
Ann. Geophys., 26, 3819–3829, 2008
www.ann-geophys.net/26/3819/2008/
© European Geosciences Union 2008

Annales
Geophysicae

Significance tests for the wavelet cross spectrum and wavelet
linear coherence

Z. Ge

Ecosystems Research Division, NERL, USEPA, 960 College Station Road, Athens, GA 30605, USA

Received: 9 July 2008 – Accepted: 21 October 2008 – Published: 2 December 2008

Abstract. This work attempts to develop significance tests
for the wavelet cross spectrum and the wavelet linear coher-
ence as a follow-up study on Ge (2007). Conventional ap-
proaches that are used by Torrence and Compo (1998) based
on stationary background noise time series were used here
in estimating the sampling distributions of the wavelet cross
spectrum and the wavelet linear coherence. The sampling
distributions are then used for establishing significance levels
for these two wavelet-based quantities. In addition to these
two wavelet quantities, properties of the phase angle of the
wavelet cross spectrum of, or the phase difference between,
two Gaussian white noise series are discussed. It is found that
the tangent of the principal part of the phase angle approxi-
mately has a standard Cauchy distribution and the phase an-
gle is uniformly distributed, which makes it impossible to es-
tablish significance levels for the phase angle. The simulated
signals clearly show that, when there is no linear relation be-
tween the two analysed signals, the phase angle disperses
into the entire range of[−π, π] with fairly high probabili-
ties for values close to±π to occur. Conversely, when linear
relations are present, the phase angle of the wavelet cross
spectrum settles around an associated value with consider-
ably reduced fluctuations. When two signals are linearly cou-
pled, their wavelet linear coherence will attain values close to
one. The significance test of the wavelet linear coherence can
therefore be used to complement the inspection of the phase
angle of the wavelet cross spectrum.

The developed significance tests are also applied to actual
data sets, simultaneously recorded wind speed and wave ele-
vation series measured from a NOAA buoy on Lake Michi-
gan. Significance levels of the wavelet cross spectrum and
the wavelet linear coherence between the winds and the
waves reasonably separated meaningful peaks from those
generated by randomness in the data set. As with simu-
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lated signals, nearly constant phase angles of the wavelet
cross spectrum are found to coincide with large values in the
wavelet linear coherence between the winds and the waves.
Not limited to geophysics, the significance tests developed in
the present work can also be applied to many other quantita-
tive studies using the continuous wavelet transform.

Keywords. Oceanography: physical (Air-sea interactions;
Surface waves and tides) – General or miscellaneous (Tech-
niques applicable in three or more fields)

1 Introduction

Ge (2007) revisited the issue of the significance tests for the
wavelet power and the wavelet power spectrum. Torrence
and Compo (1998) (referred to TC98 hereafter) are proba-
bly the first to have developed methods for these significance
tests. They used background noise series for establishing the
sampling distributions and the associated significance lev-
els for interested wavelet-based quantities, which is essen-
tially a conventional approach. Their methods and results
have been adopted by many researchers (e.g. Torrence and
Webster, 1999; Grinsted et al., 2004; Lundstedt et al., 2006;
Rigozo et al., 2008) in the past ten years, especially in the
fields of geophysics and engineering. Ge (2007) obtained
analytical results of the sampling distributions of the wavelet
power and wavelet power spectrum using prescribed back-
ground noise series. That was an improvement on TC98’s re-
sults a large portion of which was based on Monte Carlo sim-
ulations. The present work was aimed to be a sequel to Ge
(2007), continuing to develop significance tests for two other
frequently used quantities (statistics), the wavelet cross spec-
trum and the wavelet linear coherence. Involving two time
series instead of only one, these two wavelet-based quanti-
ties are often used to assess time-varying spectral relations
between two signals, which are often nonstationary.
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Perhaps the first one in geophysics, Liu (1994) defined the
wavelet cross spectrum (WCS) between two time seriesx(t)

andy(t) as

Cxy(a, b) = X∗(a, b)Y (a, b), (1)

where a and b are scale and time variables, respectively,
X(a, b) andY (a, b) are the wavelet coefficients of the time
seriesx(t) andy(t), respectively, and∗ means complex con-
jugate. In the definitions in Liu (1994) and TC98, the com-
plex conjugate ofY (a, b), instead of that ofX(a, b), was
used. This inconsistency in definition will not affect any dis-
cussions below. Equation (1) has defined a WCS for each
point in the time-scale domain, similar to the wavelet power.
Since the WCSCxy is complex when complex wavelets such
as the Morlet wavelet are used, its squared absolute value,

|Cxy(a, b)|
2
=|X∗(a, b)Y (a, b)|2=|X(a, b)|2|Y (a, b)|2, (2)

or simply its absolute value|Cxy(a, b)|, is often plotted
for visualisation (TC98). Apparently, a large value of
|Cxy(a, b)|

