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Abstract. Six medium-scale gravity waves (GWs) with hori-
zontal wavelengths ofλH =60–160 km were detected on four
nights by Taylor et al. (2009) in the OH airglow layer near
Brasilia, at 15◦ S, 47◦ W, during the Spread F Experiment
(SpreadFEx) in Brazil in 2005. We reverse and forward
ray trace these GWs to the tropopause and into the thermo-
sphere using a ray trace model which includes thermospheric
dissipation. We identify the convective plumes, convective
clusters, and convective regions which may have generated
these GWs. We find that deep convection is the highly likely
source of four of these GWs. We pinpoint the specific deep
convective plumes which likely excited two of these GWs on
the nights of 30 September and 1 October. On these nights,
the source location/time uncertainties were small and deep
convection was sporadic near the modeled source locations.
We locate the regions containing deep convective plumes and
clusters which likely excited the other two GWs. The last 2
GWs were probably also excited from deep convection; how-
ever, they must have been ducted∼500–700 km if so. Two of
the GWs were likely downwards-propagating initially (after
which they reflected upwards from the Earth’s surface), while
one of the GWs was likely upwards-propagating initially
from the convective plume/cluster. We also estimate the am-
plitudes and vertical scales of these waves at the tropopause,
and compare their scales with those from a simple, linear
convection model. Finally, we calculate each GW’s dissipa-
tion altitude, location, and amplitude. We find that the dissi-

Correspondence to:S. L. Vadas
(vasha@cora.nwra.com)

pation altitude depends sensitively on the winds at and above
the OH layer. We also find that several of these GWs may
have penetrated to high enough altitudes to potentially seed
equatorial spread F (ESF) if located somewhat farther from
the magnetic equator.

Keywords. Atmospheric composition and structure (Air-
glow and aurora; General or miscellaneous)

1 Introduction

Gravity waves (GWs) can be excited by convection, wind
flow over mountains, geostrophic adjustment, and wave
breaking (e.g., Fritts and Alexander, 2003). The propagation
angle from the horizontal plane for an upward-propagating
GW is approximately the ratio of its vertical to its horizon-
tal wavelength; as this ratio increases, this propagation an-
gle increases, with higher-frequency GWs propagating closer
to vertical, and lower-frequency GWs propagating closer to
horizontal (Hines, 1967). Since this ratio also approximates
the GW frequency divided by the buoyancy frequency, the
highest frequency waves propagate close to the zenith, while
the lowest frequency waves propagate nearly horizontally.
Additionally, the vertical group velocity of a wave is approx-
imately proportional to its frequency times its vertical wave-
length; for a fixed frequency, the larger the GW’s vertical
wavelength, the faster it can propagate to the mesopause and
lower thermosphere (MLT), assuming it avoids critical levels
and evanescence.
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The naturally occurring nightglow emissions provide an
important capability for remote measurements of gravity
waves in the vicinity of the mesopause. Most imaging stud-
ies have used the bright near infrared hydroxyl OH emis-
sion which originates from a well defined layer centered at
∼87 km with a typical half-width of∼8 km (Baker and Stair
1988). As a GW propagates through this layer, it modu-
lates the line-of-sight brightness and rotational temperature
of the airglow emission, which appears as coherent wave
structure in sensitive all-sky imaging systems (e.g. Swen-
son and Mende, 1994; Taylor et al., 1995; Smith et al., 2000;
Ejiri et al., 2003; Medeiros et al., 2003; Nielsen et al., 2006).
Most of the time the waves appear near linear; however
on occasions well-defined concentric rings of GWs are de-
tected over or near severe thunderstorms (Taylor and Hap-
good, 1988; Dewan et al., 1998; Sentman et al., 2003; Suzuki
et al., 2007; Yue et al., 2008). Although Taylor and Hap-
good (1988) inferred that a thunderstorm created the partial
concentric rings which they observed, Sentman et al. (2003)
showed that the concentric rings they observed originated
from a severe thunderstorm. Yue et al. (2008) recently ex-
amined 9 cases of partial or full concentric rings caused by
deep convection near Fort Collins, CO, during 5 years of ob-
servations.

Typically, the GWs measured by all-sky imagers have rela-
tively small horizontal wavelengths (<50 km), observed hor-
izontal phase speeds of a few 10s of meters/second, and short
observed periods (typically 0–25 min) near the buoyancy pe-
riod (Taylor et al., 1997; Nakamura et al., 1999; Hecht et al.,
2001; Ejiri et al., 2003; Medeiros et al., 2003). While many
are clearly freely propagating, a significant number of the
GWs are thought to be ducted (or evanescent) in nature,
particularly those having short horizontal wavelengths (Isler
et al., 1997; Walterscheid et al., 1999; Hecht et al., 2001,
2004; Pautet et al., 2005; Snively et al., 2007). These GWs
may have been excited directly from tropospheric sources;
however, they may also have been excited from wave-wave
or wave-mean flow interactions accompanying the breaking
of GWs from wind flow over mountains and convection (e.g.
Fritts and Alexander, 2003, and references therein). Because
of their uncertain origins, and because of their small phase
speeds, it is more difficult to utilize them via reverse ray trac-
ing studies for source identification and quantification if there
are large uncertainties in the horizontal winds. However, one
study did determine, via reverse ray trace studies, that the
small-scale GWs observed in the OH layer were probably
excited from deep convection (Hecht et al., 2004).

On the other hand, the propagation paths of convectively-
generated, high-frequency GWs with medium-scale horizon-
tal wavelengths are much less sensitive to uncertainties in
the horizontal winds in MLT, because their horizontal phase
speeds are larger than for small-scale GWs. Since the use-
ful field of view of all-sky measurements is typically 600 km
at the OH emission height, GWs with medium-scale hori-
zontal wavelengths ofλH ∼60−500 km can also be detected

at the same time as the shorter-scale waves which tend to
dominate the image structure. Such measurements are usu-
ally also accompanied by background images to account
for any contamination by meteorological clouds. Medium-
scale GWs with brightness amplitudes of several percent
are easily detected in the OH layer. These waves are gen-
erally believed to be excited at or near the tropopause or
lower stratosphere from processes such as convection, air
flow over mountains, and geostrophic adjustment, rather than
from wave breaking near the mesopause, which mostly cre-
ates small-scale, secondary GWs (e.g. Fritts and Alexander,
2003). Note that medium-scale, secondary GWs are excited
near the mesopause from the localized deposition of mo-
mentum which occurs during wave-breaking (Vadas et al.,
2003); however, the amplitudes of these waves are only a few
percent of the original breaking wave’s amplitude, and are
therefore less-likely to be detected in the OH layer. When
there are significant wind uncertainties, reverse ray tracing
medium-scale GWs from the OH layer likely yields a more
accurate identification and quantification of their sources
than reverse ray tracing small-scale GWs from the OH layer,
because their phase speeds tend to be larger in general. How-
ever, a significant drawback is that medium-scale GWs are
much less frequently observed than small scale GWs.

Recently, Taylor et al. (2009) observed and measured the
wavelengths, periods, and phase speeds of six medium-
scale GWs withλH =60−160 km in the OH airglow layer
near Brasilia, Brazil, during the SpreadFEx in September–
November 2005. These observations provided key data in
relatively close proximity to expected convective sources of
the GWs (located primarily to the West over the state of
Mato Grosso). However, they were often constrained by lo-
cal thunderstorm activity during the latter part of the second
observing period. In this paper, we reverse and forward ray
trace these six GWs in order to identify and quantify their
sources, and to estimate their dissipation altitudes, locations,
and times in the thermosphere. Our paper is structured as
follows. In Sect. 2, we provide a brief description of the
ray trace model, and the wind and temperature models. In
Sect. 3, we briefly review the characteristics of these six
GWs. In Sect. 4, we reverse ray trace these GWs from the
OH layer to the tropopause. We include ground reflection
here, and so model both tropospheric source locations and
times from which the GW may have been excited. We also
show the results of forward ray tracing these GWs upwards
into the thermosphere. Section 5 compares the computed
source locations and times with deep convection from satel-
lite images. Section 6 provides the amplitudes of these GWs
in the OH layer, and compares them with the amplitudes of
GWs excited from a simple convection model. Our conclu-
sions are provided in Sect. 7.
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2 Methodology

In this section, we describe the methods we use to determine
the likely tropospheric sources of the observed GWs, and to
determine their penetration to higher altitudes in the thermo-
sphere.

2.1 Ray trace model

Ray tracing has been used for decades for geophysical prob-
lems of interest (e.g. Jones, 1969; Marks and Eckermann,
1995; Cowling et al., 1971; Waldock and Jones, 1984, 1987;
Hung and Kuo, 1978; Hung and Smith, 1978; Lighthill,
1978; Gerrard et al., 2004; Hecht et al., 2004; Wrasse et al.,
2009; Lin and Zhang, 2008). Although these past formalisms
allowed for the propagation of GWs through varying 3-D
winds and temperatures, they did not allow for the propa-
gation of high-frequency GWs through a thermosphere con-
taining realistic dissipation. Recently, an anelastic disper-
sion relation was derived which improves upon past ray trace
models by taking into account the effects of kinematic vis-
cosity and thermal diffusivity in the thermosphere for high-
frequency GWs (Vadas and Fritts, 2005). This dispersion
relation is
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wherek=(k, l,m) is the GW zonal, meridional, and vertical
wavenumber components in geographic coordinates, respec-
tively,

λx = 2π/k, λy = 2π/l, λz = 2π/m (2)

are the zonal, meridional, and vertical wavelengths, respec-
tively, k2

H =k2
+l2, k2

=k2
H +m2, N is the buoyancy fre-

quency, Pr is the Prandtl number,µ is the viscosity coeffi-
cient,ν=µ/ρ is the kinematic viscosity,κ=ν/ Pr is the ther-
mal diffusivity, ρ is the mean density, H=−ρ(dρ/dz)−1 is
the density scale height,

ωIr = ωr − k U − l V (3)

is the intrinsic frequency (in a frame moving with the
wind), ωr is the observed frequency,U and V are the
zonal and meridional winds, respectively,δ=νm/HωIr , and
δ+=δ(1+ Pr−1). At altitudes where thermospheric dissipa-
tion is negligible (z<110 km), Eq. (1) reduces to the usual
anelastic, dissipativeless dispersion relation when the Earth’s
rotation can be neglected (Marks and Eckermann, 1995):
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Additionally, assuming negligible wave reflection from vis-
cosity, which can cause a GW to partially reflect downwards
as it continues to propagate upwards (Midgley and Lieholm,
1966; Yanowitch, 1967; Volland, 1969), a GW’s amplitude
grows in altitude as∝1/

√
ρ, but decays in time from dissi-

pation as exp(ωI i t), whereωI i is the dissipative decay rate
(Vadas and Fritts, 2005):
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Although this dispersion relation is not important below the
turbopause atz∼110 km, it is very important above the tur-
bopause, where dissipation is the primary mechanism for
damping high-frequency GWs.

