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Abstract. This paper attempts to describe the search for thel Introduction
parameter(s) to represent solar wind effects in Global Posi-

tioning System total electron content (GPS TEC) modelling The solar wind-magnetosphere-ionosphere (SW-MAG-ION)
using the technique of neural networks (NNs). A study is system is not an easy phenomenon to breakdown in order
carried out by including solar wind velocity{,,), proton  to deal with the respective physical mechanisms responsi-
number density/,) and theB. component of the interplan-  ple for the physics and chemistry describing the behaviour
etary magnetic field (IMFB;) obtained from the Advanced of different constituent ions and molecules that contribute
Composition Explorer (ACE) satellite as separate inputs totg the changes of ionospheric parameters. According to
the NN each along with day number of the year (DN), hour | yon (2000, the SW-MAG-ION form a single system that
(HR), a 4-month running mean of the daily sunspot numbergyes its existence to the energy and momentum transfer
(R4) and the running mean of the previous eight 3-hourlyfrom the solar wind to the ionosphere through the magne-
magnetic A index values (A8). Hourly GPS TEC values de- tosphere. Among the ionospheric parameters influenced by
rived from a dual frequency receiver located at Sutherlandhjs transfer of energy is the total electron content (TEC) es-
(32.38' S, 20.8L E), South Africa for 8 years (2000-2007) pecially during geomagnetic storms. One of the first exper-
have been used to train the Elman neural network (ENN) angmental evidence between the solar wind and variations in
the result has been used to predict TEC variations for a GPQ|ectron content was reported Bethia et al(1978 where
station located at Cape Town (33?95, 18.47 E). Quantita-  an inverse relationship between plasmaspheric TEC and so-
tive results indicate that each of the parameters consideregyy wind velocity was observed during the pre-storm and
may have some degree of influence on GPS TEC at certaigtorm conditions. A more recent study pointed out that sep-
periods although a decrease in prediction accuracy is also olyrating agents responsible for ionospheric disturbances es-
served for some parameters for different days and seasonpecially during magnetically disturbed conditions is com-
It is also evident that there is still a difficulty in predicting plicated due to the complexity of the correlation between
TEC values during disturbed conditions. The improvementsihe solar wind dynamics and ionospheric variatidBiash
and degradation in prediction accuracies are both close to thgt a1, 2008. Biktash et al(2008 showed that the solar wind
benchmark values which lends weight to the belief that di'plays an important role in controlling the equatorial iono-
urnal, seasonal, solar and magnetic variabilities may be th%phere during geomagnetic storms by explaining the BAF
major determinants of TEC variability. effects on ionospheric parameters. While most works con-
sidered the study of ionospheric behaviour with respect to
Keywords. lonosphere (Mid-latitude ionosphere; Modeling solar wind dynamics before, during and after storm condi-
and forecasting; Instruments and techniques) tions (e.g.Meza et al. 2005 Fedrizzi et al. 2005 Biktash
et al, 2008 Li et al., 2008, this paper attempts to find a
guantitative relationship between solar wind and TEC vari-
ability through modelling and taking into account both quiet
and disturbed circumstances over a relatively long period of
time. Like other ionospheric parameters, TEC varies non-
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Fig. 1. An Elman neural network structure having one input, one hidden and one output layers.
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Fig. 2. A flow diagram illustrating the procedure followed during the modelling of TEC undertaken in this study.

preferable to resort to empirical modelling. In this regard, casting and now casting is very beneficial for applications
given enough historic data describing the variational patterrinvolving long range communications, GPS surveying, nav-
of a certain physical quantity, neural networks (NNs) haveigation and other space weather related activiti®ifkov
proved to be relatively efficient in estimations or predic- et al, 2001 Tulunay et al.2006. According to the knowl-
tions involving non-linear approximations particularly TEC edge of the authors, no published work is currently available
in terms of physical and geophysical parameteleriandez-  so far that quantifies the solar wind effects on GPS TEC over
Pajares et 811997 Tulunay et al.2006 Habarulema et gl.  the African region. The attempt undertakengbarulema
2007, 2009. The understanding of TEC variability, its fore- (2007 on a small database over the Square Kilometer Array
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Fig. 3. Comparison between hourly GPS TEC and the corresponding predictioag fo€S ), (b) 7' (Sp, B;), (¢) T (Sp, Np) and(d) T(Sp,
Vsw); for day 58 in 2005.