2 occurs when the two signalsx andy have large
power at similar scales (frequencies) and around the same
time, regardless of the local phase difference. When the
phase information is desired, one needs to refer back to
Eq. (1). Specifically, if the complex numberCxy is expressed
in terms of its module and phase angle, we have

Cxy(a, b) = |X(a, b)|e−iθx (a,b)|Y (a, b)|eiθy (a,b)

= |Cxy |e
i(θy (a,b)−θx (a,b)). (3)

This means that the phase angle of the WCS, i.e.
θy(a, b)−θx(a, b), reflects the phase difference by which
y(t) leadsx(t) at the given scale and time. To present the
information in phase Liu (1994) suggested that both the real
and imaginary parts of the WCS be shown. Alternatively,
another common practice is to show both the absolute value
and the phase angle ofCxy in the time-scale domain.

A well-known disadvantage of the WCS in the time-scale
domain is that it cannot be normalised to have a value
bounded by, for example, zero and one. A normalisation
similar to what brings about the correlation coefficient be-
tween two time series always yields a value of unity for the
WCS (TC98). In other words, the normalisation of the WCS
cannot be done locally, and it must involve multiple points in
the time-scale domain for some degree of smoothing. In geo-
physics as well as other physical fields, a simple averaging in
time will yield a useful measure of the local linear coupling
in the scale (frequency) domain between two signals. This
averaged quantity is referred to as the wavelet linear coher-
ence (WLC) (or sometimes the wavelet coherency) expressed
as

Lxy(a) =
|
∫
T
X∗(a, b)Y (a, b)db|2∫

T
|X(a, b)|2db

∫
T

|Y (a, b)|2db
, (4)

whereT is the time interval for averaging.Lxy is zero for
cases of no linear relation, is one for a perfect linear coupling,

and has values between zero and one for linear relations of
different degrees. It is important to note that the linear rela-
tion here is not exactly the same as the conditions that result
in a large value in the|Cxy |. A largeLxy at a particular scale
a results from persistently large wavelet energy densities at
a in both time series and a nearly constant phase difference
between these two series ata over a periodT . The numera-
tor on the right side of Eq. (4) will otherwise have a near zero
value. The role that the phase difference plays in the WLC
will become clearer in Sect.4.

The significance test, one of the central ideas in statisti-
cal inference, is also important for the interpretation of re-
sults using wavelet-based approaches. The significance test
establishes significance levels below which the results are
considered not to be “significantly” different from zero and
hence none of them can be used with sufficient confidence.
The null hypothesis (H0) in the present work will be based
on two independent Gaussian White Noise (GWN) time se-
ries and the associated sampling distributions of the inter-
ested wavelet-based quantities (statistics), which is a con-
ventional approach in many statistical studies (e.g. Jenkins
and Watts, 1969; TC98; Ge, 2007). In this approach, it is
important to bear two points in mind. First, using the sam-
pling distribution of the WCS (or WLC) of two independent
GWNs is not the only way to establish the significance lev-
els for the associated quantities. Two Gaussian red noise
series (TC98), one time series of any kind (even without a
known Fourier spectrum) and one GWN, or more particular
combinations of two time series can all theoretically result
in zero WCS and WLC and hence define significance levels
of their own. For simplicity, we assume that the combina-
tion of two GWNs is not only the simplest but also the most
representative kind for establishing the null hypothesis. The
derived significance levels based on two GWNs can be read-
ily extended for those based on two Gaussian red noise series
(TC98). In the present work, therefore, only the case of two
independent GWNs is considered in estimating the sampling
distributions of the WCS and the WLC. The second point
is that, in conventional approaches, the null hypothesis for
a significance test for wavelet-based quantities is inevitably
constructed on stationary reference (background) series such
as GWNs and red noise series, even though the actual time
series to be analysed often are nonstationary. Regarding this
issue TC98 provided some reasons for still using stationary
reference series. Their main point of view was that station-
ary significance tests are more mature and more suitable for
providing a standard by which any nonstationarity can be
detected. Moreover, we should point out here that, since
the analysed nonstationary time series do not usually change
their statistical properties dramatically over a short time, the
use of stationary reference signals for establishing the null
hypothesis is locally justified. Caution nevertheless should
be taken when conducting significance testing on naturally
observed data sets.
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The following discussions will be based on the Morlet
wavelet, whose mother wavelet is defined as

ψ(t) = π−1/4eiω0te−
t2
2 , (5)

whereω0 is set equal to 6.0 andt denotes time. The fam-
ily of the Morlet waveletsψa,b(t) can be generated by time
translations and scale dilations, such that

ψa,b(t) =
1

√
a
ψ(
t − b

a
). (6)

The use of the Morlet wavelet and other complex wavelets
will give rise to complex wavelet coefficients and hence ad-
ditional information can be deduced from the phase angle of
all complex wavelet quantities. The analyses in the follow-
ing sections can readily be applied to other types of wavelets
whenever the continuous wavelet transform is used. As for
the significance tests on wavelet-based quantities obtained
using the discrete wavelet transform, more considerations
and manipulations are needed, which is beyond the scope of
the present work.

