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Abstract. We analyze a magnetic signature associated with
the leading edge of a bursty bulk flow observed by Cluster
at −19RE downtail on 22 August 2001. A distinct rotation
of the magnetic field was seen by all four spacecraft. This
event was previously examined by Slavin et al. (2003b) us-
ing both linear force-free modeling as well as a curlometer
technique. Extending this work, we apply here single- and
multi-spacecraft Grad-Shafranov (GS) reconstruction tech-
niques to the Cluster observations and find good evidence
that the structure encountered is indeed a magnetic flux rope
and contains helical magnetic field lines. We find that the
flux rope has a diameter of approximately 1RE , an axial field
of 26.4 nT, a velocity of≈650 km/s, a total axial current of
0.16 MA and magnetic fluxes of order 105 Wb. The field line
twist is estimated as half a turn perRE . The invariant axis
is inclined at 40◦ to the ecliptic plane and 10◦ to the GSM
equatorial plane. The flux rope has a force-free core and non-
force-free boundaries. When we compare and contrast our
results with those obtained from minimum variance, single-
spacecraft force-free fitting and curlometer techniques, we
find in general fair agreement, but also clear differences such
as a higher inclination of the axis to the ecliptic. We fur-
ther conclude that single-spacecraft methods have limitations
which should be kept in mind when applied to THEMIS ob-
servations, and that non-force-free GS and curlometer tech-
niques are to be preferred in their analysis. Some properties
we derived for this earthward– moving structure are similar
to those inferred by Lui et al. (2007), using a different ap-
proach, for a tailward-moving flux rope observed during the
expansion phase of the same substorm.
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1 Introduction

Magnetic flux ropes occur in various contexts in space plas-
mas. In the Earth’s magnetotail during the substorm expan-
sion phase they have been observed propagating both earth-
ward (“bursty bulk flow (BBF) type”) and tailward (“plas-
moid type”), as classified bySlavin et al.(2003a). In recent
years, many studies focused on the “BBF-type” (e.g.Slavin
et al., 2003b; Zong et al., 2004; Henderson et al., 2006;
Hasegawa et al., 2007; Lui et al., 2007; Walsh et al., 2007;
Zhang et al., 2007), especially since multi-point in situ mea-
surements became available in the near tail (XGSE>−25RE)
from the Cluster mission. Their importance lies as much in
their ability to transport magnetic flux, currents and plasma
from the magnetotail towards Earth, as in the fact that their
internal structure may offer valuable clues on their forma-
tion mechanism. It is the purpose of this paper to inves-
tigate the structure of a specific BBF-type flux tube using
CLUSTER observations and Grad-Shafranov reconstruction
methods and to draw conclusions on the limitations of single-
spacecraft techniques. This ia an important issue in the age
of the THEMIS mission (Angelopoulos, 2008).

A model which is widely used considers a given flux
tube as a linear force-free configuration (i.e. one satisfying
j=αB) of constant alpha and of local straight cylindrical
geometry, a solution of which was given in terms of Bessel
functions byLundquist(1950). In this model the flux rope
field winds around the axis with a field pitch which decreases
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Fig. 1. Cluster magnetic field and ion/proton data for 22 August 2001, 10:08:00–10:09:00 UT. From top to bottom: Magnetic field magnitude,
magnetic field components (GSE), proton bulk velocity (GSE), ion beta, ion density and ion temperature. Plasma parameters are from
CIS/HIA for C1 and C3, the proton velocity from HIA for C1/C3 and from CODIF for C4. The vertical lines delimit the interval 10:08:33–
10:08:44 UT used for the reconstruction.

steadily to zero on the boundary (where the field lines are
circular; e.g.Burlaga, 1988; Lepping et al., 1990). In the
magnetotail context, this solution is then fitted to in-situ mea-
surements of the magnetic field profile, consisting of a bipo-
lar Bz signature accompanied by a monopolar deflection in
By . Slavin et al.(2003a) found that about 60% of both BBF
and plasmoid-type flux ropes agreed reasonably well with the

Lundquist linear force-free model. Further, the authors sug-
gested that magnetic flux ropes arise from multiple X-line re-
connection (MRX; e.g.Schindler, 1974; Lee, 1995). In that
case the internal field is expected to have a rather smooth he-
lical structure, even though it can depart strongly from the
force-free state especially at the boundaries (Slavin et al.,
2003b; Henderson et al., 2006), due to interaction with the
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surrounding plasma. Note that the other 40% could not be
so modeled. Significantly for what follows,Lui et al. (2007)
argued that a specific plasmoid-type flux rope observed by
Cluster somewhat earlier than the event we study had a com-
plex internal field line structure and was also inconsistent
with force-free models.