(SKA) Hub location (3071° S, 213%° E), South Africa at  Fedrizzi et al, 2005 and will not be repeated here. It is how-
10:00 UT showed that a parameter representing solar wineéver worth mentioning that the TEC data used in this study
could be an additional input for the NN to learn and gener-were derived using the Adjusted Spherical Harmonic Analy-
alise TEC patternsHabarulemg2007) consideredv,,, and sis (ASHA) algorithm and its details can be founddpper-

N, (since electron number density was not available at thatnan et al(2007) andOppermar(2007). This paper presents
time) as separate inputs to the NN and quantification resultsesults obtained by predicting GPS TEC as a function of sea-
using the root mean square error (RMSE) method were gensonal variation, diurnal variation, magnetic activity, solar ac-
erally inconclusive. This work is a more comprehensive ex-tivity and the parameters representing the solar wind. GPS
tension in a sense that it also quantitatively investigates th&'EC values predicted using the first four parameters act as
variations of IMFB, with TEC fluctuations. Space weather a benchmark while determining the solar wind parameter ef-
forecasts and correlation studies between solar wind, magfects on TEC. The seasonal and diurnal variations are rep-
netosphere and geomagnetic field measurements have beessented by day number (DN) and hour (HR), respectively.
performed with NNs\WWu and Lundstedtl997 Weigel et al, The 4-month running mean of daily sunspot number (R4)
2002 2003 Vandeqgriff et al, 2005 Lundestedt2006. Van- represents solar activity while the magnetic activity is rep-
degriff et al.(2005 used NNs to demonstrate that they were resented by the running mean of the previous eight 3-hourly
capable of predicting the arrival of interplanetary shocks onmagnetic A index values (A8). In this paper, the function
the Earth.Weigel et al.(2002 2003 also used NNs to map 7T(S,) is defined to represent predicted TEC as a function of
solar wind measurements to the changes in ground magnetibN, HR, A8 and R4 i.eT (S,)=T(DN, HR, A8, R4) so that
field levels and their predictability with time. These authors T'(S,, B;), T(S,, Vyw) andT(S,, N,) represent predicted
demonstrated that the solar wind and rate of change of geTEC values after separately addiBg, V;.,, N, respectively
omagnetic field are related and have a strong dependande S,. The prediction was undertaken for prestorm, storm
on local time and latitude. Enough literature, the underlyingand post storm days to assess the performance of the NN
principles involved and assumptions made about the derivamodel during geomagnetic disturbed conditions (6—10 and
tion of TEC from GPS data are available (e.gngley, 200Q 14-18 May 2005). The overall discussion in this paper tried
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Fig. 4. Similar to Fig. 3, for day 104 in 2005.

to answer the question “If the solar wind has an influencewhereM, represents missing dataW,, (X ;j=1), N, (X;=2)
on TEC fluctuations, should it be taken into account alongandB; (X ;_3),
with other standard parameters during TEC predictability ori=1, 2,...,Ng4, with N; being the total number of days for a
modelling?” given month.

It should be noted that the most significant amount of miss-
ing data was found in th&,, parameter followed by, and
finally B,. The ACE satellite is roughly located at the L1

The data used for th&,, N, and the IMF B, parame- point (a point where the gravitational attraction on the satel-
Sws )4 Z

ter recorded by the Advanced Composition Explorer (ACE) lite from the Sun and the Earth cancel out),, Whigh i; at a dis-
satellite were downloaded frohttp://cdaweb.gsfc.nasa.gov/ @nce of more than 20R; (R is the Earth’s radius in km)

cdaweb/spphys! GPS TEC data were derived from the from the Earth’s surface, making it relatively more steady
dual frequency receivers located at Sutherland (3238 with respect to both the Sun and the Earth. The communica-
20.8F E) and Cape Town (33.9%, 18.47 E) using the tion time between the ACE satellite and the Earth is assumed

ASHA algorithm which makes use of the mapping function {© P& small and is hence ignored/gigel et al, 2002 2003
that assumes the ionosphere to be a single layer of heigturing the ENN modelling.

350km Opperman et al.2007). The availability of GPS

TEC data was taken as a reference point for the consideration

of solar wind data. The database contained periods with GPS Recurrent networks, data processing and NN training
TEC data but without eitheV,,, N, or IMF B, data. This

discontinuity in the ACE data was catered for, by replacing3-1 Recurrent networks

these days with the monthly mean values of days for which

data was available according to the following equation: A NN is a powerful tool that can be used to perform the
tasks of learning and generalising the variational behaviours

and patterns of parameters that exhibit non-linear character-
istics through the input-output mapping process. NNs have

2 Data sources

1 Ja

=—) Xj=123

N (1)

My
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Fig. 5. Similar to Fig. 3, for day 185 in 2005.

