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Abstract. The seasonal variation of thermal, haline, net sur-
face buoyancy flux, the Monin-Obukhov length (M-O length,
L) and stability parameter, i.e. the ratio of M-O length to
mixed layer depth (h) were studied in the Bay of Bengal
(BoB) and the Arabian Sea (AS) for the years 2003 and 2004
using Argo temperature and salinity profiles. The relative
quantitative influence of winds to surface buoyancy and the
applicability of scaling mixed layer using M-O length in BoB
and AS was brought out. Rotation and light penetration mod-
ify the mixed layer depth from M-O length during shoaling
in spring givingL/h<1.

Keywords. Meteorology and atmospheric dynamics (Turbu-
lences) – Oceanography: physical (Air-sea interactions; Up-
per ocean processes)

1 Introduction

The Arabian Sea (AS) and Bay of Bengal (BoB) are two
basins in the north Indian Ocean that are influenced by sea-
sonally reversing monsoonal wind forcing. The freshwater
forcing between these two basins is contrasting. Precipita-
tion (P) exceeds evaporation (E) in the Bay, whereas evapo-
ration exceeds precipitation in the AS. The freshness of BoB
is due to excess precipitation over evaporation and due to
large amounts of river discharge into the Bay. Hence the sur-
face layer in the Bay is much fresher than that in the Ara-
bian Sea. Very few studies exist on the quantitative role of
thermal, haline (due to fresh water content) and net buoy-
ancy against the mechanical mixing in Bay of Bengal and
Arabian Sea using observations. Weller et al. (2002) ex-
plored the relative importance of wind mixing and surface
buoyancy forcing in mixed-layer deepening in the AS during
October 1994 to October 1995 and found that wind mixing
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is the primary driver of mixed-layer deepening during the
summer monsoon (June–September) while convective deep-
ening driven by surface buoyancy fluxes is more important
during the winter monsoon (December–February). Shenoi et
al. (2002), using a model as well as Levitus and Boyer cli-
matology have shown that the energy available for mixing
the upper 50 m is greater by an order of magnitude in the
Arabian Sea than that in the Bay of Bengal during the sum-
mer monsoon. They also found that the energy required for
mixing the top 50 m in the Bay of Bengal is about three times
greater than that in the Arabian Sea. They concluded that the
weaker winds over the Bay of Bengal are incapable of mixing
the strongly stratified surface waters. By conducting differ-
ent experiments using a 1-D model, Prasad (2004) concluded
that humidity is the controlling factor rather than the salinity
which is responsible for the buoyancy difference between the
two basins. However, comparative studies of the depth of in-
fluence of wind stress versus buoyancy forcing and the appli-
cability of M-O scaling in both the basins for the entire year
using observations are not present. In this study we bring
out quantitatively the role of freshwater, thermal and net sur-
face buoyancy based on Argo and other observations and the
applicability of M-O scaling during different seasons.

2 Data and methods

Argo floats are autonomous profiling floats with CTD sensors
that measure temperature and salinity in the ocean as a func-
tion of depth. The details of the global profiling float project
and its data communication are found in Argo Science Team
(1998) and Ravichandran et al. (2004). The study region is
Bay of Bengal and Arabian Sea. The area enclosed by 60 E
to 70 E and 10 N to 19 N is considered to represent the cen-
tral Arabian Sea and that enclosed by 85 E to 95 E and 10 N
to 19 N to represent central Bay of Bengal. The temperature
and salinity profiles from all the Argo floats falling in these

Published by Copernicus Publications on behalf of the European Geosciences Union.



396 G. Anitha et al.: Surface buoyancy flux in Bay of Bengal and Arabian Sea

50 54 58 62 66 70 74 78 82 86 90 94 98

10

15

20

Fig. 1. Locations of Argo Float profiles in Bay of Bengal and Ara-
bian Sea representative areas during 2003 and 2004.

regions during the years 2003 and 2004 are used to study the
upper ocean. The temperature data measured by Argo floats
at the standard depths are used to generate values at 1-m in-
tervals following Borkowski and Goulet (1971). A total of
1088 profiles in AS and 470 profiles in BoB were analysed
for the study. The representative regions and the profiles’
locations are shown in Fig. 1.