2 Significance test of the wavelet cross spectrum

Two independent GWN series are denoted asx andy with
variancesσ 2

x andσ 2
y , respectively. To avoid complication of

notations,x and y also represent realisations of these two
random processes.

The squared absolute value of the WCS of two GWNs
is the product of twoχ2-distributed random variables,
|X(a, b)|2 and|Y (a, b)|2 (Eq. 2). TC98 gave a form of the
probability density function (PDF) of the absolute value (not
squared) of the WCS:

fν(z) = 22−νzν−1K0(z)/0
2(ν/2), (7)

where0 is the Gamma function,K0(z) is the modified Bessel
function of order zero, andν is the degree of freedom of
theχ2 distributions of the associated wavelet power. When
complex wavelets are used, i.e.ν=2, Eq. (7) becomes

fTC(z) = zK0(z), (8)

where the subscript “TC” indicates that it results from
TC98’s form Eq. (7). Equation (7), however, cannot be found
in Jenkins and Watts (1968) as it seemed, nor was its deriva-
tion clearly presented. In what follows, we will provide a
clear derivation of the sampling distribution of the WCS of
two GWNs.

Wells et al. (1962) obtained the probability distribution of
the product of two independent non-centralχ2-distributed
random variables, also reviewed later by Kotz and Srinivasan
(1969). The sampling distribution of|Cxy |2 based on two
independent GWNs is a special case where the degrees of

freedom of the twoχ2 distributions are both 2 and the non-
centrality parameters are both zero. More specifically, since

|X|
2

δtσ 2
x /2

∼ χ2
2

and

|Y |
2

δtσ 2
y /2

∼ χ2
2

with δt being the sampling period or the reciprocal of the
sampling frequencyFs (Ge, 2007), their product

|X|
2

δtσ 2
x /2

|Y |
2

δtσ 2
y /2

∼ W2,

whereW2 denotes the probability distribution with a PDF

f (z) =
1

2
K0(z

1/2), (9)

based on Wells et al. (1962). Rearranging terms we have

|Cxy(a, b)|
2

σ 2
x σ

2
y

∼
1

4
δt2W2. (10)

The significance level for a percentileα can be deduced from
the 1−α percentile of theW2 distribution. Moreover, we can
prove that the results obtained here, Eq. (10), and TC98’s
form, Eq. (8), are equivalent to each other and are equally
correct in determining the significance levels for the WCS of
two GWNs. More details are given in AppendixA.

A set of simulated signals can be used to examine the
proposed significance test of the WCS. Sine signals with a
prescribed signal-to-noise ratio, SN, were generated. Same
as those in Ge (2007), each of the signals consists of 2000
points with a sampling frequency of 50 Hz (i.e.δt=0.02 s).
The entire period of 2000 points is divided into three inter-
vals. In different intervals the two generated time series,x(t)

andy(t), have different properties. The two signals are gen-
erated such that

x = A sin(2πfx t)+ GWN(0,1)
n ∈ [701,900]
y = A sin(2πfx t +

t−t (700)
t (900)−t (700)2π)+ GWN(0,1)

n ∈ [701,900]
x = A sin(2πfx t)+ GWN(0,1)
n ∈ [901,1100]
y = A sin(2πfx t − 2

3π)+ GWN(0,1)
n ∈ [901,1100]
x = A sin(2πfx t)+ GWN(0,1)
n ∈ [1101,1300]
y = A sin(2πfx t + 2

3π)+ GWN(0,1)
n ∈ [1101,1300],

(11)

where n denotes the order of data points,fx is set at
8 Hz, A is determined by the prescribed signal-to-noise ra-
tio, which is 3 for the present study, through the relation
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Fig. 1. Squared absolute value of the wavelet cross spectrum
|Cxy(a, b)|

2 of two simulated signals given by Eq. (11) and the 5%
significance level.