Here, we briefly describe the inputs and outputs of the ray
trace model developed with this dissipative dispersion rela-
tion. A full description of this dissipative ray trace model
is given in Vadas and Fritts (2009). Consider a GW ob-
served in the OH airglow layer with ground-based frequency
ωr and wavenumber vectork=(k, l,m). In order to ray trace
this GW forwards and backwards in time from the airglow
layer, the background winds and temperatures,T , are needed
as a function of horizontal location, altitude, and time. If
the winds vary with altitude, the GW’s intrinsic frequency
changes with altitude. We assume that the GW’s ground-
based frequency is constant along its ray path; this is only
strictly true if the background winds and temperatures do not
vary in time (Jones, 1969). The intrinsic frequency allows for
the determination of the GW’s vertical wavelength and verti-
cal group velocity from the dispersion relation. We input the
GW’s amplitude,k, l, m, ωr , along with the background ar-
raysU , V , andT , into the ray trace model at a given location
and time. The model then ray traces the GW backwards and
forwards in time, and outputs its amplitude and wavenumber
as a function ofx, y, z, andt , wherex, y, andz are the ge-
ographic zonal, meridional and vertical coordinates, andt is
time.

2.2 Temperature and wind models

The temperature and wind models we use here depend on
x, y, z, andt . Below ∼25–30 km, we use the temperature
and wind data analyzed from balloon soundings using the
WXP analysis package. The temperature model used here
for z>35 km is the Thermosphere-Ionosphere-Mesosphere-
Electrodynamics General Circulation Model (TIME-GCM)
(Roble and Ridley, 1994). The wind model above 35 km im-
plements a combination of TIME-GCM model data and me-
teor radar data averaged from 2 sites in Brazil, at Cariri and
Cachoeira Paulista (see below). We utilize TIME-GCM hor-
izontal winds from 35 km to 70 km, meteor radar horizontal
winds from 80 to 100 km, and TIME-GCM horizontal winds
from 110 km to 350 km. For altitudes between these differ-
ent data/model sets, we obtain the horizontal winds via linear
interpolation.
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The TIME-GCM data we use here extends from 35 km to
350 km altitude with a resolution of 2 grids/scale height and
5◦

×5◦ horizontally. The model includes all of the important
aeronomical processes appropriate for these regions as de-
scribed by Roble and Ridley (1994) and Roble (1995). The
TIME-GCM is forced at the lower boundary by the NCEP
reanalysis data. The gravity wave forcing in this model
is parameterized, and is based on linear saturation theory
(Lindzen, 1981; Boville, 1995). Thermospheric tides come
from both in-situ diabatic heating and the upward propaga-
tion of large-scale waves from the lower atmosphere. These
tides cause large perturbations in the temperatures and winds
in the thermosphere. The dominating tidal modes in the ther-
mosphere are migrating diurnal and semi-diurnal tides, with
the latter dominating in the lower thermosphere and the for-
mer dominating at higher altitudes (Forbes, 1995).

Among other quantities, the TIME-GCM outputsU , V ,
the temperatureT , mean densityρ, horizontal winds, and the
mass mixing ratio of O and O2, mmrO and mmrO2, respec-
tively, as functions of(x, y, z, t). Here, the mass mixing ratio
is the mass of the substance contained within a unit mass of
the entire fluid. Since the atmosphere is composed mainly
of 3 species, N2, O and O2, (mmrN2+mmrO2+mmrO)=1.
The mean molecular weight is then

XMW =
1

mmrO/16+ mmrO2/32+ mmrN2/28
. (6)

From these quantities, we obtain the mean specific heats at
constant pressure and constant volume,Cp andCv, respec-
tively, via
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where the universal gas constant is
R=8314.5/XMW m2 s−2 K−1. Then the ratio of spe-
cific heats isγ=Cp/Cv. The molecular weight XMW
decreases from 29 to 16 andγ increases from 1.4 to 1.7 in
the thermosphere because of the the change in composition
from primarily diatomic N2 and O2 to monotomic O. Below
35 km we setγ=1.4 and XMW=29. We interpolateU , V ,
T , ρ, XMW , and γ , onto the ray trace grid we use here.
Then, we determine the background pressure via the ideal
gas law,p=RρT . In addition, the potential temperature
is θ=T (ps/p)R/Cp , the standard pressure at sea level is

ps , the buoyancy frequency isN=

√
(g/θ) dθ/dz, and the

coefficient of molecular viscosity is

µ = 3.34× 10−4T
0.71

gm m−1 s−1 (9)

(Dalgarno and Smith, 1962). Here, we set the Prandtl num-
ber to be Pr=0.7 (Kundu, 1990), and thus ignore its slight
variations with temperature (Yeh et al., 1975).

Meteor radar data was obtained at 2 sites in Brazil during
this experiment to determine the zonal and meridional hori-
zontal winds fromz=80−100 km. Here, the sites were Cariri
(São Jõao do Cariri) located at 7.4o S, 36.5o W, and Ca-
choeira Paulista, located at 22.7o S, 45.0o W (Batista et al.,
2004; Buriti et al., 2008). The equipment used to observe
winds in the mesosphere at Cariri and at Cachoeira Paulista
are similar to the SKiYMET All-Sky Interferometric Meteor
Radar which uses an antenna array composed of 2-element
yagi antennas (5 in total) for reception, and a 3-element yagi
transmitting antenna. These particular SKiYMET operate
at a frequency of 35.24 MHz, and have an output power of
12 KW peak. The radar measures the radial velocity by trans-
mitted radiation scattered from meteors trails. The differ-
ences of phase of the signal received by each possible pairing
of antennas permits the determination of the location of the
trail. The range is obtained by the delay between the trans-
mitted and received signals. Zonal, meridional, and verti-
cal velocity components are then determined by a least mean
squares fit to all of the radial velocities measured in a given
time/height bin. The radars typically provide around 3000–
5000 useful echoes per day. Vertical velocities are normally
very small and are ignored here. The temporal and verti-
cal resolutions used here are 1 h and 3 km. The altitudes
are centered atz=81, 84, 87, 90, 93, 96, and 99 km, respec-
tively. Technical and acquisition details about this radar can
be found in Hocking et al. (2001).

Figure 1 shows the locations of the OH all-sky imager at
Brasilia (BR) and the meteor radars at Cariri (CA) and Ca-
choeira Paulista (CP) in Brazil. Other instrument sites for the
SpreadFEx are described in Fritts et al. (2009).

Figure 2 shows the meteor radar winds atz=87 km at CA
(upper two rows) and at CP (lower two rows) for days 270–
300 in 2005. Day 272 is 30 September (the first day a
medium-scale GW was observed), while day 296 is 24 Oc-
tober (the last day a medium-scale GW was observed). Al-
though the winds are highly variable, diurnal and semidiurnal
variations are easily seen.

Figure 3 shows altitude profiles of the meteor radar zonal
and meridional winds at CA (upper row) and CP (lower row)
at 23:00 UT on 1 October 2005. This is a night when strong
convection was occurring west and southwest of Brasilia. We
see that the meridional winds are much larger at CP than
at CA. Additionally, the zonal winds have disimilar altitude
profiles.

Figure 4 shows the full temperature and wind models on
the same evening, 1 October 2005. The upper row shows the
models at 52.5o W and 15o S at 21:00 UT (solid lines) and
23:00 UT (dash lines). The lower row shows the models at
47.5o W and 15o S at 23:00 UT (solid lines) and 24:00 UT
(dash lines). We see that the horizontal winds vary spa-
tially and temporally reasonably significantly, especially for
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Fig. 1. Approximate locations in Brazil of the all-sky imager at Brasilia (BR) (yellow star), and the meteor radars at Cariri (CA) and
Cachoeira Paulista (CP) (purple stars).

z>100 km. At the highest altitudes, the diurnal tide is the
dominant contributor to the background horizontal wind.
The spatial and temporal variations in the temperatures, how-
ever, are quite small.

Because these model winds are somewhat uncertain, we
also ray trace the GWs through zero winds in order to assess
the dependence of our results on the winds. We initialize
each GW atz=87 km at the appropriate time and location,
and reverse ray trace it through each of these two winds back
to the tropopause. We then forward ray trace each GW up-
wards fromz=87 km through each of these two winds until
it reflects, dissipates, or meets a critical level. By varying the
winds, we better understand the uncertainties associated with
the estimated 1) source time and location, and 2) dissipation
altitude, location, and time.

3 Medium-scale gravity waves in the OH airglow layer

The USU all-sky imager was deployed near Brasilia, Brazil,
at −47.603o longitude and−14.754o latitude. This imager
utilized a Photometrics CH250 camera fitted with a sensitive
back-thinned 1024×1024 pixel charge couple device (CCD).
A computer controlled filter wheel enabled sequential mea-
surements of selected airglow emissions: the mesospheric
near infra red (NIR) hydroxyl (OH) Meinel broad band emis-
sion (710–930 nm) and the OI (630.0 nm) thermospheric red-
line emission, which originate from layers centered atz∼87
andz∼250 km, respectively. The data were 2×2 binned on
chip down to 512 by 512 pixels, providing a zenith horizon-

tal resolution of∼0.5 km (e.g. Taylor et al., 1995). Expo-
sure times were 15 s for the OH data and 120 s for the OI
(630.0 nm) data, giving a 2.5 min acquisition cycle. Further
details on the instrument and the airglow measurements per-
formed in Brazil during this experiment are given in Taylor
et al. (2009).

