduct research on the data returned by 21
radars that ring the northern and southern auroral regions.
Technical details of the radars are described inGreenwald
et al. (1985). The Doppler shifts in the backscattered radar
returns provide estimates of the plasma velocity. Since the
received radar signals refract and do not pass through the
ionosphere into space, this method provides information on
both the advection and divergence mechanisms.

Signatures of ULF waves have been seen in both the iono-
sphere and ground scatter returns (Walker et al., 1979; Fen-
rich et al., 1995; Yeoman et al., 2000; Ponomarenko et al.,
2001; Baddeley et al., 2002; Ponomarenko et al., 2005; Fen-
rich et al., 2006; Waters et al., 2007). The radars can de-
tect ULF signatures when the spatial scale prevents the signal

appearing at the ground (Yeoman et al., 2000; Yeoman and
Wright, 2001; Baddeley et al., 2002). Furthermore, data from
the radars are available at much smaller spatial resolution
(∼45 km) and over large regions of water where ground mag-
netometers do not exist. As more radars are constructed with
overlapping fields of view and at lower latitudes more pre-
cise information will become available on the spatial struc-
ture of ULF waves, allowing more detailed knowledge of the
relationship between the ground and ionosphere signatures
of ULF disturbances in the geomagnetic field.

5 Conclusion

The variations in the phase of HF signals passing through the
ionosphere depends on the temporal variations in TEC along
the propagation path. We have shown that ULF waves, in-
cident from the magnetosphere and through their interaction
with the ionosphere, may cause differential phase variations
in 70 MHz signals from a few degrees up to 5 cycles over the
scale size of the ULF disturbance.

The interaction of ULF waves with the ionosphere plasma
is a complex process that involves the ULF frequency, spatial
scale, geomagnetic field dip angle, ionosphere conductances
and ULF wave mode mix. For small spatial scale ULF activ-
ity it is possible that large TEC variations may be observed
while the ground magnetometer signal is very small or even
absent. The spatial scale size of the ULF disturbance and as-
sociated ionosphere/atmosphere screening is responsible for
this effect. Further research is required to obtain estimates
of the ULF spatial scales and the ULF wave mode mix, par-
ticularly at low latitudes. These require in-situ observations
within the ionosphere such as those provided by the Super-
DARN data.
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