been widely used in many applications that deal with non-therefore the number of hidden neurons or nodes is equal
linear approximations. A number of textbooks (eBishop to the number of context units in the copy laybtara and
1995 Haykin, 1994 Fausett 1994 and published papers Marabitg 2005. Figure 1 shows an example of a simplified
(e.g. Weigel et al, 2002 Marra and Marabitp2005 Tulu- structure of the ENN having one input, hidden and output
nay et al, 2006 Vandegriff et al, 2005 Habarulema et gl.  layers. The mathematical computations are not represented
2007, etc.) elaborate the effectiveness and procedure of usfor clarity and simplicity. The output for single hidden lay-
ing this technique in empirical modelling. There are var- ered ENN, withn input units,» hidden units and one output
ious ways and algorithms available for implementing NNs unit can be expressed in terms of the activation function and
(Haykin, 1994 Bishop 1995. This work uses one form of asociated weights along with the corresponding biases at dif-
recurrent networks known as Elman networks which handlederent times in an iterative proced®/( and LundstedtL997,
function learning based on a combination of current inputBodén 2002 as follows;

parameters at any time and a series of previously learned pa-

rameters with the corresponding outputs of the entire net- n m

work connection Elman 1990. One of the major differ- X, () = f (Z vk (1) + Z”thh =1+ bj)
ences between ordinary feed forward NNs and recurrent El- k=1 h=1
man neural networks (ENNSs) is that the latter has a copy
layer of the hidden neuronsiéykin, 1994. The functional
approach of ENNs enables the correction of time delay be-
tween _the various i_nput paramete_rs and the output paramgghere X;(1) is the output of the hidden unit at time,
ter during NN tr_am_mg and vz_al_ldatmg processes. In _S|mp_le f=1/(1+e~*) is the activation functiony is the input train-
terms, an ENN is like a modified feed forward NN since it ing vector, j andk are indices for the hidden and context

has an addition_al layer consisting of context units which a"nodesk ando are indices for input and output nodes respec-
lows hidden unit patterns to be fed back to themselts ( tively, X, (r) is the output of the output unitat time, v, u

man 1990 and uses a back propagation algorithm. In the 5,4 are the connection weights associated with the input,
ENN, each hidden unit has a corresponding context unit anq’lidden and output layers, respectively arid the bias. For a

Xo(t) =Y Xj(wo + by
j=1
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2116 J. B. Habarulema et al.: A quantitative study of solar wind effects on TEC derived from GPS

30 T T 30 - -
* GPSTEC * GPSTEC
* %
251 (a) L _ _T(SP) ) 257 (b) /*( * '\*\ M _F _T(Sp’ BZ) |
~ )f/. Sk o —_ 35 ° * *
o) « Sk . =) / N
o 20 ~ X 1 O 20} * %
= /1.( \*\ * E /;1( \;
@ 15f K X 1 E 15} ¢ .
/ \"'\ / *
10{ A N 1 10{ S ‘.
r ¥y R rext * e
5 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
Time, UT (hrs) Time, UT (hrs)
30 . . . . . : : 30 . .
* GPSTEC * GPSTEC
© X - % -T(S,N) (d) -*%-T(S,V
25 * e K e p’ P |7 25¢ o 4% o P’ sw) 1
¥ * . =~ v e
3 20 ¥ N e 1 3 20} el e
| / *\‘ w ¥
. . * . 4 N
Q 15 { \ 1 Q 15 ¥ 3
= / \ [ .
/ X, / * o
10 * \ 1 10 * N
4 * o ¥ o ok %
rww® e 5 TEx. *e
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
Time, UT (hrs) Time, UT (hrs)

Fig. 6. Similar to Fig. 3, for day 285 in 2005.

detailed description about ENN, the reader is referred to thenput parameters and one output parameter (TEC) through

references within this section. out the entire study. During the implementation of the NN
_ o technique, data for 2000-2007 was used in training and val-
3.2 Data processing and NN training idating, while the 2005 dataset was used for verifying the

accuracy of the NN model. Figure 2 shows a simplied flow
Data for the identified parameters were processed and orgaRart of the entire process. This study was conducted in two
ised in a form that is compatible with NNs. During the data phases. The first one involved the prediction of TEC as a
organisation process, the day number (DN) and hour (HR¥ynction of diurnal variation, seasonal variation, solar activ-
were each split into sine and cosine components to allow foqty and magnetic activity, which acted as a benchmark while
the continuous trend of datR@ole and McKinne}l2000 as quantifying the solar wind effects on GPS TEC. After de-
follows; termining the optimum NN architecture and computing the
27 % DN 27 % DN prediction accuracy, eagh of the solar wind par{ameters was
m) DNC = COS(ﬁ) (2)  included as a separate input to the NN along with DN, HR,
A8, R4 and the procedure repeated. Details of data analysis

HRS= sin (2” x HR) HRC = cos<m> (3)  are presented in Sect. 5.
24 24

DNS = sin<

where DNS, DNC, HRS and HRC are the sine and cosine
components of DN and HR, respectively. 4 The solar wind and TEC variations

The procedure for determining magnetic and solar activ-
ity representations is clearly presentedHabarulema et al.  Solar wind is a stream of energetic particles (in the form
(2007. Hourly GPS TEC values were extracted using the of a plasma) that is continuously ejected from the sun and
ASHA algorithm from the GPS observations. A total of reaches the Earth’s atmosphere at a speed typically in the
50228 data points were used in NN training and validatingrange 300 km/s to 700 km/s. Its composition is mainly elec-
processes each comprising of DNC, DNS, HRC, HRS, A8,trons and protons (about 95%). The variations of solar wind
R4 and eitheV,,,, N, or B;. The ENN uses six or seven dynamics with TEC are more significantly observed during