In Table 1, we list the ground-based (i.e. observed) charac-
teristics of the six medium-scale GWs withλH >60 km that
were observed with this all-sky imager (near Brasilia) in the
OH airglow layer during the SpreadFEx. These GWs were
observed during four nights of the experiment. From left to
right, the columns display the date (in 2005), the start time
(in UT), the duration (hrs:min), the propagation angleθ in the
horizontal direction clockwise from north (in degrees), the
horizontal wavelengthλH (in km), the observed horizontal
phase speedcH =ωr/kH (in m/s), the observed wave period
2π/ωr (in min), and the relative intensity of the perturba-
tion I ′/I (in %). Note that the horizontal wavelengths range
from 60–160 km, and the horizontal phase speeds range from
25−75 m/s. As an example, the GW withλH =158.6 km is
shown in Fig. 2b in Taylor et al. (2009). Note thatθ=90o

if the wave is propagating eastward. Although GWs with
horizontal wavelengths greater than 100 km can penetrate
above the turbopause, they must typically have intrinsic
phase speeds greater thancIH >100 m/s to propagate to the
bottomside of the F-region (Vadas, 2007). Using Eq. (3), the
intrinsic and observed horizontal phase speeds are related via
a Doppler shift from the moving to the ground-based frame
of reference:
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Fig. 2. Zonal and meridional meteor radar winds at CA (upper two rows) and at CP (lower two rows), as labeled, as a function of day number,
atz=87 km. These data encompass the time period in 2005 for which the 6 medium-scale GWs were observed in the OH layer near Brasilia.

cIH = cH − UH , (10)

whereUH =(k U+l V )/kH is the component of the wind
along the direction of GW propagation. Although the hor-
izontal scales of these observed medium-scale GWs are
ideal, these GWs do not have large enough horizontal phase

speeds to penetrate to the bottomside of the F-region, unless
the background thermospheric winds are large enough (i.e.
>50 m/s) and are in a direction opposite to the GW’s propa-
gation direction (Fritts and Vadas, 2008).
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Fig. 3. Meteor radar winds at CA (upper row) and CP (lower row) on 1 October 2005, at 23:00 UT. The zonal and meridional winds are
shown in the left and right columns, respectively.

Table 1. Measured medium-scale gravity wave events near Brasilia.

Date Start Duration θ λH cH 2π/ωr I′/I
Time (km) (m/s) (min)

30 Sep–1 Oct 02:39 1:00 84.3o 145.1 71.3 33.9 3.8
1–2 Oct 23:06 2:45 90.0o 71.4 57.8 20.6 3
1–2 Oct 01:03 3:45 96.8o 158.6 50.2 52.7 7

22–23 Oct 00:31 0:55 145.9o 64.0 70.2 15.2 2
23–24 Oct 23:54 3:15 143.4o 61.4 28.7 35.7 3.1
23–24 Oct 01:36 1:05 136.3o 148.3 27.4 90.2 2.9

Figure 5 shows satellite images on the 4 nights these GWs
were observed. These images show brightness temperatures
(equivalent blackbody temperature) in the infrared (IR) band,
which is a surrogate for (but does not equal) the actual tem-
perature (see, e.g. Menzel and Purdom, 1994, and references
within). Light blue shading indicates regions where colder

cloud material is located near the tropopause. Localized
dark blue shading denotes regions with the coldest bright-
ness temperatures, indicative of regions of active convection.
The image times are noted in UT, and the conversion to local
time (LT) is LT=UT−3. We show the approximate location
of the all-sky imager as a yellow dot, and the approximate
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Fig. 4. Zonal wind model, meridional wind model and temperature model in the first, second, and third columns, respectively, on 1 October
2005. The first row shows the results at−52.5o longitude and−15.0o latitude at 21:00 UT (solid lines) and 23:00 UT (dash lines). The
second row shows the results at−47.5o longitude and−15.0o latitude at 23:00 UT (solid lines) and 24 UT (dash lines).

propagation directions of the observed medium-scale GWs
from Table 1 with red arrows.

At the end of September and the beginning of October,
active convective regions are isolated, and the nearest re-
gions of strong, active convection are west, northwest, and
southwest of the all-sky imager near Brasilia. Near the end
of October, however, active convection is more organized
and widespread, and the nearest regions of active, strong
convection are west and northwest of the all-sky imager.
Because these directions correspond to the directions these
medium-scale GWs propagated from, Fig. 5 suggests that
these GWs may have been excited by convection. As further
evidence of this hypothesis, Taylor et al. (2009) reports that
the short-wavelength GWs observed in the OH layer propa-
gated southeastward during the first observing period from
22 September–9 October, and propagated eastward during
the second observing phase from 22 October–9 November).

Thus, the observed short-wavelength GWs also propagated
from the general direction that active convection occurred.
Importantly, there is no active convection occurring on these
nights to the south, southeast, east, and northeast of the all-
sky imager, and none of the observed small or medium-scale
GWs were observed propagating from these directions (Tay-
lor et al., 2009). Additionally, these medium-scale GWs
could not have been excited by air flow over mountains, be-
cause their horizontal phase speeds are much greater than
zero. Since they are high-frequency waves, they are also un-
likely to have been excited by geostrophic adjustment. An-
other potential source of medium-scale GWs is the deposi-
tion of momentum which occurs during wave-breaking near
the mesopause (Vadas et al., 2003). However, the ampli-
tudes of these medium-scale, secondary GWs are only a few
percent of the primary breaking GW, and are therefore less-
likely to be detected in the OH airglow layer. (Wave breaking
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also excites large-amplitude GWs, but with small horizontal
scales (e.g. Fritts and Alexander, 2003).)

This figure strongly suggests that these observed, medium-
scale GWs were likely created by deep convection. We will
explore this conjecture in the following section via reverse
ray trace studies. Although many of the small-scale GWs
observed by Taylor et al. (2009) may have been excited by
convection, because of their smaller phase speeds and en-
hanced sensitivity to uncertainties in the horizontal winds in
the OH layer, they are less useful for source identification
and quantification via reverse ray tracing. We will therefore
only reverse ray trace the observed medium-scale GWs here.

4 Ray tracing medium-scale gravity waves

4.1 Intrinsic parameters of medium-scale GWs

We begin by initializing each GW from Table 1 at the
start time t (from Table 1) and at the assumed altitude
z=87 km. The flat field of view of the OH airglow layer is
500 km×500 km. We position each GW on a circle centered
on the all-sky imager with radius 250 km, at the location that
the GW propagated from:

x = xB + (250 km) cos(ζ ) (11)

y = yB + (250 km) sin(ζ ), (12)

where (xB , yB) is the location of the all-sky imager, and
ζ=180+(90−θ) is the angle counterclockwise from east that
the GW propagated from. We then choose the model wind or
zero wind. The wind values and derived GW parameters are
displayed in Table 2. For each GW, rows 1 and 2 display the
results when the horizontal wind is zero and equals the model
wind, respectively. The second row represents our “best
guess”, while the first row gives us an estimate of the sen-
sitivity of our results to the model wind. The columns, from
left to right, show the horizontal wavelengthλH (in km), the
start timet (in fractions of an hr), the zonal and meridional
winds U andV , respectively, (in m s−1), the zonal, merid-
ional, and vertical wavelengthsλx , λy , andλz, respectively,
(in km), the intrinsic GW period 2π/ωIr (in min), and the
vertical group velocitycg,z=∂ωIr/∂m (in m s−1). Since the
GW wavelengths are calculated using Eq. (2), their signs de-
pend on the direction of propagation. Positiveλx denotes that
the GW is propagating eastward, and positive (negative)λy

denotes that the GW is propagating northward (southward).
Additionally, λz<0 denotes that the GW is propagating up-
wards.

Table 2 shows that different horizontal winds greatly affect
a GW’s parameters in the OH layer; in particular,λz andτIr

depend sensitively on the winds in the OH layer. Note that
the GW withλH =148.3 km has the smallest vertical group
velocity. Coupled with a relatively small horizontal phase
speed ofcH =27.4 m/s (see Table 1), we will see in Sect. 4.4
that this GW dissipates near the turbopause atz∼110 km.

Other medium-scale GWs have vertical group velocities up
to cg,z∼40 m/s, with corresponding horizontal phase veloc-
ities up tocH =75 m/s. Having larger values ofcg,z andcH

enables a GW to more easily avoid critical levels and propa-
gate above the turbopause prior to dissipating, as we will see
in Sect. 4.4. However, sinceλz andcg,z change with altitude
and time as the winds change, their values atz=87 km are
not equal to their values in the thermosphere; therefore, we
cannot predict their penetration altitude in the thermosphere
based on their values in the OH airglow layer.

4.2 Reverse ray tracing medium-scale gravity waves

We now ray trace each GW backwards in time from its initial
location in the OH airglow layer to the tropopause, if critical
levels are not encountered. Here, we assume the tropopause
to be located atz∼16 km (S̃ao Sabbas et al., 2009). Criti-
cal levels occur whencH =UH , and cause the GW to dis-
sipate rapidly (e.g. Fritts and Alexander, 2003). Because
we are reverse ray tracing, encountering critical levels im-
plies that 1) the model winds were not realistic, or 2) the
wave was excited above this altitude. This is a common oc-
currence reverse ray tracing small-scale GWs from the OH
layer. However, none of these medium-scale GWs encounter
critical levels during reverse ray tracing. Ray tracing is per-
formed in a numerical box with longitudes=[−80o, −30o

],
latitudes=[−22.5o, 2.5o

], and z=[0, 400] km. The earliest
time we reverse ray trace to on each day is 06:00 UT.

We also include the possibility that the medium-scale GW
was initially downward-propagating, and reflected off the
ground before propagating into the OH airglow layer. This
was theorized to occur (Francis, 1974), and was later ob-
served experimentally (e.g. Samson et al., 1990). The bound-
ary condition we use here for GW reflection is 1) that the
vertical velocity is zero at the Earth’s surface, so that the
GW propagation angle with respect to the zenith is the same
prior to and directly after reflection, and 2) that the horizon-
tal direction of propagation is preserved. Here, we consider 2
possibilities for each observed GW: 1) that it propagated up-
wards initially after being excited from a convective plume,
and thereafter propagated directly to the OH layer, and 2)
that it propagated downwards initially after being excited
from a convective plume, reflected upwards at the Earth’s
surface, and thereafter propagated upwards to the OH layer.
Note that the latter possibility leads to a modeled source that
occurs earlier in time and is a larger distance from the all-
sky imager. Thus we first determine the location and time
where each GW reaches the tropopause the “second” time
during reverse ray tracing (backwards in time). (This is the
location closer to the imager). We then allow the GW to
reflect off the ground (backwards in time), and determine
the location and time at which it reaches the tropopause the
“first” time (which is earlier in time and farther from the im-
ager). Note that the wave amplitude of the GW in our ray
trace model does not change upon reflection off the Earth’s
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Table 2. Parameters in the OH layer for medium-scale GWs.