A different approach for modeling flux ropes consists in
numerically integrating the Grad-Shafranov (GS) equation to
produce maps of the magnetic field and plasma pressure. The
GS equation is valid for describing time-independent and
21

2-dimensional (i.e. with an invariance direction) magnetic
structures in space plasmas. Originally introduced for studies
of the magnetopause during traversals of this boundary (Hau
and Sonnerup, 1999), it has been applied to flux ropes such
as magnetic clouds (e.g.Hu and Sonnerup, 2002; Hu et al.,
2005; Möstl et al., 2008, 2009), dayside flux transfer events
(Sonnerup et al., 2004; Hasegawa et al., 2006), and magnetic
flux ropes and field aligned currents associated with BBFs in
the magnetotail (Hasegawa et al., 2007; Zhang et al., 2007;
Snekvik et al., 2007). The technique does not assume force-
free conditions nor does it prescribe a geometry (e.g. circular
field lines), and thus relaxes two important constraints of the
classical fitting technique, while invariance along a particu-
lar direction (the flux rope axis) is still assumed and tested
a posteriori. Additionally, a multi-spacecraft GS technique
has been developed (Sonnerup et al., 2004; Hasegawa et al.,
2005). It has several advantages over the single-spacecraft
GS technique: (1) information from multiple sites is used
to assess the validity of the integrated magnetic field maps,
(2) a combined magnetic field map is created which best fits
all available observations, and (3) inertial effects are incorpo-
rated in a low order approximation (Hasegawa et al., 2005).
What is not implemented at present but may be of importance
in the magnetotail are effects arising from expansion, Hall-
MHD, temperature anisotropy, and strong field aligned flows;
seeSonnerup et al.(2006) andSonnerup and Teh(2008) for
recent developments.

In this paper we apply both, single (in the version ofHu
and Sonnerup, 2002) and multi-spacecraft GS reconstruction
methods (as inSonnerup et al., 2004), to Cluster observa-
tions of a magnetic structure with aBz south-to-north (GSE,
i.e. BBF-type) bipolar signature, accompanied by mostly
monopolar variations inBx andBy . It was encountered at
XGSE≈−19RE on 22 August 2001 10:08:30 UT during a
substorm expansion phase. For further discussion on the as-
sociated substorm seeLui et al. (2006). As noted, a different
tailward propagating plasmoid observed around 09:50 UT
during the same substorm is discussed byLui et al. (2007).
We will recover in detail the geometry, size and orientation
and calculate magnetic fluxes and currents within the rope.
We shall then compare our results with single-spacecraft
methods, such as minimum variance analysis (Sonnerup and
Cahill, 1967), force-free fitting (Lepping et al., 1990) and
curlometer techniques (e.g.Robert et al., 1998). (The lat-
ter two methods have already been applied to this event by

Slavin et al.(2003b).) These questions are posed with an eye
to future THEMIS applications: How robust are the results
provided by these widely used methods? For the interpre-
tation of THEMIS observations it is essential to be aware
of the limitations of single-spacecraft compared to multi-
spacecraft-methods, as the time evolution of the structures
is essentially sampled in a single-spacecraft manner at vari-
ous distances downtail by the spacecraft on this mission. In
this respect it might also be expected that static models are
increasingly unreliable the closer the flux rope is observed to
the reconnection site because of a presumably more dynamic
environment.