Ann. Geophys., 27, 2112425 2009 www.ann-geophys.net/27/2111/2009/
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Fig. 7. Variations of the considered solar wind parameters and TEC values (derived and predicted) during 6—10 May 2005.

magnetic stormslakowski et al(1999 studied the relation- the NN. However, data fa¥, was not available and since the
ship between the solar wind and TEC before and around solanumber of electrons in the solar wind is roughly equal to the
minimum at different European latitudes usivig, as one of  number of protonsy, was used instead. The solar wind pa-
the parameters and found that there exists an anticorrelatiomameter is considered in this empirical modelling with the
The observed delay betweéfy,, and TEC was interpreted prospect of capturing plasmapheric TEC variations during
as an indication of close coupling of the solar wind with the magnetic storms especially at high altitudes. However, a
ionosphere-thermosphere dynamics related to the observegery recent study pointed out that separating agents forming
negative phases of ionospheric storms a few days after storionospheric disturbances during storm conditions is too dif-
onset. Additionally, various studies at all latitudes have ficult due to the complexity of the correlation between solar
shown that TEC is influenced during geomagnetic stormswind dynamics and the ionospheric variatioBsash et al,

a process believed to be driven by injection of the solar wind2008. A decrease of TEC (from both GPS and ionosonde)
energy into the magnetosphere and characterised by the soutfas been observed over South Africa during the main phases
ward turning of the IMFB, (Meza et al.2005 Fedrizzi et al, of geomagnetic storms. During this period, an increase in
2005 Biktash et al.2008. In this work, the idea was to in-  V,, and N, is observed.Sethia et al(1978 showed that
clude Vy,,, IMF B, and the electron number density,( to there is an inverse relationship between plasmaspheric TEC

www.ann-geophys.net/27/2111/2009/ Ann. Geophys., 27, 21125-2009



2118 J. B. Habarulema et al.: A quantitative study of solar wind effects on TEC derived from GPS

4

IMF B_ (nT)

1,000
900
800
700
600
500
400

0

(km/s)

\Y
sw

N (per cm?’)

P

14/05/05 15/05/05 16/05/05 17/05/05 18/05/05

5 —+TS) x T(5,B)— TGS .,N)——T(,V
Time, UT (hrs) ‘ GPS TEC S) x TS, B) Sy N) S, SW)‘
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and Vy,, over an equatorial station, Ootacamund (¥N4  V,, =,/V2+ V2 +V? 4)
76.6 E) as the first experimental evidence during pre-storm

and storm conditions. These authors utilised electron con-

tent measurements made by Faraday rotation and group devhereV;,, is the magnitude of solar wind velocity.

lay techniques using radio beacon signals from the Appli- 1o |\ME B_is one of the indicators usually used to study
cation Technology Satellite (ATS-6) to compute t.he electron eomagnetically disturbed conditions on solar-terrestrial sys-
content of the plasmasphere. Contrary to studies that degl g The physical mechanisms guiding the outcomes of
W'_th TEC and solar wind va_rlatlons during storm conqlmons, magnetic storms on TEC variations are different for different
this study presents modelling efforts undertaken using datgy i des and sometimes seasons. It has been observed that
for both quiet and disturbed conditions to try and quantita-p,qqsive storm effects are the most likely outcomes over mid-
t'VeLY deteLm|Re effects of sc(;lar_ wind on TE% fluctuta)\_tpns. latitudes although positive storm effects are also sometimes
Iﬂt Ir? work, theV,,, magfmtuI e is compute é/COdr_n INING " avident Buonsantp1999. Significant variabilities of the
the t rﬁe fcc?lmp_onents ot ve ocity In x-, y- and z-directions ¢,nsigered solar wind parameters and TEC are observed dur-
using the following equation: ing the considered magnetic storms of May 2005 as shown in
Figs. 7 and 8, Sect. 6.
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5 Data analysis that was not involved in NN model development. This has
demonstrated the temporal and to some extent spatial capa-

As mentioned in Sect. 2, hourly GPS TEC data for the twot.)IIIty of_th_e NN m_dealmg \.N'th. such non-linear approxima-
tions within a particular latitudinal rangél@barulema et al.