λH t U V λx λy λz 2π/ωIr cg,z

(km) (hrs) (m/s) (m/s) (km) (km) (km) (min) (m/s)

145.1 26.6 0.0 0.0 146 1461 −23 34. 10.
−8.3 −6.4 −27 30. 13.

71.40 23.1 0.0 0.0 71 ∞ −18 21. 13.
−19. 33. −24 16. 21.

158.6 25.1 0.0 0.0 160 −1339 −15 53. 4.5
−21. 31. −23 35. 9.6

64.00 24.5 0.0 0.0 114 −77 −22 15. 20.
7.8 55. −44 9.6 40.

61.40 23.9 0.0 0.0 103 −76 −9 36. 3.9
−26. 47. −29 12. 28.

148.3 25.6 0.0 0.0 215 −205 −8 90. 1.5
−15. 29. −18 42. 6.8

Fig. 5. Infrared satellite images showing convection over Brazil on 30 September at 23:45 UT (upper left), 1 October at 20:45 UT (upper
right), 22 October at 20:45 UT (lower left), and 23 October at 20:45 UT (lower right). We also show the location of the all-sky imager near
Brasilia (yellow dots), and the approximate direction of propagation of the six medium-scale GWs observed over Brasilia (red arrows).
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surface, although it may decrease after reflection in nature.
Figure 6 shows a sketch of these propagation paths from two
convective plumes. The downward-propagating GW excited
from source “1” reflects off the ground, then propagates up-
wards to the OH layer. The upward-propagating GW excited
from source “2” propagates directly to the OH layer, and is
observed by the all-sky imager at the same time and location
as the GW from source “1”. Thus source “1” is further away
and earlier in time than source “2”. By including the possi-
bility that the observed GW reflected off the Earth’s surface
before propagating to the OH layer, we are allowing for a
more realistic number of possible convective sources for this
GW.

We show the results of reverse ray tracing in Table 3. For
each GW, rows 1 and 2 display the results when the horizon-
tal winds are zero and equal the model wind, respectively.
The columns, from left to right, show the horizontal wave-
length λH (in km), the average range (i.e. horizontal dis-
tance) of the source to the OH airglow location (in km), the
average time taken to reach the source from the OH layer (in
hours), the longitudes of each source (in deg), the latitudes
of each source (in deg), the source times (in UT), the source
altitudes (in km), the average|λz| of the GW at the source (in
km), and the ratio of the GW’s momentum flux at the OH air-
glow layer to the average momentum flux at the tropopause.
In columns 4–7, the first number shows the location or (later)
time of source “2”, and the second number shows the lo-
cation or (earlier) time of source “1”. If the tropopause is
reached prior to reflection during reverse ray tracing, but not
after reflection, then the source “1” altitude equals the alti-
tude where ray tracing ended. (This occurs for the GW with
λH =148.3 km in the model winds, because reverse ray trac-
ing ended at 06:00 UT atz=10 km). Note that the entry in
column 9 represents the ratio of momentum fluxes for a sin-
gle GW. Since a GW packet disperses in volume asz2 as it
propagates upwards into the atmosphere, in order to estimate
the GW spectral amplitudes from this ratio, one must divide
this ratio by a factor which takes into account the increasing
area within which the GW packet occupies (Fritts and Vadas,
2008).

There are several important results from Table 3. First,
the difference in the source longitudes and latitudes between
the zero and model winds is(0.4−6)o and(0−3)o, respec-
tively. Since 1o is ∼110 km, and the diameters of typical
convective plumes and clusters are 10–100 km across, it may
not always be possible to pinpoint the particular convective
plume or cluster which excited every GW; instead, we may
only be able to identify regions of deep convection which ex-
cited some of the GWs. Second, the difference in the time to
the tropospheric source,1t , is 0.2–3 h between the zero and
model winds. Because typical convective plumes last less
than an hour, we may not always be able to identify a partic-
ular convective plume or cluster which excited some of the
GWs (although, again, we may be able to identify regions of
deep convection). Although it may not always be possible

Figure 5:

Figure 6:

52

Fig. 6. Sketch showing how two convective plumes can excite GWs
which reach the OH layer at the same time. Source “2” excites an
upward-propagating GW which propagates to the OH layer along
the thick dot line. Source “1” excites a downward-propagating GW
earlier in time and farther from the imager; this GW reflects off the
ground, then propagates upwards to the OH airglow layer along the
same thick dot line. In this scenario, both GWs arrive at the OH
layer at the same time, although they are from different convective
plumes.

to locate the precise convective plume or cluster which gen-
erated some of the GWs via reverse ray tracing, we can still
gain some understanding of the characteristics of the con-
vection which likely excited these GWs. During this experi-
ment, active convection was often localized in the same area
for many hours; during that time, the convective plumes had
similar diameters and updraft velocities (see Sect. 5). Thus,
it may not be necessary to know precisely which convective
plume excited a GW; instead, determining the region and ap-
proximate time may allow for a reasonable understanding of
the type of convection which likely excited a GW.

We see from Table 3 that the source range and time to
source can be large or small depending of the characteristics
of the GWs. Low-frequency GWs have a smaller ascent an-
gle, and therefore travel further and take more time to reach
the OH airglow layer than high-frequency GWs, which have
steeper ascent angles closer to the zenith. For example, the
low-frequency GW withλH =148.3 km is reverse ray traced
to a source 900−1400 km from Brasilia, 15−18 h prior to its
detection in the OH airglow layer. On the other hand, the
high-frequency GW withλH =64 km is reverse ray traced to
a source 140–220 km from Brasilia, 0.5–1.1 h prior to its de-
tection in the OH airglow layer.

4.3 Forward ray tracing medium-scale gravity waves

As a GW propagates upwards in the thermosphere, as long as
it avoids critical levels and evanescence, and as long as dis-
sipation is unimportant, the GW’s momentum flux increases
nearly exponentially with altitude because the background
densityρ decreases nearly exponentially with altitude. Since
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Table 3. Reverse ray trace results for medium-scale gravity waves.

λH range 1t longitude latitude source z |λz| u′
H

w′
87/

(km) (km) (h) of source of source time (UT) (km) (km) u′
H

w′
16

145.1 523 −1.9 −53.9, −55.1 −15.4, −15.5 24:58, 24:31 16, 16 27 4.1×104

up*427 −1.7 −52.9, −54.4 −15.4, −15.5 25:16, 24:38 16, 16 23 4.1×104

71.40 dw*319 −1.7 −52.3, −53.1 −14.8, −14.8 21:41, 21:12 16, 16 20 4.0×104

242 −1.3 −51.6, −52.4 −14.8, −14.8 22:02, 21:30 16, 16 18 4.2×104

158.6 *867 −5.2 −56.5, −58.6 −13.7, −13.5 20:41, 19:00 16, 16 15 4.1×104

*618 −3.4 −54.2, −56.5 −14.0, −13.6 22:23, 20:52 16, 16 14 4.0×104

64.00 *221 −1.1 −49.9, −50.0 −11.3, −11.2 23:30, 23:22 15, 16 26 4.1×104

ducted *145 −0.48 −49.5, −49.6 −11.8, −11.7 24:04, 24:01 16, 16 37 3.9×104

61.40 *594 −6.8 −51.7, −52.5 −9.21,−8.09 18:04, 16:09 16, 16 9 3.9×104

*397 −4.2 −50.2, −51.0 −10.3, −9.29 20:25, 18:54 16, 16 10 3.9×104

148.3 dw*1418 −15. −56.8, −59.1 −5.12,−2.74 12:52, 8:54 16, 16 9 3.7×104

ducted 921 −18. −52.5, −53.6 −5.96,−5.65 9:13, 6:13 16, 10 6 6.0×104

Table 4. Forward ray trace results for medium-scale gravity waves.

λH zdiss, z
u′w′/2 lon lat |λz| at flight flight zdiss u′

H
w′

zdiss
/

(km) zmax zdiss zdiss zdiss range time time u′
H

w′
16

145.1 138 152 −46.15 −14.59 22 935 3.5 28:16 2.0E+07
145 154 −47.67 −15.09 28 666 2.8 27:46 5.3E+07

71.40 133 148 −47.78 −14.75 17 548 2.8 24:15 1.4E+07
166 177 −48.73 −14.34 39 370 2.2 24:00 1.1E+08

158.6 120 129 −45.79 −14.94 12 1319 7.8 27:41 4.0E+06
171 171 −46.33 −14.58 29 1006 5.1 26:43 8.1E+07

64.00 145 162 −47.82 −14.42 25 427 2.0 25:27 3.6E+07
145 152 −48.27 −14.44 27 329 1.2 25:15 6.2E+07

61.40 110 116 −47.82 −14.45 6 803 8.9 25:59 1.6E+06
94 94 −48.89 −13.03 20 408 4.3 23:57 1.5E+05

148.3 106 111 −46.53 −15.86 5 1839 19. 30:04 6.8E+05
113 116 −48.34 −17.18 10 1367 24. 31:49 1.7E+06

kinematic viscosity and thermal diffusivity increase nearly
exponentially with altitude, eventually every GW dissipates,
although at differing altitudes depending on its characteris-
tics (Vadas and Fritts, 2006; Vadas, 2007). As a GW begins
to dissipate, its momentum flux decreases less rapidly with
altitude. The altitude where a GW’s momentum flux is max-
imum is called its dissipation altitude, orzdiss. Abovezdiss,
the momentum flux decreases rapidly over a scale height or
two (Vadas, 2007). We definez

u′w′/2 to be the altitude above
zdisswhere the momentum flux is a factor of 2 smaller than its
value atzdiss. z

u′w′/2 is a reasonable maximum altitude where
this GW can effect significant change on the ionosphere by
potentially seeding plasma instabilities prior to dissipating.