2 Data

On 22 August 2001 the Cluster mean position in the inter-
val 10:08:00–10:09:00 UT was[−18.8, −3.3, −1.0] RE in
GSE coordinates, with an average spacecraft separation of
1711 km. In Fig.1 an overview of magnetic field and plasma
data is given, with data plotted at time resolutions of 0.0450 s
and 4.021 s, respectively. Displayed are the FGM (Balogh
et al., 2001) and CIS (Rème et al., 2001) measurements of
magnetic field and plasma parameters. For C1 and C3, we
use data from CIS/HIA for ions without mass discrimina-
tion, and we also plot proton bulk velocities for C4 from
CIS/CODIF. For C2 no plasma bulk parameters were avail-
able. The interval used for GS reconstruction is delimited by
the two solid vertical lines. During this interval, the mag-
netic field components are quite similar at C1, C3 and C4,
with a south-to-north bipolar variation inBz and a nega-
tive peak inBx andBy , with a peak magnetic field strength
Bmax,134=30.5−32.4 nT. As noted bySlavin et al.(2003b),
the delay of the magnetic signatures and the plasma velocity
imply that the rope is being convected with the flow. The
configuration of the Cluster spacecraft in the GSE-YZ and
XY planes is indicated in Fig.3.

In slight contrast, at C2, displaced on the duskward side
with respect to the others (Fig.3, bottom panel),Bx andBz

exhibit a bipolar variation, the peak magnetic field strength
is clearly lower (Bmax,2=25.8 nT), and the profile is more
flat. In summary, all four Cluster spacecraft encountered a
rotation of the magnetic field vector qualitatively typical of
a left-handed helical magnetic flux rope, with an axial field
roughly pointing toward dawn (By<0). According toHughes
and Sibeck(1987) this is consistent with the almost contin-
uous negativeBy (GSM) polarity of the interplanetary mag-
netic field (IMF) observed by ACE (not shown) from 08:35
to 09:45 UT. During the encounter, the ionβ measured at C1
and C3 drops from≈1 (typical of the central plasma sheet)
to ≈0.2−0.3.

At XGSE=−19RE , the earthward propagating flux rope
might also be encountered rather close to the reconnection
site which statistical studies estimate asXGSE≈−20±5RE

(Miyashita et al., 2009, and references therein). Because of
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continuously enhanced solar wind energy input for 1 1/2 h
prior to the encounter (on average IMFBz≈−5 nT, solar
wind velocityV ≈570 km/s) the reconnection site can be ex-
pected to be closer to Earth (Nagai et al., 2005).

3 Application of methods and results

3.1 Single-spacecraft GS technique

The single-spacecraft version of the Grad-Shafranov tech-
nique (Hau and Sonnerup, 1999; Hu and Sonnerup, 2002)
(GS) is applied to the C3 spacecraft data acquired in the
interval 10:08:33–10:08:44 UT (vertical lines in Fig.1), be-
cause of complete coverage of the necessary magnetic field
and plasma data (proton bulk velocityV , ion number den-
sity Ni , ion temperatureTi , ion pressurep=NikTi); the re-
sults for C1 are similar. A deHoffmann-Teller (HT) analysis
(e.g.Khrabrov and Sonnerup, 1998) is applied to the data,
which searches for the frame of reference where the convec-
tion electric fieldE=(V −V HT )×B≈0 and the flow is field-
aligned. Due to the short interval (12 s) only 3 data points
can be used, linearly interpolated to the magnetic field data
resolution, yieldingV HT =[799.0, 178.1, 15.4] km/s (GSE),
with a correlation coefficient betweenV HT ×B andV ×B of
ccHT =0.986. While keeping in mind that the short duration
and the few data points makeVHT rather uncertain, we note
that VHT seems to have a significant cross tail component
toward dusk besides the main component along GSE +X. An
initial invariant axis is obtained through minimum variance
analysis (MVA), yielding a flux rope axis as the intermedi-
ate variance direction ofθ=36◦ (the inclination to the eclip-
tic, from −90◦ to +90◦) andφ=237◦ (measured from GSE
+X (0◦) toward GSE +Y (90◦)). The ratio of intermediate-
to-minimum eigenvalues was found to beλ2/λ3=10 indicat-
ing a robust determination (Lepping and Behannon, 1980).
Interestingly, applying MVA using normalized unit vectors
(MVU) gives (θ=3◦, φ=257◦) with λ2/λ3=3.4.