GPS sites (equiped with Ashtech geodetic grade dual fre- . -
quency receivers) were estimated using the ASHA algorithm.zoog' The ability of the NN model to capture TEC vari

Itis known that TEC variability is influenced by seasonal and ability at a Q|ﬁerent station with da.ta not mcIudgd In training
: - i L2 may be attributed to the fact that since the stations have a lat-
diurnal variations, solar and magnetic activities and the ge-

ographic position of the GPS receivéidfmann-Wellenhof itudinal difference of2°, the ionospheric pierce point (IPP)

: . which provides an input for the GPS vertical TEC on the re-
et al, 1992. Only the first four parameters were considered _ . . -
o ; T . : . ceiver used in the NN training (Sutherland) may cover the
in this work since we dealt with single station studies. It is

clear that a NN would not learn any thing from TEC vari- geographical location of the receiver located at Cape Town.

ability with respect to a constant geographical position. TheKeePIng DN, HR, A8 and R4 constant, the solar wind pa-

dataset under consideration consisting of DN, HR, R4, A8rameter representatlomguz ].VP or B;) was each' included
; I . - eparately in the ENN training and the respective networks
and the solar wind parameters were divided into training and

. . . - . verified. With effect to this, a number of recurrent ENNs
validating patterns in the ratio of 7:3, respectively. Hourly . . : X ;

" _were trained in a search for the optimum architecture. Train-
data for 2000-2007 over Sutherland were used for the train: . :
) hl . ing was monitored until the mean square errors on the test-
ing and validating processes while hourly data for 2005 over.

Cape Town were used for verifying. It is important to note ing dataset decreasetigbarulema et 3l2007. There is

that the verification dataset was not included in training, but"© direct way of determining the number of hidden nodes

s L ! o in the hidden layer. Increasing the number of hidden layers

fell within the training period thus taking into account the so- I
L . was found not to have a significant change on the accuracy
lar activity level changes. It has been previously shown that a

) . 8f results, but makes training easier in terms of time in some
NN model developed at a particular GPS station can be usecasesl(la Kin, 1994). An optimum architecture for this work
to predict TEC variability over another GPS receiver station yKin, ' P
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Fig. 10. Comparison between average daily GPS TEC (thin black line) and the corresponding predictions (thick réd)lifiey;,),
(b) T(Sp, B;), (€) T(Sp, Np) and(d) T'(Sp, Vsw), for the verifying year 2005.

consisted of the configuration 6:8:1 for the standard paramas
eters §,=DN, HR, A8 and R4) and changed to 7:9:1 when
the solar wind parameter was included in the study. The ar- 1
chitecture consisted of one input layer, one hidden layer anRMSE= | — Z(Tm —TP)2 (5)
one output layer having one neuron. In the determination N =
of the optimum NN architecture, the root mean square error
(RMSE) method has been used. The followed procedure was 1 N
the addition of one hidden node at a time, training the NN, = —— (Z(Tim - T"\(T - Tp)> (6)
testing it with data and finally computing the RMSE between Smdp \ i
the GPS TEC and the NN predicted TEC valudaljarulema
et al, 2009. The NN architecture that gave the least RMSE wheres,, and§,, are the respective standard deviations for
was adopted as the one suitable for TEC prediction. Thameasured and predicted TEC defined by
computation of correlation coefficients has been used as a
complementary option during the NN architecture determi- 1
nation. The RMSE and correlation coefficieptare defined  §,, = N Z(Ti’" -T2,

i=1
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Fig. 11. Computed RMSE values between GPS TEC and predicted TEC for the available months in 2005.

5 — 1 XN:(TP _ T]))z ) Table 1. RMSE (between predicted and measured GPS TEC) for
P | N <4 < i ’ some days in 2005 for different architectures when DN, HR, R4
= and A8 are included in the ENN as inputs.

and7"™ andT? are the measured and predicted TEC,and

P . . . _ Network Architecture RMSE (TECU)

T" are their respective means over a Iength m';erval of the to denotation configuration  day60 day 100 day250 day 291

tal number of observationgy under consideration. Table 1

shows the RMSE values obtained for different network archi- 2 6:6:1 13.3247 83594 58260  6.7112
different days. The number of hidden nodes that 671 20740 23914 20723 24120

tectures on dirter ys. T c 6:8:1 21627 17717 13522 19618

provided the optimum architecture was found to be+2 D 6:9:1 26417 32795 1.8668  1.9108

where n is the number of inputs to the ENN. The final dis- E 6:10:1 2.8451  2.3629 1.8298  1.9035

cussed results in the following section are obtained by pre-

dicting hourly and daily TEC as a function of either six or

seven parameters and may be mathematically expressed ass possible to predict TEC variations at GPS receiver stations
where data was not included in training, within a latitudinal

F(Sp), for standard parameters range of~1-3 degrees.
F(Sp, Vsw), Viw included
T, = (8) 6 Results and discussion
JF(Sp. Np), N, included
6.1 Diurnal TEC predictions
f(Sp, By), IMF B, included

Figures 3, 4, 5 and 6 show the comparison of hourly GPS
whereS,={DN, HR, R4, A8} represent the standard param- TEC and the predicted values as a function of the standard
eters that influence TEC variability, BA{DNC, DNS} and parameters (seasonal and diurnal variations, solar and mag-
HR={HRC, HRS}. An important point to note is that netic activities) and after separate inclusion of each solar
we have used results from the ENN trained at Sutherlandvind parameter for days 58, 104, 185 and 285 in 2005 over
(32.38 S, 20.82 E) to predict TEC changes at a receiver site Cape Town (33.95S, 18.47 E). Table 2 shows the com-
located at Cape Town (33.95, 18.47 E). Its basis isthe re- puted RMSE values between GPS TEC and the correspond-
cent study byHabarulema et a{2009 which showed that it ing predicted values. This table indicates that all solar wind
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Fig. 12. A plot of monthly average GPS TEC for each hour and the corresponding predictions with all parameters used for the months
representinga) summer (Januaryjb) winter (June)(c) autumn (March) an@d) spring (September) in 2005.