On the other hand, a GW can instead dissipate at a criti-
cal level if ωIr=0 or cH =UH . Additionally, a GW reflects

downwards above the OH layer if it becomes evanescent,
which occurs if its intrinsic frequency is too large,ωIr>N , or
m2<0. This can occur, for example, if a very high-frequency
GW propagates to a region in the thermosphere where the
buoyancy frequency is smaller than in the lower atmosphere,
or if a high-frequency GW propagates to a region in the ther-
mosphere where it encounters a very large wind moving op-
posite to the GW’s propagation direction.

We now ray trace each medium-scale GW from Table 2
forward in time from its initial location in the OH layer. We
employ the same numerical box used previously. Table 4
shows the results. For each GW, rows 1 and 2 show the re-
sults when the horizontal winds are zero and equal the model
winds, respectively. The columns, from left to right, show
the horizontal wavelengthλH (in km), zdiss or zmax (in km),
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z
u′w′/2 or zmax (in km), the longitude ofzdissor zmax (in deg),

the latitude ofzdiss or zmax (in deg), the value of|λz| at zdiss
or zmax (in km), the flight range (i.e. the horizontal distance)
from the source tozdiss or zmax (in km), the flight time taken
to reachzdiss or zmax from the source (in hrs), the time that
the GW reacheszdiss or zmax (in UT), and the ratio of the
GW’s momentum flux atzdiss or zmax to its average momen-
tum flux at the tropopause. Here,zmax is the maximum alti-
tude that a GW attains if, instead of dissipating, it reaches a
critical level, it becomes evanescent and reflects downward,
or its group velocity exceeds 90% of the sound speedcs .

The GW withλH = 158.6 km dissipates atzdiss=120 and
170 km in zero and the model winds, respectively. Thus,
this GW penetrates to the highest altitude when the hori-
zontal winds equal the model winds. We will see in the
next section that this occurs because the winds are north-
westward in the lower thermosphere, therefore enhancing
the altitudes attained by southeastward-propagating GWs.
Note thatzdiss=z

u′w′/2=171 km for this GW in the model
winds because the wave is removed when its group veloc-
ity equals 0.9cs . It is possible that this wave would con-
tinue propagating to higher altitudes, however. For the
GWs with λH =145.1, 71.4, 158.6, and 64 km propagat-
ing through the model winds, the GWs propagate well into
the thermosphere prior to dissipating. For the GWs with
λH =61.4 and 148.3 km, however, the GWs dissipate or en-
counter critical levels at or below the turbopause. This is
because these latter GWs have slow horizontal phase speeds
of cH '27−30 m s−1 (see Table 1).

The flight ranges and times from the source tozdiss de-
pend on the GW, and vary from 300–1900 km and 1.2–19 h,
respectively. For the GWs which penetrate abovez>150 km,
the GWs withλH =71.4 and 158.6 km achieve the highest
altitudes ofz

u′w′/2'177 and>171 km, respectively. There-
fore, these GWs may propagate to high enough altitudes to
seed ESF via field-line-integrated modulation of plasma if
they are far enough away from the magnetic equator where
magnetic field lines are lower in altitude (Fritts et al., 2008).
Note that the GW withλH =71.4 km has a very short range
from the source tozdiss of 370 km in the model wind, and
therefore is fairly steeply propagating. However, this at-
tribute by itself is not enough to ensure propagation to the
bottomside of the F layer. Instead, GWs with larger hori-
zontal wavelengths of 100–400 km propagate most readily
to the bottomside of the F layer (Vadas, 2007; Fritts and
Vadas, 2008). On the other hand, having a large horizontal
wavelength does not, by itself, ensure deep penetration into
the thermosphere either. Comparingzdiss for the GWs with
λH =145.1, 158.6, and 148.3 km, we see that relatively deep
penetration into the thermosphere is achieved by those GWs
with horizontal phase speeds ofcH >40 m s−1. Indeed, pene-
tration into the F-region is possible for GWs having medium-
scale horizontal wavelengths ofλH ∼100−200 km, but with
intrinsic horizontal phase speeds ofcIH >100 m s−1 (Vadas,
2007).

5 Convective sources and penetration into the
thermosphere

In this section, we show details of the reverse and forward
ray tracing of the medium-scale GWs described in the previ-
ous section. We then superimpose these results on satellite
images as near as possible to the source times. Because deep
convection tends to occur for several hours within a local-
ized region of a few square degrees, and because the hori-
zontal sizes and updraft velocities of the convective plumes
and clusters in this region are reasonably constant, identifi-
cation of the convective plume or region which likely excited
a GW can be used to model the spectrum of GWs excited
from a typical convective plume in this region, in order to
ray trace this spectrum into the thermosphere to determine
its amplitudes and scales there.

In Figs. 7 and 8, the ray paths of the medium-scale GWs as
a function of time and altitude are shown in the left column,
and the ray-paths as a function of longitude and latitude are
shown in the middle column. Figure 7 shows the GWs with
λH =145.1, 71.4, and 158.6 km during late September and
early October, while Fig. 8 shows the GWs withλH =64.0,
61.4, and 148.3 km during late October. Results with zero
winds and the model winds are shown as dash and solid lines,
respectively. Note that the x and y scales of the plots in the
left and middle columns vary in order to show the details of
the ray tracing. In order to better understand the role that
winds play in GW penetration in the thermosphere, the right
column shows the zonal (solid) and meridional (dash) model
winds at the location of the all-sky imager at the GW’s start
time. Positive zonal (meridional) winds are eastward (north-
ward). Note that the winds vary with latitude, longitude, al-
titude, and time, as discussed previously.

5.1 GW on 30 September–1 October withλH =145.1km

On the night of 30 September 2005, only one medium-scale
GW was observed by the all-sky imager: the GW with
λH =145.1 km. This GW was reasonably fast, had a fairly
localized source 400–500 km away, and propagated reason-
ably far into the lower thermosphere prior to dissipating. Al-
though this eastward propagating GW had a large enough
horizontal wavelength to reach the bottomside of the F layer
in theory, the background winds were not favorable, since
the zonal winds were∼0 at z∼150 km. Thus, although
this GW avoids critical levels and evanescence above the
OH layer, it dissipates atz∼145−155 km. If the winds are
zero, this GW travels straight in the longitude/latitude plot
(dash line in Fig. 7b). When the winds equal the model
winds, the path taken is quite contorted. Above the OH layer,
the GW propagates rapidly southward because of the strong
southward meridional wind atz∼90−100 km (dash line in
Fig. 7c). However, the GW then propagates rapidly north-
ward because of the strong northward meridional winds at
z∼110−120 km. Thus, this GW is buffetted around by the
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Fig. 7. Reverse and forward ray trace results for the medium-scale GWs observed in late September and early October. Row 1: GW with
λH =145.1 km. Row 2: GW withλH =71.4 km. Row 3: GW withλH =158.6 km. Column 1: Altitude as a function of time. Dash and solid
lines show the ray paths for zero winds and the model winds, respectively. The dotted line shows OH airglow altitude. Column 2: Flight path
in latitude and longitude. Solid and dash lines are the same as in column 1. Black dots show the locations of sources “1” and “2”. Diamonds
and squares denotezdiss for zero winds and the model winds, respectively. The asterisk denotes the location of the all-sky imager. Column
3: Zonal (solid) and meridional (dash) model winds at the location of the all-sky imager at the start time for each GW.

large meridional winds in the lower thermosphere. From
Fig. 7b, the convective source region is southwest of the all-
sky imager.

According to Table 3, this GW was excited at the
tropopause on 1 October from sources “1” and “2” at 00:40
and 01:20 UT, respectively, using the model winds, and from

sources “1” and “2” at 00:30 and 01:00, respectively, using
zero winds. Figure 9 shows infrared satellite images on 30
September at∼23:50 UT, which is approximately 40–80 min
prior to these source times. The upper panel shows a satel-
lite image which has been color coded for temperatures from
−66oC to −76oC, and the lower panel shows the brightness
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Fig. 8. Same as in Fig. 7, but for the medium-scale GWs observed in late October. Row 1: GW withλH =64 km. Row 2: GW with
λH =61.4 km. Row 3: GW withλH =148.3 km.

temperature. Note that localized cold temperatures on the
anvils imply areas where cloud material is higher (via con-
vective overshoot) than surrounding anvil material (Heyms-
field and Blackmer, 1988). The peach-colored, 4-pointed
stars show the location of the all-sky imager near Brasilia.
The purple stars show the approximate locations of sources
“1” and “2” using the model winds, and the blue stars show
the approximate locations of sources “1” and “2” for zero
winds. The green stars show the approximate GW dissipa-
tion locations for the model and zero winds. Small, localized

clouds are seen∼100 km south and southeast of the eastern
purple star. The lower panel of Fig. 9 shows the brightness
temperature. We see one localized cold region at−16.5o lat-
itude and−52o longitude, and a smaller region at−17.5o lat-
itude and−52.5o longitude, which suggest deep convective
plumes and convective overshoot. Both plumes are within
100 km of source “2” through the model winds (eastern pur-
ple star). We can verify that the updraft velocity of a plume in
this region would have been energetic-enough to excite GWs
by examining the Convective Available Potential Energy (or
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Fig. 9. Infrared satellite images on 30 September at∼23:50 UT. The locations of sources “1” and “2” for the GW withλH =145.1 km through
the model winds (zero winds) are shown as purple (blue) stars. The locations ofzdiss are shown as green stars. The location of the all-sky
imager is shown as a 4-pointed peach star.

CAPE) (Bluestein, 1993). Figure 10 shows a CAPE map on
1 October at 00:00 UT. At this time, the CAPE is substantial
at this source location, with a value of 800–1000 J/kg. The
CAPE is the maximum kinetic energy per mass available to
a parcel of air. Therefore, the maximum upward velocity for
a convective plume in this region is

w ∼
√

2 CAPE. (13)

Although Eq. (13) may be interpreted as an upper limit for
the maximum updraft velocity of a convective plume in this
area, a balloon experiment showed that the velocity of the
updraft equaled Eq. (13) for one storm (Bluestein et al.,
1988). Therefore, we set the plume velocity to roughly
equal Eq. (13). For this area then, the updraft velocity

wasw∼40−44 m/s, consistent with an energetic convective
plume with sufficient overshoot into the stratosphere to ex-
cite GWs. Therefore, we estimate that the convective plume
which created this medium-scale GW was likely located at a
longitude of−52o and a latitude of−16.5o at∼01:00 UT on
1 October. We also note from Fig. 9 that there is a large con-
vective cluster at 58o W and 18o S, which is∼400−700 km
beyond the estimated source location in the same propaga-
tion direction. However, because the GW’s amplitude agrees
very well with the model amplitude for a small convective
plume (see Sect. 6.2), and because this source is much farther
from the model source locations than the plume at 52o W and
16.5o S, this convective cluster is not the likely source of this
GW.
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In conclusion, the closest modeled location occurs for
source “2” with the model winds, which is within 100 km
of a deep convective plume located at 52o W and 16.5o S at
∼01:00 UT on 1 October. This implies that the excited GW
was initially upward-propagating, and propagated directly
through the model winds to the OH airglow layer. We denote
this “best fit” with up* in Table 3 for this GW, where “up”
stands for upward-propagating. Note that this GW’s dissipa-
tion location is nearly directly above the all-sky imager for
the model winds.