The GS invariance direction̂z′ is then calculated by mini-
mizing the scatter of the pressure

Pt (A) = B2
z /2µ0 + p (1)

i.e. locating wherePt (A) is closest to being single-
valued. HereA(x, y) is the vector potential and the
magnetic field is represented in the integration domain
by B=[∂A(x, y)/∂y, −∂A(x, y)/∂x, Bz(x, y)] (Hau and
Sonnerup, 1999). The result is (θ=42±5◦, φ=259±9◦).
(For a determination of the error bars seeHu et al.,
2004). This inclination is considerably higher than the
one obtained from MVU but quite similar to MVA.
The reconstruction coordinate system (for details seeHu
and Sonnerup, 2002) is: x̂′

=[−0.976, −0.014, −0.216],
ŷ′

=[0.167, −0.687, −0.708], ẑ′
=[−0.138, −0.727, 0.672]

(the flux rope axis) in GSE.

We now obtain maps of the field lines. Only those
field lines which are crossed twice by a spacecraft and
for which Pt (A) is single-valued can be reconstructed re-
liably. In Fig. 2a these are separated by a vertical line at
Ab=−0.009 T m from the rest of the observations. The func-
tion Pt (A) is fitted by a polynomial with exponential tails
in regions of the integration domain which are not covered
by observations. The residueRf =0.06 (Hu et al., 2004) is
found to be low, indicating a good quality fit, andPt (A) is
close to being single-valued. The Grad-Shafranov equation

∂2A

∂x2
+

∂2A

∂y2
= −µ0

dPt (A)

dA
(2)

is then numerically solved to produce maps ofA(x, y) and
Bz(A(x, y, )). This map is shown in Fig. 2c. The black con-
tour lines represent isocontours ofA and thus give the field
in the transverse (x̂′-ŷ′) plane. The strength of the longitu-
dinal (toroidal) component of the field,Bz, is color-coded
according to the color bar on the right. The magnetic field
components by all 4 Cluster spacecraft are plotted as arrows
projected into the reconstruction̂x′

−ŷ′ plane, i.e. the plane
perpendicular to the invariance directionsẑ′. Note that posi-
tive ŷ′ points south of the ecliptic, so that C2 (the lowest tra-
jectory) is situated to the north of the ecliptic. For every s/c,
the plotted arrows are time-shifted to C3 to include the effect
that the rectangular integration domain moves with constant
V HT over the Cluster tetrahedron (seeMöstl et al., 2009).

The maximum separation alonĝy′ is between C2 and
C4 1754 km, see Fig. 2c. For̂x′, this maximum distance
is between C1 and C3−1715 km, i.e. approximately anti-
sunward. Inẑ′ direction, C4 is 1904 km (pointing out of
the x̂′–ŷ′ plane) away from C3, see also top panel in Fig.3.
We thus infer that the flux rope axis orientation remains at
least the same for 1900 km because qualitatively the mag-
netic field rotation is similar at C3 and C4. C2 is−1676 km
away from C3 inŷ′ and has a much smaller impact parame-
ter (i.e. the minimum distance from the axis) than C1, C3 and
C4. Comparing the map reconstructed from the C3 observa-
tions at the location of C2 with the actual observations by C2
shows that the assumption of 21

2-dimensionality is approxi-
mately fulfilled and that CLUSTER encountered a magnetic
configuration possessing an invariant axis, i.e. a flux rope.
This will be further discussed in Sect. 3.4. It is intriguing that
C2 measures a lower total field strength and slightly differ-
ent field rotations (especially in the front part) than the other
three spacecraft while single-spacecraft GS predicts that C2
should have a very low impact parameter, i.e. that C2 should
cross the flux rope very close to its axis. Further, the lower
total field strength at C2 is opposite to what is expected from
the classic force-free (FF) model.