Table 2. RMSE between GPS TEC and predicted TEC values for'€Spect to »- Once again, these results are obtained by veri-
days 58, 104, 185 and 285 in 2005. fying the ENN at a GPS receiver site whose data was not in-

volved in model development and this confirms the previous
study byHabarulema et a[2009. Prediction accuracies in

Day RMSE (TECU) between GPS TEC and . .

(iN2005) T(Sy) T(Sp.B:) T(Sp,Np) T(Sp. Vew) terms of both degradation and mprovement are cIo;e to the
values of reference when solar wind parameters are included

58 1.6171 1.5873 1.3105 13112 for these quiet days. In all cases, the TEC diurnal shape is

104 2.3562 2.7691 2.7958 3.1242  rrect at almost all times of the day.

185 0.9472 0.9689 1.2377 1.2506

285 1.2015 1.0100 0.9443 1.2727 Figures 7 and 8 show the variations of the solar wind pa-

rameters and GPS TEC along with the predicted values for 6—
10 and 14-18 May 2005. These particular dates were chosen
because they contained days when magnetic storms occured.
parameters considered slightly improved the prediction ac-These two figures are meant to specifically show the perfor-
curacy for day 58 while no improvement is observed on daysmance of the ENN model during prestorm, storm and post
104 and 185. The inclusion d¢, and N, gives improve-  storm conditions. The prediction accuracies for these dates
ments of~1594% and~21.41% for day 285 whileVy,, when different parameters are included in ENN modelling
slightly degrades the prediction accuracy ©%.93% with are shown in Fig. 9. There was a magnetic storm on 8 May
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in 2005.

which appears to have led to positive storm effects when the5.2 Seasonal TEC predictions
TEC values are compared to relatively quiet days before and
after the storm. There was a stronger magnetic storm on 1%igure 10 shows the comparison of average daily GPS TEC
May 2005 that led to the significant fluctuation of IM#: and the predicted values for January to October 2005 over
and sudden jump in botW;,, and N,. As a result signifi-  Cape Town (33.95S, 18.47E). Due to a lack of data,
cant TEC fluctuations are observed. For both of these storrNovember and December are not represented. Figure 11
days a statistical improvement is observed in Fig. 9 after theshows the computed RMSE values between GPS TEC and
inclusion of B, andN,. While the ENN correctly identifies  7(S,), T(S,, B;), T(Sp, Np), T(Sp, Vsw). The three so-
the TEC variational pattern on 8 May, the result is different lar wind parameters included led to average improvements
on 15 May for all parameters considered. In addition, allin TEC prediction for January and February. Bathand
combinations of different parameters strongly underpredicty,, improve the prediction accuracy for March and August
the magnitude of TEC values on 8 May. In both cases, thewhile results are more or less constant for June and Septem-
inclusion of V,, degrades the prediction accuracy, an indi- ber for these solar wind parameters. No change is observed
cation that solar wind velocity may not be an efficient rep- for October whervy,, is included, whileB, andN,, degrade
resentation of solar wind in TEC modelling during magnetic the prediction accuracy with respectdgp. Figure 12 shows
storms. This should be investigated further for more stormthe average diurnal TEC variations for January, March, June
conditions. However, these results clearly demonstrate that ibind September representing summer, autumn, winter and
is still difficult to accurately predict diurnal TEC behaviour spring, respectively. The distinct observation from this
during magnetically disturbed conditions. figure is that all parameters underpredicted GPS TEC for
almost the whole month of January as seen in Fig. 12a
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except at 03:00 UT wherE(S,), T(Sp, Np) andT (S, B;) the variational trend pattern was incorrect for 15 May. These
are greater than GPS TEC by0.870 TECU, 0.779 TECU results show that it is still difficult to predict TEC variability
and 0.629 TECU, respectively, and 04:00 UT whéres,, during magnetic storms. We have investigated only three so-
Np)=T(S,, B;)~GPS TEC. An underprediction is also ob- lar wind parameters in this study and although a degradation
served for March betweer08:00UT and 16:00UT. Fig- in TEC prediction has been observed in some cases, results
ure 13 is a representation of RMSE between derived GP3ndicate that the solar wind parameter may be a potential ad-
TEC and its predicted values as a function of all consid-ditional inputto the ENN during TEC predictions. This claim
ered parameters. Represented in Fig. 13 are also the coe$hould be investigaed further by; (1) examining more solar
ficients of determination (square of correlation coefficients)wind parameters, (2) looking for a method of combining the
between GPS TEC and TEC values as predicted by differenthree investigated parameters to obtain one single quantity
parameter combinations. With regardp as a benchmark, containingB;, N, and Vy,, information since they all pro-