5.2 GW on 1–2 October withλH =71.4km

On the night of 1 October 2005, two medium-scale GWs
were observed by the all-sky imager, the GWs with
λH =71.4 km andλH =158.6 km. From Table 3, their source
times are similar:∼21:00–22:00 UT and∼19:00–22:20 UT,
respectively. We first focus of the GW withλH =71.4 km.
This GW dissipates at the highest altitude when the winds
equal the model winds, i.e.zdiss∼170 km (see Table 4). If the
winds are zero, this GW instead dissipates atzdiss∼135 km.
Figure 7f explains why this occurs. There is a strong north-
westward wind atz∼120−150 km, which causes the verti-
cal wavelength for this southeastward propagating GW to in-
crease, since the GW is propagating opposite to the winds.
Larger λz allows for deeper penetration into the thermo-
sphere (Vadas, 2007).

According to Table 3, this GW was excited at the
tropopause on 1 October from sources “1” and “2”at 21:30
and 22:00 UT, respectively for the model winds, and from
sources “1” and “2” at 21:10 and 21:40, respectively for zero
winds. Figure 11 shows infrared satellite images on 1 Octo-
ber at 21:22 UT (upper panel) and 21:52 UT (lower panel).
The estimated locations of sources “1” and “2” are shown
as purple (blue) stars when the winds equal the model winds
(zero winds). We see that there is a single, energetic, con-
vective plume 500 km due west of Brasilia at a longitude
of −52.5o and a latitude of−15o. This plume was strong
at 21:22 UT, but faded somewhat by 21:52 UT. Note that
when the winds equal the model winds, source “1” is only
∼1/4−1/2o east of this convective plume; even better agree-
ment is obtained for source “1” for zero winds. Figure 12
shows a CAPE map on 1 October at 18:00 UT, 3 h before
Fig. 11. At this time, the CAPE is 600−800 J/kg at the loca-
tion of the convective plume, which yields an upward plume
velocity of w∼35−40 m/s from Eq. (13). This is sufficient
to excite GWs via convective overshoot.

In conclusion, the localized but energetic convective
plume which created this medium-scale GW was centered
at a longitude of−52.5o and a latitude of−15o. The clos-
est modeled location occurs for source “1” with zero winds,
which is within 0–10 km of this deep, convective plume (see
western blue star). This implies that the excited GW was
initially downward-propagating, reflected off the Earth’s sur-
face, then propagated through zero winds to the OH airglow

Fig. 10. A map of the CAPE on 1 October at 00:00 UT.

layer. We denote this “best fit” withdw* in Table 3 for this
GW, where “dw” stands for downward-propagating. Note
that this fit is the best of the six GWs.

5.3 GW on 1–2 October withλH =158.6km

We now focus on the GW withλH =158.6 km. In theory, this
GW could penetrate to high altitudes in the thermosphere if
the winds are large and oppositely-directed, because its hor-
izontal wavelength is large enough. From Table 4, this GW
has a significant wave amplitude tozdiss=z

u′w′/2∼171 km,
where ray tracing ends because the group velocity equals
0.9cs . From Fig. 7i, the model winds are northwestward at
z∼120−150 km, which causesλz to increase, thereby accel-
erating its vertical propagation velocity and increasing the
dissipation altitude as compared to zero winds. However, the
winds are southwestward atz'150 km, thereby decreasing
λz somewhat. It may be possible to seed ESF and plasma
bubbles via field-line-integrated modulation of plasma at an
altitude as low asz'170 km (Fritts et al., 2008), but at mag-
netic latitudes of∼±10o (Abdu, personal communication).
From Fig. 7h, the convective source region estimated from
ray tracing is northwest of the all-sky imager at at 13−14o S,
very close to the magnetic equator.

According to Table 3, this GW was excited at the
tropopause on 1 October from sources “1” and “2”at 20:50
and 22:20 UT, respectively using the model winds. Figure 13
shows an infrared satellite image on 1 October at 20:53 UT
(upper panel) and 22:22 UT (lower panel), corresponding to
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Fig. 11. Infrared satellite images on 1 October at 21:22 UT (upper panel) and at 21:52 UT (lower panel). The locations of the sources and
zdiss for the GW withλH =71.4 km are shown using the same symbols as in Fig. 9.

sources “1” and “2”, respectively. The estimated locations of
sources “1” and “2” are shown as purple stars in the upper
and lower panels, respectively. There is a large, strong con-
vective cluster at 58o W and 14.5o S corresponding to source
“1” at 20:53 UT. This source is∼150−200 km southwest of
the purple star. Instead, if the winds are zero, then the times
of sources “1” and “2” are 19:00 and 20:40 UT from Ta-
ble 3. Figure 14 shows a satellite image at 18:52 UT. The
location of source “1” for zero winds is shown with the blue
star in Fig. 14, and the location of source “2” for zero winds
is shown with the blue star in the upper panel of Fig. 13. We
see that the source locations are again within 1−2o of sev-
eral active convective regions at both times. In particular,
there is a large convective cluster at 58o W and 14.5o S cor-
responding to source “1” or “2” at 20:53 UT. At 18:52 UT,
there are several small convective plumes at(58o W, 13o S),
(59o W, 12.5o S), and(59o W, 14o S). There is also an ener-
getic small convective cluster at(58o W, 15o S); these cor-

respond to source “1” through zero winds. All of these
plumes are within the same convective region: 57−60o W
and 12−15o S.

In conclusion, although it is difficult to determine the exact
convective plume or cluster which excited this medium-scale
GW, it is very likely that this GW was excited from a con-
vective plume or a small/large convective cluster located at
57−60o W and 12−15o S from 19:00–21:00 UT. The mod-
eled sources occur within 20–100 km of a deep, convective
plume. We denote these “best fits” with asterisks in Table 3
for this GW.

5.4 GW on 22–23 October withλH =64.0km

We now investigate the medium-scale GW which was ob-
served on 22–23 October withλH =64 km. From Table 4,
this GW dissipated atzdiss∼145 km. This GW does not prop-
agate to the bottomside of the F layer becauseλH is not
large enough to overcome dissipation in the E-region. From
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Fig. 8b, the convective source region estimated from ray trac-
ing is northwest of the all-sky imager.

According to Table 3, this GW was excited at the
tropopause at 23:20–24:00 UT. The zero and model wind re-
sults are similar (see Fig. 8b). The locations and times of
sources “1” and “2” are also similar, because the GW re-
flects upwards atz∼10 km. On this day we only have satel-
lite images every 3 h. Figure 15 shows infrared satellite im-
ages on 22 October at 23:54 UT, very close to the estimated
source times. The estimated sources and dissipation loca-
tions are displayed. We see that there is no convective ac-
tivity near the estimated sources. There is, however, a longi-
tudinal band of deep convection along the same propagation
direction 500–700 km to the NE of the modeled source loca-
tion; this region is easily seen on the brightness temperature
image (lower panel). It is possible that this GW was excited
from one of the deep, convective plumes at−6−7o latitude
and−52−54o longitude. Because these convective plumes
are oriented along the direction from the all-sky imager to
the modeled source locations, we conclude that this GW was
probably excited from one of these convective plumes, then
was ducted approximately 500–700 km before reaching the
OH layer over the all-sky imager near Brasilia. This distance
is within reasonable limits given by modeling studies of wave
ducting (Walterscheid et al., 1999; Hecht et al., 2001). In
conclusion, the deep convective plume which probably ex-
cited this medium-scale GW was located at a longitude of
−52−54o and a latitude of−6−7o at∼24:00 UT. The mod-
eled source is∼500–700 km short (along the same propaga-
tion direction), thereby suggesting that the GW was ducted.
It is also possible that the winds in the OH layer were very
different from that estimated here, that this GW is a large-
amplitude secondary GW from wave breaking, or that this
GW was excited from a different source.

5.5 GW on 23–24 October withλH =61.4km

On the night of 23–24 October 2005, two medium-scale GWs
were observed. We examine the GW withλH =61.4 km first.
This GW propagated slowly upwards from the troposphere
to the OH airglow layer in 4–7 h. From Table 4, this GW
dissipates byz∼110 km. If the winds equal the model winds,
then this wave is removed atz∼94 km because it attained
a group velocity greater than 0.9cs . Thus, this GW is not
expected to play a significant role in the thermosphere.

According to Table 3, this GW was excited at the
tropopause from sources “1” and “2” at 19:00 and 20:30 UT,
respectively, for the model winds, and at 16:00 UT and
18:00 UT, respectively, if the winds are zero. Thus the source
time for this GW is fairly uncertain. As before, we only
have satellite images every 3 h on this day. Figure 16 shows
the satellite image on 23 October at 17:54 UT (upper panel)
and at 20:54 UT (lower panel). The estimated sources and
dissipation locations are also displayed. We see that there
is a deep, convective plume and a small convective cluster

Fig. 12. A map of the CAPE on 1 October at 18:00 UT.

within 50 km of the ray traced source “2” at 20:54 UT for
the model winds. Additionally, there is also active convec-
tion within 100 km of the ray traced source “1” through the
model winds at 17:54 UT. For zero winds, there are deep con-
vective plumes and small convective clusters within 100 km
of sources “1” and “2” at 17:54 UT. Because of source time
and location uncertainties, and because of the large number
of deep convective plumes and clusters, we cannot determine
the exact source of this wave; we can only determine the con-
vective region which likely excited this GW.