3.2 Multi-spacecraft GS technique

The multi-spacecraft extension to the GS technique
(Hasegawa et al., 2005), which we call GS2, is applied to the
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Fig. 2. (a)Single-s/c GS:Pt (A) plot for C3 with the 2nd order polynomial fitting function (solid black) with exponential tails (dashed black)
used for the right hand side of the GS Eq. (2). Circles and stars represent inbound and outbound measurements, respectively.(b) Multi-s/c
GS2: CombinedPt (A) plot (red C3, blue C2).(c) GS: Magnetic field map integrated from C3 observations taken as initial values.Bz is
color coded, pointing out of the paper, and maximizes at the white dot. Black contours are magnetic field lines in the paper plane, the white
contour corresponds to the vertical line (Ab) in Fig. 2a. Arrows indicate observations along each spacecraft trajectory. From top to bottom:
C1-C3-C4-C2. The structure propagates toward Earth to the left, positiveŷ′ points south of the ecliptic (see also Fig.3). Grid size: 15×91.
(d) GS2: Combined magnetic field map from C2 and C3. The arrows are again magnetic field components in thex̂′

−ŷ′ (paper) plane along
the trajectories of C3 (upper) and C2 (lower). Also note the same scale for the color codedBz as in Fig. 2c. Grid size: 15×113.

C2 and C3 measurements. As C1 and C4 are very close to C3
in theŷ′-direction and reconstruction from C1 (not shown) is
practically identical to the one from C3, we calculate a com-
bined magnetic field map, ingesting the observations from
C2 and C3. Using the most widely separated spacecraft in
thex̂′

− ŷ′ plane is the best way to obtain the most complete
view of the flux rope cross section with the data to hand. Be-
cause plasma observations are not available from C2, we es-
timate the plasma pressure at C2 with the method introduced
by Hasegawa et al.(2005) using electron density measure-
ments from the EFW instrument (Pedersen et al., 2001). A
combined deHoffmann-Teller analysis for C1 and C3 (now
with 6 data points) leads toVHT =[668.4, 143, −43.7] km/s

(GSE), with a somewhat lowerccHT =0.9576. For the subse-
quent analysis the data interval on C2 was time-shifted again
to C3 because the rectangular integration box moves with
constantV HT from C3 to C2.

Figure 2b shows a combinedPt (A) plot fitted with a 2nd
order polynomial (solid line), with a fitting residueRf =0.12.
From this a combined magnetic field map was created from
the individual field maps for C2 and C3 according toSon-
nerup et al.(2004), with a Gaussian window function width
of 25% of the reconstruction domain. By optimizing the
correlation coefficients of predicted magnetic field compo-
nents by the combined map with the actual observations
to cc=0.91 we find an invariant axis orientationθ=40◦
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Fig. 3. Combined magnetic field map from C2 and C3 (Fig. 2d),
drawn as left-handed spiral field lines in 3-D and placed in a GSE
coordinate system. Top: View in the GSE YZ-plane looking toward
Earth. The positions of the Cluster tetrahedron is indicated with
C1 being the spacecraft displaced most Earthward, i.e. in the plane
of the paper. Along the red (almost straight) field line the axial
field direction is indicated and how the other three field lines spiral
around the axis in a left-handed sense. Bottom: The same as above
seen in the GSE XY-plane looking toward ecliptic South.

andφ=265◦, in GSE, withẑ=[−0.0668, −0.7631, 0.6428]
(GSE), which is quite similar to the one inferred from GS.
Figure 2d shows the integrated magnetic field map in a plane
perpendicular toẑ′. Now the rope is more extended in
−ŷ′ and has an aspect ratio of about 1:1.5, elongated ap-
proximately along the direction of propagation. It resem-
bles a “raindrop” shape, i.e. flattened in front and elongated
at the rear, though this is less here than in Fig. 2c. The
higher residue than for the one computed with single-s/c GS
and the lower correlation compared to another eventcc (c.f.
Hasegawa et al., 2007) indicates that the combined obser-
vations by C2 and C3 are deviating somewhat from the GS
model assumptions.