B;, N, andVy,, improve the TEC predictions by15.16%, vide varying magnitudes in the prediction accuracy improve-
~25.07% and~27.38%, respecively for January (summer). ment during different days and seasons and (3) including the
For March,B; andN,, gave improvements 0f24.27% and  solar wind parameters in a multi-station model where the ge-
~25.50%, respectively. In June (winter), the inclusion of ographical location of the GPS receivers will be taken into
Viw doesn’t change results whill¥, improves the predic- account.

tion by an average 0f21.86%. For September, botB,
and N, led to an overprediction between05:00UT and
13:00UT, while S, underpredicts TEC between 09:00 UT

AcknowledgementsThanks to Chief Directorate Surveys and Map-
pings (CDSM) and IGS community for making GPS data available.

] LT . L The authors acknowledge the ACE project teams (D. J. McComas
and 11:00 UT. Difficulties in generating accurate predICtlonsof Southwest Research Institute and N. Ness of Bartol Research In-

in spring have been observed befotdabarulema et al.  ityte) for making the solar wind data available. J. B. Habarulema

2007 and may be due to the strong variations exhibited bygreatly thanks the South African National Astrophysics and Space

TEC during the equinoxeXouris et al, 1999 and therefore  Science Programme, University of Cape Town, South Africa for the

all parameters that influence TEC probably have high vari-financial support.

ation levels Habarulema et 312009 including solar wind. Topical Editor M. Pinnock thanks two anonymous referees for

In the Northern Hemispher&irish et al.(1997) obtained a  their help in evaluating this paper.

significant correllation between the variations of solar wind

parameters and TEC during the sunspot maximum in winter,
. X o . References

and spring. We have obtained a statistical correllation be-

tween TEC variations and atleast one of solar wind paramegitash, L. z., Maruyama, T., and Nozaki, K.: The solar wind con-

ters investigated in all seasons through ENN modelling. Our  tro| of the equatorial ionosphere dynamics during geomagnetic

results indicate a relative agreement My and Vy,, during storms, Adv. Space Res., 41, 562-568, 2008.

the declining phase of the solar cycle 23 (year 2005) in theBishop, C. M.: Neural Networks for Pattern Recognition, Oxford

Southern Hemisphere which may be a confirmation that the University Press Inc., New York, 1995.

solar wind dynamics influence TEC variations at both solarBodén, M.: A guide to recurrent neural networks and backpropaga-

activity levels and in both hemispheres. Based on statistical tion, in: In the Dallas project, SICS Technical Report T2002:03,

analysis, it can be deduced that both daily and monthly aver- SICS, 2002. ) _ )

age TEC predictions were improved by includitg, in the Buonsanto, M. J.: lonospheric storms: A review, Space Sci. Rev.,

. . . . . 88, 563-601, 1999.
database for spring. Confirmation of this result requires more,

.. . man, J. L.: Finding Structure in Time, Cognitive Science, 14,
analysis since only one station’s data has been analysed. 179-211. 1990.

Fausett, L.: Fundamentals of Neural Networks; Architectures,
Algorithms and Applications, Prentice-Hall, Inc. New Jersey,

7 Conclusions and future work 07632, 1994.

Fedrizzi, M., de Paula, E. R., Langley, R. B., Komjathy, A., Batista,
This paper has attempted to explain the study of quantifying |. S., and Kantor, I.: Study of the March 31, 2001 magnetic storm
solar wind effects on GPS TEC using ENN modelling. GPS  effects on the ionosphere using GPS data, Adv. Space Res., 36,
TEC has been predicted as a function of DN, HR, R4 and A8, 534-545, 2005.
and the results used as a benchmark to try and quantify gdoirish, T. E Jayachandran, B and Shamsudeen, S.P.: Influ_ence of
lar wind influence on GPS TEC. Statistical analysis revealed S°!a" wind on the TEC variations at mid and subauroral latitudes
both improvements and degradation in TEC prediction accu- during sunspot maximum, Acta geod. Geoph. Hung., 32(3-4),

ies f it L p it 287-292, 1997.
racies for different parameter combinations and for di eren'[Habarulema, J. B.: A feasibility study into Total Electron Content

days and seasons. An analysis was performed for both quiet prediction using Neural Networks, Master’s thesis, Rhodes Uni-
and storm conditions. Although the inclusion Bf and N, versity, Grahamstown, South Africa, 2007.