In conclusion, because of uncertainties, both the zero and
model winds comprise good fits to the excitation of this
GW from a deep convective plume or cluster at 50−53o W
and 8−10o S at 16:00–21:00 UT. Additionally, the GW could
have been either initially upward or downward-propagating.
The closest modeled location is 50–100 km from the near-
est deep convective plume, although we do not know which
convective plume or cluster this GW was excited from. We
denote these “best fits” with asterisks in Table 3 for this GW.

5.6 GW on 23–24 October withλH =148.3km

The second GW observed on 23–24 October was the
medium-scale GW withλH =148.3 km. This GW propa-
gated slowly upwards from convective sources northwest of
the all-sky imager, in∼15–18 h, and does not does not pene-
trate far above the turbopause.
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Fig. 13. Infrared satellite images on 1 October at 20:53 UT (upper panel) and at 22:22 UT (lower panel). The locations of the sources and
zdiss for the GW withλH =158.6 km for the model winds (both panels) and zero winds (source “2”, upper panel only) are shown using the
same symbols as in Fig. 9.

According to Table 3 and Fig. 8g, this GW was excited at
the tropopause at∼09:00 UT from source “2” for the model
wind case. The estimated times for sources “1” and “2” for
zero winds are quite different:∼09:00 and 13:00 UT, respec-
tively. Therefore, the error in the source times is several
hours. As before, we only have satellite images every 3 h on
this day. Figure 17 shows the satellite image on 23 October at
08:54 UT (upper panel), and at 11:45 UT (lower panel). We
see the edge of a strong convective cell (or small cluster) at 0o

latitude and−62.5o longitude at 08:45 UT, and a few small
convective clusters at−1o latitude and−62−63o longitude
at 11:45 UT, along the same direction as the modeled source
locations. No other convective regions along this direction
are observed. Note that source “1” is closer to the convective
source when the winds are zero, although it is still∼700 km
short of this convective region. This implies that this GW
was probably ducted∼700 km to the OH layer above the
all-sky imager. Thus, this GW was probably a downward-

propagating GW excited from a small convective cluster at
−1o latitude and−62.5o longitude at 09:00 UT. Note that
this GW reflects upwards from the Earth’s surface 300 km
from the source in this scenario.

In conclusion, the closest modeled location occurs for
source “1” with zero model winds (blue star). This implies
that the GW was probably excited from a small convective
cluster at 62.5o W and 1o S, propagated downwards initially,
reflected off the Earth’s surface, and propagated through zero
winds to the OH airglow layer. It also suggests that the GW
was probably ducted∼700 km, although it is possible that
very different (and oppositely-directed) winds can account
for this difference. Additionally, other excitation mecha-
nisms are possible. We denote this “best fit” withdw* in
Table 3 for this GW.
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Fig. 14. Infrared satellite images on 1 October at 18:52 UT. The location of source “1” andzdiss for the GW withλH =158.6 km for zero
winds are shown using the same symbols as in Fig. 9.

6 Wave amplitudes and convective plumes

6.1 Gravity wave amplitudes

We now estimate the GW amplitudes in the OH airglow layer.
Our goal is to use these estimates to constrain the convective
plume parameters that determine these momentum fluxes,
and to estimate the wave amplitudes and momentum fluxes of
the other GWs in the excited convective spectrum that more
easily reach the bottomside of the F layer (Fritts et al., 2008).

Each GW’s amplitude is inferred from its fractional inten-
sity perturbations, I′/I , and the cancellation factor, CF (Liu
and Swenson, 2003):

CF = (I′/I)/(T′/T ). (14)

For these medium-scale GWs, CF ranges from 1.9 to 3.6,
and depends onλz. The dependence onλz arises because
the intensity perturbations in the OH airglow layer partially
cancel out forλz<20−30 km due to the finite thickness of the
OH layer. GW horizontal wind perturbations can be written
as (Fritts and Alexander, 2003)

u′

H ∼ (mgωIr/kH N2)θ ′/θ, (15)

assuming adiabatic motions. For hydrostatic GWs satisfy-
ing ω2

Ir�N2, m/kH ∼N/ωIr , andθ ′/θ=T′/T , Eq. (15) be-
comes

u′

H ∼ (g/N)T′/T . (16)

Forg'9.5 m/s2 andN∼0.01 s−1,

u′

H ∼ 103 θ ′/θ m/s. (17)

Thus, a 1% temperature or potential temperature perturba-
tion corresponds to a GW horizontal velocity perturbation of

u′

H ∼10 m/s. From the Boussinesq continuity equation, we
estimate a GW vertical velocity perturbation of

w′
∼ −kH u′

H /m (18)

and an average momentum flux of

u′

H w′ ∼ 0.5(kH /m)(u′

H )2, (19)

where the overline denotes a spatial or temporal average over
the GW phase here. The various GW parameters and result-
ing momentum flux estimates are shown for the six medium-
scale GWs in Table 5. The columns, from left to right, show
the horizontal wavelengthλH (in km), |λz| in the OH layer
from Table 2 for the model winds (in km), CF(using|λz|

from column 2),I ′/I (in %) from Table 1,T ′/T calculated
from Eq. (14) (in %), u′

H from Eq. (16) (in m/s), w′ from

Eq. (18) (in m/s), and the average momentum fluxu′

H w′

from Eq. (19) (in m2/s2). Note that both the vertical ve-
locities (∼1.8 to 4.3 m/s) and the momentum fluxes (∼10 to
50 m2 s−2) are within reasonable ranges of observed quan-
tities, especially when we note that these events are likely
among the larger and more coherent events observed during
the SpreadFEx.

6.2 Horizontal wind spectra of convective plumes

We now show how these medium-scale GWs fit into mod-
eled GW spectra excited from deep convective plumes. We
calculate the excited GW spectrum from a convective plume
envelope which is 20 km wide, 10 km deep, lasts for 12 min,
and has an updraft velocity of 40 m/s. This spectrum is gen-
erated from a simple convective plume model which includes
ground reflection, neglects small-scale updrafts, and neglects
shear in the troposphere (Vadas and Fritts, 2009). Since there
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Fig. 15. Infrared satellite images on 22 October at 23:54 UT. The locations of the sources andzdiss for the GW withλH =64.0 km are shown
using the same symbols as in Fig. 9.

Table 5. Calculated GW amplitudes fromI ′/I .

λH |λz| CF I′/I T′/T u′
H

w′ u′
H

w′

145.1 27 3.0 3.8 ∼1.3 ∼12 ∼2.2 ∼13
71.40 24 2.8 3 ∼1.1 ∼10.2 ∼3.4 ∼17
158.6 23 2.6 7 ∼2.7 ∼25.6 ∼3.7 ∼48
64.0 44 3.6 2 ∼0.6 ∼5.3 ∼3.6 ∼10
61.4 29 3.2 3.1 ∼1.0 ∼9.2 ∼4.3 ∼20
148.3 18 1.9 2.9 ∼1.5 ∼14.5 ∼1.8 ∼13

are many small-scale updrafts within a convective plume en-
velope, only a fraction of the air is moving upwards at the
tropopause at a given timet . We take this into account by
multiplying each excited GW’s amplitude by a “filling fac-
tor” ε. This factor equals 1 if all of the air within the enve-

lope is upward-moving at the tropopause att , and equals 0.5
if only 1/2 of the volume of air within the convective plume
envelope is upward-moving at the tropopause att . Here, we
chooseε=0.75, as this gives good agreement with observa-
tions of concentric rings in the OH layer (Vadas et al., 2009).

Figure 18a shows the GW horizontal wind amplitudes at
z=87 km if the winds are zero, using the spectral form de-
termined by Vadas and Fritts (2009). These amplitudes are
the maximum amplitudes that a GW can have at that altitude;
they therefore provide an upper bound. Triangles show the
horizontal wavelengths of each GW as a function of its av-
erage vertical wavelength at the tropopause when the winds
equal the wind model (see column 7 from Table 3). We see
that these medium-scale GWs have horizontal scales that are
consistent with the horizontal scales excited from this con-
vective plume. For this deep convective plume, the model
amplitudes corresponding to these medium-scale GWs (at
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Fig. 16. Infrared satellite images on 23 October at 17:54 UT (upper panel) and at 20:54 UT (lower panel). The locations of the sources and
zdiss for the GW withλH =61.4 km are shown using the same symbols as in Fig. 9.

the location of the triangles) are shown in the first column
of Table 6.

We now compare these model amplitudes for a single con-
vective plume with the inferred wave amplitudes,u′

H , us-
ing Table 5. We see that the measured and model ampli-
tudes are quite similar for the GWs withλH =145.1, 71.4,
and 61.4 km. Note that factor of∼2 discrepancies can be
caused by differing updraft velocities or plume diameters.
For the GWs withλH =158.6 and 148.3 km, however, the
observed amplitudes are much larger than the model ampli-
tudes for a single convective plume. This large discrepancy
may imply that these GWs were instead excited from a con-
vective cluster. Indeed, as discussed previously, the GW with
λH =158.6 km may have been excited from the large convec-
tive cluster at 58o W and 14.5o S at∼20:50 UT (see Sect. 5.3

Table 6. Maximum model amplitudes.

λH u′
H

(single u′
H

(small
plume) cluster)

145.1 10−15 30
71.40 15 25−35
158.6 1 1−5
64.0 30−35 60−65
61.4 5 5−15
148.3 <1 <1
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Fig. 17. Infrared satellite image on 23 October at 08:54 UT (upper panel) and at 11:45 UT (lower panel). The locations of the sources and
zdiss for the GW withλH =148.3 km are shown using the same symbols as in Fig. 9.

and the upper panel of Fig. 13). Additionally, the GW with
λH =148.3 km was likely excited by a small convective clus-
ter (see Sect. 5.6 and Fig. 15). Such large clusters are not de-
scribed by the GW spectrum shown in Fig. 18a. In fact, it is
expected that for large clusters, the amplitudes of GWs with
λH ∼100s km andλz of order the depth of the troposphere
(i.e.∼10−20 km) would be much larger than in Fig. 18a.

For the GW withλH =64.0 km, the model amplitude is
much larger than the measured amplitude. However, this
GW was likely ducted if it was excited from a convective
source (see Sect. 5.4); therefore it is not surprising that its
measured amplitude is so different from its model ampli-

tude, because different winds result in different values ofλz

at the tropopause, thereby moving the triangle to a different
position on the GW spectrum. For example, ifλz is dou-
bled or halved, then the observed and model values would
be in good agreement. Finally, the GWs withλH =158.6
and 148.3 km haveλz<∼10 km. It is possible that the GWs
with largeλH and smallλz<∼10 km are not well represented
by this convective plume model, since it has only been suc-
cessfully tested on GWs seen in the OH airglow layer with
λH ∼20−100 km andλz∼20−40 km (Vadas et al., 2009).