We used the 0.25◦×0.25◦ fields of wind parameters mea-
sured by Quickscat and 1◦

×1◦ precipitation from the Global
Precipitation Climatology Project (GPCP) data set. The net
heat flux is obtained from the Southampton Climatology
Oceanography Centre (SOC) surface climatology, available
at the websitewww.coaps.fsu.edu. A correlation coefficient
of 0.641 is obtained for the SOC net heat flux with that of
the WHOI mooring site observations. The SOC climatol-
ogy monthly mean net heat flux (NHF) is found to be within
20 W/m2 of the WHOI mooring in the Arabian Sea (Josey
et al., 1999). The errors thus propagating into the derived
parameters are computed using a differential method and the
corresponding errors are depicted as error bars in the plots.
Mixed layer depth (MLD) is defined as the deepest depth
where the density is higher by 0.20 Kg/m3 from 10-m depth.
The net surface buoyancyBo is computed using

Bo = Bq + Bp (1)

Bo = (gαQo/(ρCp)) + gβPSo, (2)

whereBq is thermal buoyancy,Bp is haline (due to fresh wa-
ter) buoyancy,g is gravity, Q0 is net heat flux,ρ is ocean
water density,Cp is the specific heat of water,So is surface
salinity,P is precipitation,α is the thermal co-efficient of ex-
pansion andβ is coefficient of haline contraction. The error
propagated into the net buoyancy flux due to the error in NHF
is computed to be±6.63×10−9 m2/s3. The Monin-Obukhov
length,L, is computed using the Argo temperature and salin-
ity profile and quickscat wind data using the formulation

L = −

(
U3

∗ /κB0

)
, (3)

where Von Karman’s constant isκ=0.41. Friction velocity
U3

∗ is calculated from the surface wind-stress using

U3
∗ = (τ0/ρ)3/2, (4)

whereτ0 is wind-stress andρ is ocean water density. For
each month of the years 2003 and 2004, at all the locations
of the Argo profiles obtained in a calendar month in the rep-
resentative regions of BoB and AS, the corresponding other
parameters viz., GPCP precipitation, Quickscat winds and
SOC-NHF are extracted. These parameters are extracted at
the co-located time (calendar day average) and space (aver-
aged over a 1◦×1◦ latitude-longitude box for each profile)
of the corresponding Argo temperature and salinity profile.
The values for each parameter (temperature, salinity, density,
mixed layer depth, precipitation and friction velocity) falling
in a calendar month are averaged from which the buoyancy
fluxes and M-O length are computed. Hence all the analysis
is done on a monthly scale from February 2003 to December
2004.

3 Discussion

3.1 Surface buoyancy flux

Buoyancy flux through the surface helps determine the stabil-
ity of the upper ocean. At the sea surface, surface warming
(heat gain by the ocean) or precipitation tends to make the
ocean surface more buoyant and contributes to stable con-
ditions. Conversely, surface cooling or evaporation tends to
make the ocean surface less buoyant and contributes to an
increase in density of the surface water and so to a convec-
tively unstable condition. The net surface buoyancy flux in
both the basins is largest during summer monsoon months,
i.e. June to September, and looks similar in pattern (Fig. 2a)
with a lull during August (2003 and 2004 in AS and 2004
in BoB). However, in BoB, the net surface buoyancy contin-
ues to be large in fall, i.e. during late September and Octo-
ber, which is a manifestation of the large fresh water con-
tent. This is reasoned by observing the two components
of buoyancy fluxes. During this part of the year the fresh
water buoyancy is the major contributor, whereas the ther-
mal component is minute and also almost equal in both the
basins (Fig. 2a, b, c, d). This freshness of BoB is due
to excess precipitation and heavy river discharge (the mea-
sured salinity by Argo floatS0 is due to both precipitation
as well as river discharge). The net surface buoyancy flux
in both BoB and AS is always positive except in December.
In AS, few negative spikes in July–August and November–
December for both 2003 and 2004 are observed when indi-
vidual profile observations are examined (figure not shown).
The net surface buoyancy is very high in BoB compared to
AS throughout the two years, indicating a very highly sta-
ble upper ocean in BoB compared to AS. During the peak
monsoon the magnitude of net surface buoyancy in BoB
is more than 3×10−7 m2/s3 (4.25×10−7 m2/s3 in July 2003
and 3.02×10−7 m2/s3 in July 2004), whereas in AS it is
around 1.1×10−7 m2/s3 (1.18×10−7 m2/s3 in July 2003 and
1.86×10−7 m2/s3 in July 2004) (Fig. 2a). A notable point
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Fig. 2. Time Series of(a) net surface buoyancy with error bars(b) buoyancy due to fresh waterBp (c) thermal buoyancy,Bq with error bars
and(d) ratio of fresh water to thermal buoyancy,Bp/Bq .

is that during September and October, added to the mon-
soon rains, the river influx makes the Bay even more fresh,
whereas in AS, by this time, the monsoon starts receding
and hence the surface buoyancy flux in BoB becomes very
large and more stable compared to AS. This is a direct re-
sult from high amounts of precipitation as well as river in-
flow in BoB which is seen in buoyancy due to the fresh water
flux Bp (Fig. 2b). During the other time of the year, the net
surface buoyancy in both the basins is small and less than
1×10−7 m2/s3.