3.3 Field line turns per RE ; force-free test

Figure3 shows 3-D views of the flux rope’s spiral magnetic
field lines placed in the GSE coordinate system, with the
Cluster tetrahedron indicated. To obtain this, we assumed
invariance for 2RE and stacked 20 maps similar to that of
Fig. 2d alongẑ′. In the resulting data cube four field lines
were traced, from the axis (red, almost straight field line) to
the outer boundary (pink field line, equivalent toAb). The
number of turnsn these four field lines make isn=0.46−0.5
per RE . Thus the flux rope has field lines twisted by ap-
proximately the same amount irrespective of radial distance
from the axis. For a lengthL≈1.5−3RE alongẑ′, the typical
scale size of BBF’s (Nakamura et al., 2004), the full number
of turns,N , is 0.69−1.5 and thus the flux rope is composed
of only weakly wound field lines but could still eventually go
kink unstable (e.g.Hood and Priest, 1981; McClymont and
Craig, 1987). The close-to-uniform twist is again at vari-
ance with the constant-α force-free model but resembles an-
other type of flux rope, namely, a nonlinear (α 6=const) but
still force-free “Gold-Hoyle” tube (e.g.Priest, 1982), such as
has been reported in the solar wind (Farrugia et al., 1999).
However, below we will argue that a significant part of the
flux rope under study here is not force-free.

To investigate the latter, we also looked where in the com-
bined magnetic field map (Fig. 2d)J ‖ B. To this end, Fig.4
shows the ratio of the perpendicular to the parallel currents
%=|J⊥|/|J‖| for the combined magnetic field map. While
the core of the rope is force-free, arbitrarily defined as%<0.3
(inside the white dashed contour), and has an approximately
round shape, the boundaries and in particular the elongated
back part is dominated by perpendicular currents. About 1/3
of the area inside the boundaryAb (the white solid contour)
is not force-free (%>0.3). With this we intend only to show
a general qualitative trend: to be able to make a strong con-
clusion about the detailed force-free state of the flux rope, a
knowledge of the small-scale features ofJ andB would be
necessary, while the GS technique is designed to recover a
smoothed image (in 212 D) of a given magnetic structure.

3.4 Further support for the flux rope interpretation

Recently, 3-D MHD simulations of tail reconnection byShi-
rataka et al.(2006) have revealed that similar signatures in
magnetic field, plasma density and temperature usually in-
terpreted as helical magnetic flux ropes can also be pro-
duced by 3-D guide field reconnection jets at a single X-
line. No helical field lines exist in this simulation. Never-
theless,Hasegawa et al.(2007) have reconstructed a helical
flux rope from these simulated data with the GS method, con-
cluding that it is impossible to deduce the magnetic topology
from the GS maps alone.Hasegawa et al.(2007) have pre-
sented guidelines in interpretation of the GS results in or-
der to discriminate between flux ropes and reconnection jets,
and applying these, we find further support for the flux rope
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Table 1. Results of the multi-spacecraft Grad-Shafranov recon-
struction (GS2) for the CLUSTER flux rope on 22 August 2001
10:08:33–10:08:45 UT. Minimum variance analysis (MVA) and sin-
gle s/c GS was carried out for C3, and force-free fitting (FF) re-
sults were obtained bySlavin et al.(2003b). For comparison, the
deHoffmann-Teller analysis was done independently for C1, C3 as
well for the combined set (C1+C3). Further,H the handedness,D
is the diameter,Bz the central axial field strength,jz the central cur-
rent density,J the full axial current,8t the axial flux and8p the
poloidal flux forL=1.5−3RE . J , 8t and8p were integrated over
the area inside the white contour (<Ab) in Fig. 2d.

start, UT 10:08:33
duration, s 11

C1: VHT , km/s (571.6,94.9,−143.0)
C3: VHT , km/s (799.0, 178.1, 15.4)

C1+C3:VHT , km/s (668.4, 143,−43.7)
θ , deg (GS, FF, MVA) 40 (42±5, −12 to 17, 36)
φ, deg (GS, FF, MVA) 265 (259±9, 200 to 270, 237)

H (GS, FF) L (L,L)
D, RE (FF) 1 (0.96-1.04)

Bz, nT (GS, FF) 26.4 (31.7, 28.9–38.9)
jz, nA/m2 (GS,FF) 9 (12,15–19)

J , (GS) MA 0.156 (0.144)
8t , 105 Wb 1.9
8p, 105 Wb 2.25–4.5

interpretation reached above. The following features support
the flux rope interpretation: (1) The plasma pressure is not
enhanced in the front part of the tube (see the profiles forNi

andTi in Fig. 1), (2) the independent deHoffmann-Teller ve-
locities derived from C1 and C3 are roughly consistent in di-
rection and magnitude (see Table1), (3) transverse magnetic
field lines (in thex̂′–ŷ′ plane) appear elongated in the direc-
tion of motion (Fig. 2c and d), and (4) the functionsPt (A)

(Fig. 2a, b) andBz(A) (not shown) appear approximately as
single-valued.