We also show the GW spectrum excited from a small con-
vective cluster in Fig. 18b. This small convective cluster
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Fig. 18. GW horizontal velocity amplitudes atz=87 km in intervals of 5 m/s (solid black lines). An additional contour line at 1 m/s is also
shown. These amplitudes are the maximum wave amplitudes.(a) Single convective plume envelope that is 20 km wide, 10 km deep, and lasts
for 12 min. (b) Small convective cluster consisting of 3 of the same plumes from a), but arranged in a triangle configuration. Dash-dot pink
lines indicate the vertical group velocity,cgz, in 15 ms−1 intervals, as labeled. Dash blue lines indicate the intrinsic horizontal phase speed,
cIH , for 50, 100, and 150 ms−1, as labeled. The triangles show the observed medium-scale GWs, whereλz are calculated at the tropopause
from ray tracing through the model winds.

consists of 3 convective plumes, each of which is identi-
cal to the convective plume in Fig. 18a, but which form the
corners of a triangle with sides of 20 km (Vadas and Fritts,
2009). These plumes are in phase, moving upwards at the
same time. We see that the model amplitudes for this small
convective cluster are∼2 times larger than for the single con-
vective plume. The model amplitudes coresponding to the
observed GWs (at the location of the triangles) are shown in
the second column of Table 6.

Figure 18 shows that medium-scale GWs with
cIH >100 m/s and λz>50 km are excited from a single
convective plume envelope with a maximum amplitude of
order u′

H ≤20 m/s. Why then were these faster, medium-
scale GWs not observed during this experiment? Because
these fast GWs are steeply propagating, their convective
sources would have been very close,∼80–200 km away
from the all-sky imager. However, old cloud material (i.e.
anvils), tend to build up and move downstream with the
upper-level tropospheric winds, away from active con-
vective areas. For example, in Fig. 9, we see old cloud
material spread out around the active convective updrafts
by 100–200 km. Therefore, we hypothesize that when deep
convective sources were less than 200 km from the all-sky
imager, the large anvils that are formed from previous
convective plumes in the same area prevented these faster

and steeper GWs from being observed by the all-sky imager
due to cloudy conditions.

7 Conclusions

In this paper, we investigated the sources of the 6 medium-
scale GWs observed by Taylor et al. (2009) in the OH air-
glow layer during the SpreadFEx. We focused on medium
scale GWs, rather than small scale GWs, because small-scale
GWs tend to have smaller phase speeds, which are particu-
larly sensitive to uncertainties in the horizontal winds in the
OH layer and below; therefore, reverse ray tracing small-
scale GWs from the OH layer to the tropospause is more
difficult for source identification and quantification than re-
verse ray tracing medium-scale GWs with large horizontal
phase speeds. We note that the Taylor et al. (2009) study
is one of the first studies to observe medium-scale GWs in
the OH layer. Other recent studies to do so are Takahashi
et al. (2008) and Shiokawa et al. (2008).

Satellite images were available nearly every 30 min on 30
September and 1 October. Not surprisingly, good ray trace
“fits” were obtained on these days when the uncertainties in
the source locations and times were small. For the other days,
satellite images were only available every 3 h. Using infrared
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satellite images, we found that in late September and early
October, convection was located primarily to the west, north-
west, and southwest of Brasilia. In late October, convection
was primarily located to the northwest and west of Brasilia.
These directions correspond well with the propagation direc-
tions of the small and medium-scale GWs observed by Taylor
et al. (2009) in the OH airglow layer.

We then reverse ray traced each GW from the OH layer
back to the tropopause using zero winds and the model
winds. The temperature and wind model was based on me-
teor radar wind data, temperature and winds from balloon
soundings at lower altitudes, and temperature and winds
from the TIME-GCM. The time and range from the OH layer
to the source depended on the GW characteristics and winds.
We found that 4 of the 6 medium-scale GWs ray traced to
or very near active convective regions, as detailed below,
and were therefore likely excited from deep convection. Al-
though we attempted to pinpoint the exact convective plumes
and clusters which generated these GWs, we could only do
so for two of the GWs. For the other two GWs, we were
still able to identify the localized convective regions which
likely excited these GWs. The other 2 of the 6 GWs were
also probably excited from deep convection; however, if so,
they must have been ducted 500–700 km (Walterscheid et al.,
1999; Hecht et al., 2001). We note that the medium-scale
GWs at Cariri did not reverse ray trace to convective sources,
but rather to regions where there was strong vertical motion
of the air (Wrasse et al., 2009); therefore, the GWs observed
in the OH layer above Brasilia and Cariri appear to have dif-
ferent sources during this experiment.

We now summarize the results of our reverse ray trace
studies:

– The medium scale GW observed on the night of 30
September–1 October (withλH =145.1 km) reverse ray
traced to within 100 km of a deep convective plume at
52o W and 16.5o S at∼01:00 UT on 1 October. Accord-
ing to the ray trace results, the “best-fit” occurs if the
GW was excited propagating upwards initially through
the model winds to the OH layer.

– The medium scale GW observed on the night of 1–2
October withλH =71.4 km reverse ray traced to within
0–10 km of a deep convective plume at 52.5o W and
15o S at∼21:20 UT. According to the ray trace results,
the “best-fit” occurs if the GW was excited propagating
downwards initially, reflected off the Earth’s surface,
then propagated upwards through zero winds to the OH
layer. This is our best fit for all of the medium-scale
GWs.

– The medium scale GW observed on the night of 1–2 Oc-
tober with λH =158.6 km reverse ray traced to within
20–100 km of a convective plume or a small convec-
tive cluster located at 57−60o W and 12−15o S from

19:00–21:00 UT. Because of location and time uncer-
tainties, this GW may have been initially downward or
upward-propagating. Both the model winds and zero
winds comprise good fits.

– The medium scale GW observed on the night of 22–23
October withλH =64.0 km reverse ray traced to a loca-
tion 500–700 km short of a few deep convective plumes
(along the same propagation direction) at longitudes
of −52−54o and latitudes of−6−7o at ∼24:00 UT.
We conclude that this GW was probably ducted 500–
700 km horizontally before reaching the OH layer over
the all-sky imager, if its source was convection.

– The medium scale GW observed on the night of 23–24
October withλH =61.4 km reverse ray traced to within
50–100 km of the nearest deep convective plumes at
longitudes of−50−53o and latitudes of−8−10o at
16:00–21:00 UT. Note that at this time, there were many
deep convective plumes within this area. Because of
time and location uncertainties, this GW could have
been initially upward or downward-propagating, and
both the zero wind and model winds comprise good fits.

– The medium scale GW observed on the night of 23–
24 October withλH =148.3 km reverse ray traced to
a source location 700 km short of a small convec-
tive cluster at−1o latitude and−62.5o longitude at
∼09:00 UT. The “best-fit” model implies that the GW
was probably initially downward-propagating, reflected
off the Earth’s surface, propagated upwards through
zero winds, then was ducted 700 km before reaching the
OH layer above the all-sky imager.

We also forward ray traced the medium-scale GWs from the
OH layer into the thermosphere. We found that 2 of the
waves, the GWs withλH =61.4 and 148.3 km, did not pen-
etrate very far above the turbopause atz∼110 km. This was
not surprising, because these GWs had slow horizontal phase
speeds ofcH <30 m s−1. Although very sensitive to the cho-
sen wind model, we found that the GWs withλH =145.1
and 64 km likely did not penetrate abovez'165 km. How-
ever, we found that two of the GWs, those withλH =71.4
and 158.6 km, may have penetrated toz>∼170 km, which is
high enough to potentially seed equatorial spread F (ESF)
or plasma bubbles∼±10o from the magnetic equator, where
the field lines are lower than at the magnetic equator. Since
these waves would have reachedz∼170 km only 3−6o south
of the magnetic equator, they may not have reached a high
enough altitude at that magnetic latitude to seed ESF, how-
ever. We note that several of the medium-scale GWs iden-
tified by Takahashi et al. (2008) forward ray traced to near
the bottomside of the F layer, using a wind model similar to
that in this paper, except using the meteor radar winds at CA
only. Takahashi et al. (2008) found that the horizontal scale
of the measured GWs in the OH layer compared well with the
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inter plasma-bubble distances in the ionosphere, suggesting
a direct link between these GWs and the seeding of plasma
bubbles.

Although many of the observed medium-scale GWs do not
forward ray trace to the bottomside of the F layer, they are
still indicators that other convectively-generated GWs with
similar λH but with largerλz (which are more able to pene-
trate into the F-region (Vadas, 2007; Fritts and Vadas, 2008))
were likely excited as well (see Fig. 18). However, these
larger-λz GWs would reachz=90 km closer (horizontally) to
the source, because they have much larger intrinsic frequen-
cies (Gossard and Hooke, 1975). These GWs would there-
fore reachz=90 km at a distance 100–200 km from the deep
convective plume which excited them, whereas GWs with
smallerλz might propagate 100s to 1000 km before reaching
z=90 km. Because of the anvil clouds, which spread out hor-
izontally from previous convective updrafts, these large-λz

GWs might not be visible in the OH layer because of cloudy
conditions. Therefore, it may be difficult to observe these
medium-scale GWs with largeλz that are energetic enough
to reach the bottomside of the F layer, unless tropospheric
winds are situated so as to blow the anvil clouds away from
the imager location.

Finally, we found that the amplitudes of three of these
medium-scale GWs agree well with our convective plume
model. However, the GWs withλH >100 km andλz<15 km
do not agree well with the plume or cluster model ampli-
tudes; the model amplitudes are much smaller than the ob-
served amplitudes. This is in a region of the GW spec-
trum where there is partial cancellation of wave amplitudes
from ground reflection. Therefore, it is possible that the
GWs with largeλH and smallλz<∼15 km are not well rep-
resented by this convective plume model. Indeed, it has only
been successfully tested on GWs observed in the OH airglow
layer withλH ∼20−100 km andλz∼20−40 km (Vadas et al.,
2009).
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