In both AS and BoB the net buoyancy flux is dominated
by that due to fresh water and hence the net buoyancy is an
annual harmonic rather than semiannual, as in buoyancy due
to the thermal componentBq (Fig. 2c). The net buoyancy
flux is more than three times during the summer monsoon
compared to rest of the year (Fig. 2a). The surface buoyancy
due to freshwater flux is more than double in BoB than in
AS during the peak monsoon period (Fig. 2b). The ratio of
fresh water buoyancy to thermal buoyancy (Fig. 2d) yields a
value more than 10 and peaking to 15 in BoB in the summer
monsoon months, whereas it is about 5 in June 2003 and 9
in June 2004 in AS, indicating that there is good amount of
precipitation during 2004 compared to 2003. During the rest
of the year the ratio is nearly one. The high ratio in BoB

compared to AS and its prolonged nature itself is a measure
of the freshwater.

3.2 M-O Length andL/h

The Monin-Obukhov length (M-O length,L) is the depth
at which the wind generated turbulence is balanced by the
buoyancy due to surface warming and freshening (salting)
by precipitation (evaporation). In both BoB and AS, the M-
O length (Fig. 3d) exhibits a large negative peak during the
summer monsoon months. In Bay of Bengal the M-O length
during the summer monsoon ranges between 20 m–45 m.
These large values of M-O length during summer monsoon
are due to large winds (friction velocity shown in Fig. 3a).
M-O length in AS is semiannual with large values during
the summer monsoon, owing to high wind stress, whereas
in BoB even though the winds are as high the net surface
buoyancy is very large and this restricts M-O length to shal-
lower depths. The large values ofL in AS during the summer
monsoon range between 40 m–150 m. These large values in
AS during July–August are attributed to reduced buoyancy
in AS compared to BoB, even though both the observational
regions experience the same wind-stress (Fig. 3a).

During the winter monsoon months of November and Jan-
uary, the M-O length exhibits a negative peak. But during
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Fig. 3. Time Series of(a) ustar cubed(b) MLD(h) (c) ratio of M-O length to mixed layer depth (L/h) (d) M-O length (L) with error bars.

(a) (b)

Fig. 4. Time depth series of temperature(a) BoB-2900093(b) AS-2900090 with depth of the mixed layer (green) and depth of isothermal
layer (blue) overlayed.

December the net heat flux in both the basins AS and BoB
is out of the ocean and is negative. The net buoyancy flux
is dominated by the thermal buoyancy during December and
thus is resulting in a small negative net buoyancy. Hence a
positive M-O length is observed in both the basins during De-
cember, indicating convective instability. This implies that

the upper ocean is convectively unstable in December. How-
ever, the small magnitude of monthly averaged net negative
buoyancy results in very highL values, leading to large er-
rors in magnitude (L andL/h values for December are hence
not shown).
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During the inter-monsoon periods of spring (March–April)
and fall (September–October), the M-O length is very small
in both AS and BoB. After the summer monsoon when the
M-O length reaches maximum depth, the fall season begins
during which time the M-O length in BoB decreases from a
maximum at 40-m depth to less than 5 m. In BoB, during
the spring inter-monsoon (March–April)L values of around
6 m–10 m due to very low winds (Fig. 3a) are observed. Dur-
ing this season the surface starts gaining buoyancy as the
ocean starts gaining heat. Except in December when the net
heat flux is negative, the M-O length is always negative in
BoB for both 2003 and 2004. These negative values ofL

imply that the ocean is always stable (except in December).
Both M-O lengthL and L/h are greater in AS than in

BoB during the summer monsoon months. The changes in
L/h values (Fig. 3c) are much a reflection of those in M-
O length (Fig. 3d), despite the mixed layer depth (h) in AS
(Fig. 3b) being much larger than in the Bay of Bengal. This
is due to the relative changes in surface buoyancy forcing and
wind forcing. When|L/h|>1, the mixed layer is dominated
by wind mixing. On the other hand, when|L/h|<1 wind
energy available to mix is much less and could mix only a
few top layers of the ocean, and the balance between thermal
buoyancy and wind energy is achieved at a very small depth
L. In the Arabian Sea theL/h plot shows very large values
during the summer monsoon months, during both the years,
indicating a very highly wind dominated region. On the other
hand, theL/h values during the summer monsoon months of
2004 in Bay of Bengal (Fig. 3c) are less than one indicating
that wind mixing is confined by buoyancy effects to some up-
per layers limited byL. However, during the inter-monsoons
spring (March–April) and fall months (September–October),
the L/h values in both BoB and AS are small and nega-
tive, showing a dominancy of buoyancy gain where the ocean
gains heat during spring and fall. During the spring period,
the MLD starts shoaling, but MLD is greater than the M-O
length and the depth of this remnant interfacial layer between
the M-O length and MLD depends on the history of wind
forcing and the rotationU∗/f (Garwood, 1987; Alexander et
al., 2000). Figure 4 shows the time depth sections of tem-
perature with mixed layer depth and the depth of isothermal
layer overlaid, obtained from one Argo float with WMO ID
2900093 in BoB (Fig. 4a) and one in AS (Fig. 4b) with WMO
ID 2900090 for the two years 2003–2004. From this figure
it is seen that the thermal penetration is much deeper during
spring for both the floats and hence influences the depth of
the mixed layer to become deeper.