3.5 Comparison with other methods

We now compare the results of various techniques applied to
the same flux rope. Table1 shows the results from the meth-
ods of (1) minimum variance analysis (MVA) applied to the
C3 measurements, (2) force-free fitting to every spacecraft
individually by Slavin et al.(2003b), (3) single-spacecraft
GS to C3 and (4) GS2 applied to the combined set of C2 and
C3 observations.

It follows from Table1 that there is some agreement on ba-
sic parameters such as handedness and size. The biggest dif-
ferences are in the inclination (MVA, GS, GS2:≈40◦ (GSE);
FF and MVU: ≈0◦ (GSE)). The≈40◦ inclination in GSE
corresponds to≈10◦ in GSM, so that the flux rope axis lies
almost in the GSM equatorial plane. Due to the difference in
axis orientation the impact parameters from force-free fitting
also differ –Slavin et al.(2003b) found C1, C2 and C4 to

j
perp

 / j
par

     C2+C3     22/08/2001 10:08:33−45 UT

x´ (km)

y´
 (

km
)

 

 

j
perp

 / j
par0 1000 2000 3000 4000 5000 6000 7000 8000

−2000

−1000

0

1000

2000

3000

4000

0

0.5

1

1.5

2

2.5

3

Fig. 4. The ratio of the perpendicular to the parallel currents
%=|J⊥|/|J‖| (color coded), showing the force-free core of the flux
rope wherer≈0. The dotted white contour indicates the level where
%=0.3. Solid black contours are field lines in thex̂′–ŷ′ plane. The
solid white contour corresponds to the boundaryAb, and white hor-
izontal lines are trajectories (upper C3, lower C2).

pass north (i.e. in the direction of+ZGSM) and C3 south of
the axis, whereas the GS maps show that C2 crosses north
of the axis at a different impact parameter and C1, C3 and
C4 cross south of the axis. This is more consistent with the
magnetic field observations (Fig.1; note that MVA, MVU
and curlometer do not yield impact parameters). Also the
axial field strengthBz deduced by GS2 is lower by one-third
and the central axial current densityjz is roughly half the val-
ues inferred from FF. Further, single-s/c GS seems to over-
estimateBz and jz if the distance from the axis turns out
to be large. Additionally the combined magnetic field map
is more extended perpendicular to the direction of motion
than the single-s/c map. We think that the discrepancies be-
tween FF and GS, GS2 likely stem from the non-force-free
treatment by the GS technique, which deduces the orientation
not only from the magnetic field profile but includes plasma
pressure in its determination as well. Thus single-spacecraft
techniques should be used with these caveats in mind when
applied to THEMIS data, where an event is seen successively
at individual spacecraft, located in a “pearl” configuration.

Additionally, by considering curlometer results for the cur-
rent density perpendicular to local magnetic field,Slavin
et al.(2003b) have found deviations from the force-free state
which were stronger in the front part than in the rear part.
Indeed we can confirm this statement by looking at the tra-
jectory of C3 (close to C1 and C4) in Fig.4, which shows a
force-free back and non-force-free front part; only for C2 is
it the reverse.Slavin et al.(2003b) attributed these deviations
from the force-free state to the fact that the structure runs into
denser plasma as it propagates earthwards. This compression
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causes an asymmetry in the magnetic field profile such that
the transverse magnetic field (B ′

x andB ′
y) is stronger in the

front part than in the back. Such an effect is evident espe-
cially in the C2 magnetic field observations made closer to
the rope’s core (the lowest trajectory in Fig. 2c and d). The
same asymmetry is also seen in the field maps generated by
Hasegawa et al.(2007) andZhang et al.(2007) for two other
events.

A reason for the non-force-free state could be that the flux
rope was encountered in a very early stage in its evolution
and it has not yet had time to relax to a minimum energy
(force-free) configuration. It can thus be expected in this
case that the non-force-free curlometer and GS techniques
yield more accurate results, with the drawback that curlome-
ter does not yield impact parameters and a map of the cross-
section compared to the GS techniques.