improved the prediction accuracy for both stormy days (8 andHabarulema, J. B., McKinnell, L. A., and Cilliers, P. J.: Prediction
15 May), an underprediction was observed for 8 May while of global positioning system total electron content using neu-

Ann. Geophys., 27, 2112425 2009 www.ann-geophys.net/27/2111/2009/



J. B. Habarulema et al.: A quantitative study of solar wind effects on TEC derived from GPS 2125

ral networks over South Africa, J. Atmos. Solar Terr. Phys., 69, Meza, A., Zele, M. A. V., Brunini, C., and Cabassi, I. R.: Verti-

1842-1850, 2007. cal total electron content and geomagnetic pertubations at mid-
Habarulema, J. B., McKinnell, L.-A., Cilliers, P. J., and Op- and sub-auroral southern latitudes during geomagnetic storms, J.

perman, B. D. L.: Application of neural networks to South Atmos. Solar Terr. Phys., 67, 315-323, 2005.

African GPS TEC modelling, Adv. Space Res., in press, Opperman, B.: Reconstructing lonospheric TEC over South Africa

doi:10.1016/j.asr.2008.08.020, 2009. using signals from a Regional GPS network, PhD thesis Rhodes
Haykin, S.: Neural Networks, A Comprehensive Foundation, University, Grahamstown, South Africa, 2007.
Macmillan College Publishing Company, 1994. Opperman, B. D. L., Cilliers, P. J., McKinnell, L. A., and Hag-

Hernandez-Pajares, M., Juan, J., and Sanz, J.: Neural network mod- gard, R.: Development of a regional GPS-based ionospheric TEC
elling of the ionospheric electron content at global scale using model for South Africa, Adv. Space Res., 39, 808-815, 2007.
GPS, Radio Sci., 32, 1081-1090, 1997. Poole, A. W. and McKinnell, L.-A.: On the predictability of foF2

Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J.: Global  using neural networks, Radio Sci., 1, 225-234, 2000.

Positioning System Theory and Practice, Springer-Verlag WienSethia, G., Deshpande, M. R., and Rastogi, R. G.: The solar
New York, 1992. wind influences plasmasphere electron content, Nature, 276, 482,

Jakowski, N., Hocke, K., Schluter, S., and Heise, S.: Space weather doi:10.1038/276482a0, 1978.
effects detected by GPS based TEC monitoring, in: WorkshopStankov, S. M., Kutiev, I., Jakowski, N., and Wehrenpfennig, A.: A
on Space Weather, WPP-155, ESTEC, Noordwijk,, pp. 241-244, new method for total electron content forecasting using Global
1999. Positioning System measurements, in: Proc. ESA Space Weather

Kouris, S. S., Fotiadis, D. N., and Zolesi, B.: Specifications of the F-  Workshop, Noordwijk, The Netherlands, pp. 169-172, 2001.
region variations for quiet and disturbed conditions, Phys. Chem.Tulunay, E., Senalp, E., Radicella, S., and Tulunay, Y.: Forecasting

Earth, 24, 1999. total electron content maps by neural network technique, Radio
Langley, R. B.: GPS, the lonosphere, and the Solar Maximum, GPS Sci., 41, doi:10.1029/2005RS003285, 2006.

World, 11, 44-49, 2000. Vandegriff, J., Wagstaff, K., and Ho, G. J. P.: Forecasting space
Li, G., Ning, B., Zhao, B, Liu, L., Liu, J. Y., and Yumoto, K.: weather: Predicting interplanetary shocks using neural networks,

Effects of geomagnetic storms on GPS ionospheric scintillations Adv. Space Res., 36, 2323-2327, 2005.
at Sanya, J. Atmos. Solar-Terr. Phys., 70(7), 1034-1045, 2008. Weigel, R. S., Vassiliadis, D., and Klimas, A. J.: Coupling of the
Lundestedt, H.: Solar activity modelled and forecasted: A new ap- solar wind to temporal fluctuations in ground magnetic fields,

proach, Adv. Space Res., 38, 862-867, 2006. Geophys. Res. Lett., 29, 19, doi:10.1029/2002GL014740, 2002.
Lyon, J. G.: The Solar Wind-Magnetosphere-lonosphere SystemWeigel, R. S., Klimas, A. J., and Vassiliadis, D.: Solar wind
Science Rev., 288, 1987-1991, 2000. coupling to and predictability of ground magnetic fields and

Marra, S. and Marabito, F. C.: A New Technique for Solar Activity ~ their time derivatives, J. Geophys. Res., 108(A7), 1298,
Forecasting using Recurrent EIman Networks, Int. J. Cognitive  doi:10.1029/2002JA009627, 2003.
Intelligence, 3, 8-13, 2005. Wu, J.-G. and Lundstedt, H.: Neural network modeling of so-
lar wind-magnetosphere interaction, J. Geophys. Res., 102(A7),
14457-14466, 1997.

www.ann-geophys.net/27/2111/2009/ Ann. Geophys., 27, 21125-2009