When L/h<0.5 and positive, the mixed layer is domi-
nated by convectively driven turbulence. Conversely, during
the winter monsoon there are periods of large (negative dur-
ing November and January and positive during December)
values of|L/h|, indicating convective instability because of
buoyancy loss as well as wind driven turbulence. This con-
vective instability leads to a deeper mixed layer. During win-
ter monsoon in both BoB and AS theL/h values are similar.

These large values ofL/h indicate that both winds and buoy-
ancy contribute towards increasing the mixed layer depth on
a monthly scale.

4 Summary

In both AS and BoB the net buoyancy flux is dominated by
the fresh water buoyancy flux and hence in both the basins
the net buoyancy is an annual harmonic rather than semi-
annual, as in the buoyancy due to the thermal component.
The surface buoyancy is very high in BoB compared to AS
throughout the two years, indicating a very highly stable up-
per ocean in BoB compared to AS. The net surface buoyancy
continues to be large during September and October in BoB,
which is a manifestation of the fresh water content in Bay of
Bengal. During spring and fall, light penetration and rotation
effects modify the MLD below the wind mixed layerL. An
improved understanding of the oceanic buoyancy field will
improve our understanding and prediction of seasonal and
interannual changes in oceanic circulation and the feedback
between oceanic circulation and the climate.

Acknowledgements.We are thankful to Director, INCOIS, for his
constant encouragement and support with the Argo programme.
The authors are thankful to Remote Sensing Systems for provid-
ing Quickscat winds (www.ssmi.com) and to GPCP for providing
the GPCP data set and to SOC for providing the heat flux climatol-
ogy data set. The authors are also thankful to ARGO International
Programme. The authors are thankful to the anonymous referee and
the editor for useful comments and suggestions that helped us im-
prove the manuscript.

Topical Editor S. Gulev thanks one anonymous referee for
her/his help in evaluating this paper.

References

Alexander, M. A., Scott, J. D., and Deser, C.: Processes that influ-
ence sea surface temperature and ocean mixed layer depth vari-
ability in a coupled model, J. Geophys. Res., 105, 16 823–16 842,
2000.

Argo Science Team: On the design and Implementation of Argo –
An initial Plan for a global array of Profiling Floats, ICPO Report
No.21, GODAE Report No 5., 32pp, The GODAE International
Project office, Melbourne, Australia, 1998.

Borkowski, M. R. and Goulet, J. R.: Comparison of methods for in-
terpolating oceanographic data, Deep Sea Res. Oceanogr. Abstr.,
18(2), 269–274, 1971.

Garwood Jr., R. W.: Unsteady shallowing mixed layer, Proceed-
ings ‘Aha Huliko’a, Hawaiian Winter Workshop January 1987,
Hawaii Inst. of Geophys. Special Publication, edited by: Muller,
P. and Henderson, D., 119–129, 1987.

Josey, S. A., Kent, E. C., and Taylor, P. K.: New Insights into the
ocean heat budget closure problem from analysis of the SOC air-
sea flux climatology, J. Climate, 12(9), 2856–2880, 1999.

Prasad, T. G.: A comparison of mixed-layer dynamics between the
Arabian Sea and Bay of Bengal: One-dimensional model results,
J. Geophys. Res., C03035, doi:10.1029/2003JC002000, 2004.

www.ann-geophys.net/26/395/2008/ Ann. Geophys., 26, 395–400, 2008

www.ssmi.com


400 G. Anitha et al.: Surface buoyancy flux in Bay of Bengal and Arabian Sea

Ravichandran, M., Vinayachandran, P. N., Sudhir, J., and Radhakr-
ishnan, K.: Results from the first Argo float deployed by India,
Current Sci., 86(5), 651–659, 2004.

Shenoi, S. S. C., Shankar, D., and Shetye, S. R.: Differences in heat
budgets of the near surface Arabian Sea and Bay of Bengal: Im-
plications for the summer monsoon, J. Geophys. Res., 107(C6),
3052, doi:10.1029/2000JC000679, 2002.

Weller, R. A., Fischer, A. S., Rudnick, D. L., Eriksen, C. C., Dickey,
T. D., Marra, J., Fox, C., and Leben, R.: Moored observations of
upper-ocean response to the monsoons in the Arabian Sea during
1994–1995, DSR II., 49, 2195–2230, 2002.

Ann. Geophys., 26, 395–400, 2008 www.ann-geophys.net/26/395/2008/