4 Summary and conclusions

In this paper we reconstructed a magnetic structure observed
by Cluster atXGSE=−19RE during the expansion phase
of a substorm. Its internal structure was composed of heli-
cal magnetic field lines, with significant deviations from the
Lundquist linear force-free model. The field lines were esti-
mated to wind around the axis with about half a turn perRE .
Spacecraft C2, crossing closer to the flux rope center than the
other three spacecraft, observed a lower total magnetic field
strength closer to the core, which is at variance with analyti-
cal models in current use. We also found one third of its cross
section to be non-force-free: While the core was approxi-
mately force-free, the boundary regions were not. In using
the GS methods and minimum variance analysis we infer that
the flux rope originated from an only slightly tilted current
sheet (+10◦ to the GSM equatorial plane), whereas minimum
variance analysis using normalized vectors and force-free fit-
ting yielded a stronger inclination (−30◦). The orientation
of the current sheet tilt (+10◦) towards dusk, such that the
duskside part of the northern lobe is below the geomagnetic
equator, is consistent with observed negative IMFBy and the
left-handed chirality of the flux rope. The flux rope carries
earthward a total axial current of 0.16 MA which is directed
opposite to the axial field since the flux rope is left-handed.
In summary, the rope possesses a helical structure, consistent
with its having originated from multiple X-line reconnection
(Slavin et al., 2003a,b). It also became clear during this study
that this event turns out not to be one of the best suited for
GS reconstruction: There are only a few plasma data points
due to the high velocity, which results in a very short event
duration, the pressure at C2 had to be estimated, and dynamic
effects are not insignificant. However, this illustrates the ap-
plication of the static technique facing these problems. We
have still found a good qualitative agreement between the re-
construction and multi-spacecraft observations and we think
that the derived flux rope parameters are credible.

Accordingly, we speculate that, due to the enhanced so-
lar wind energy input and the encounter atXGSE=−19RE ,
an observation quite close to the reconnection site is likely;
this is also supported by its high velocity (≈600−700 km/s)
and strong axial field strength (>25 nT) in the context of
other events studied byHasegawa et al.(2007) and Zhang
et al.(2007). In this case non-force-free techniques are to be
preferred, even though they can yield some error for higher
impact parameters if used solely in single-spacecraft fash-
ion. The single-spacecraft GS method overestimated the ax-
ial field strength and axial current by roughly 25% compared
to the multi-spacecraft technique (GS2). Thus we corrobo-
rate the conclusions ofSlavin et al.(2003b) who noted short-
comings of single-spacecraft methods and violation of the
force-free condition. To this we have added essential el-
ements and techniques for the analysis of magnetotail flux
ropes, which hold promise for future work.

It is interesting to note that the flux ropes’ poloidal flux
per unit length,≈0.02 T m, is in the same order as the recon-
nected flux inferred from a time-dependent Petschek-type re-
connection model (e.g.Biernat et al., 1987; Semenov et al.,
2005; Ivanova et al., 2007; Kiehas et al., 2008) for different
events. From this we conclude that approaches quite distinct
from one another (see Fig. 1 inSemenov et al., 2005) may
complement each other in future studies to infer properties
of reconnection in the magnetotail.

An earlier flux-rope traveling tailward during the same
substorm expansion phase (around 09:50 UT) was exten-
sively discussed byLui et al. (2007). They discovered an
irregular magnetic field structure in its inner core which indi-
cated significant deviations from the expected helical nature
of magnetic field lines in our usual ideas of a flux rope. In
particular they found that the electric field and current den-
sity directions reversed in going from the leading to the trail-
ing edge. Its size was estimated as≈2RE and the total cur-
rent as 0.8 MA. They evaluated the Lorentz-force and found
it to be non-zero, implying also that the rope was not force-
free. These results, derived for a different flux rope and us-
ing different techniques (e.g. curlometer) have many features
which we reproduce in a different form and using a differ-
ent methodology. The two examples together indicate that
the features first shown byLui et al. (2007) and derived here
also may be quite common in magnetotail flux-ropes. This is
an issue worth pursuing.
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