SN=10 log10A
2, and GWN(0,1) denotes a GWN with a

zero mean and a unit standard deviation. These two simu-
lated signals thus have a linearly varying phase difference in
the first intervaln∈[701,900], a constant phase difference
−2π/3 in the second intervaln∈[901,1100], and a constant
phase difference 2π/3 in the third intervaln∈[1101,1300].
The signals in the periods prior ton=701 and aftern=1300
are just GWNs. TC98’s Fortran code for estimating the
wavelet coefficient was used with an adjustment as suggested
in Appendix A of Ge (2007). To avoid the cone of influence
(TC98), only the central 600 points (n∈[701,1300]) are used
for analysis. Although the retained wavelet coefficients still
are affected by the edge effect at the largest scales, the influ-
ence of the edges is negligible.

Figure 1 shows the squared absolute value of the WCS,
|Cxy |

2, between the simulated signalsx andy (Eq. 11) nor-
malised by the product of the variances of the two signals
over the period that covers the central 600 points. The three
curves in Fig.1 represent three vertical slices of|Cxy |

2 val-
ues in the original time-scale domain, with scalea converted
into frequencyf through the relation

a = fc/f ≈ 0.9394/f (12)

for the Morlet wavelet. The timing for the three curves,b, is
expressed relative to the beginning of the central 600 points
instead of that of the entire 2000 points. Hence, the times at
b=150δt , b=300δt , andb=450δt fall in the three intervals
in Eq. (11), respectively. With a relatively high SN ratio,
all the three curves of|Cxy |2 are well above the theoretical
5% significance level based on Eq. (10), regardless of the
patterns of the phase difference betweenx andy in different
intervals. As expected, all the three curves peak at about
8 Hz (i.e.fx) with small deviations due to the added GWNs.

Very small ripples are observed in Fig.1 at frequencies lower
than 4 Hz. These ripples are correctly indicated to be random
noise, or not significantly different from zero with a 95%
confidence, by the 5% significance level.

3 Property of the phase angle of the WCS

The phase angle of the WCS for each point in the two-
dimensional time-scale domain can be plotted (TC98).
TC98, however, did not propose any significance test or con-
fidence interval for the phase. The significance test on the
phase angle appears not to be as important as that on other
popular wavelet-based quantities. Nevertheless, some of the
properties of the phase angle of the WCS might be interesting
to the users of the wavelet analysis.

If the range of the phase angleφ is [−π, π] and the con-
ventional range of the arctangent function is[−π/2, π/2],
we have

φ = arctan
Im[X∗Y ]

Re[X∗Y ]
+ µπ = φ0 + µπ, (13)

whereµ=0 when the complex numberCxy=X∗Y is in the
first or fourth quadrant of the complex plane,µ=1 whenCxy
is in the second quadrant, andµ=−1 whenCxy is in the
third quadrant. Using the real and imaginary parts ofX and
Y , Eq. (13) leads to

tanφ0 =
Re[X]Im[Y ] − Im[X]Re[Y ]

Re[X]Re[Y ] + Im[X]Im[Y ]
. (14)

Whenx andy are independent GWNs, the numerator and
the denominator of Eq. (14) are independent of each other,
unbounded, and can take any real values. As suggested by
Jenkins and Watts (1968, p. 366), they can be considered to
be approximately normally distributed variables. The quan-
tity tanφ0 is thus the ratio of two normally distributed ran-
dom variables, which has a standard Cauchy distribution de-
noted asC(0,1). More details are given in AppendixB. The
PDF of tanφ0 is therefore

f (z) =
1

π(1 + z2)
, (15)

which yields no mean or any higher-order moments but a
zero median. That Cauchy distributed random variables have
no variance implies that the random variable can take ex-
treme values more often than would naturally occur (e.g. for
normally distributed variables). Given a sufficiently long set
of time seriesx andy (GWNs), tanφ0 can disperse into an
unbounded range with extreme values observed more fre-
quently than rarely. The angleφ0 can hence take any value
between−π/2 andπ/2 and is distributed much more uni-
formly than a normally distributed variable. Papoulis (1965,
p. 199) reached a further result:φ0 in Eq. (14), as the prin-
cipal part of the phase angle of a random complex number
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that has independently normally distributed real and imagi-
nary parts with zero means and equal variances, has an ex-
actly uniform distribution in the interval from−π/2 toπ/2.
Taking advantage of this observation as well as the fact that
Cxy=X

∗Y can be in the four quadrants of the complex plane
with equal probabilities, we deduce that the phase angle of
Cxy=X

∗Y , φ, has a uniform distribution in the interval be-
tween−π to π . Therefore, no significance level can be es-
tablished with the aid of the sampling distribution ofφ. In
other words, the phase angleφ will fill the range between
−π andπ without concentrating around any particular value.
The randomness of the two GWNsx and y makesφ not
likely to be bounded around any value but rather scattered
in the whole range of[−π, π].

Figure2 shows the time variation of the phase angleφ of
the WCS of the simulated signalsx andy given by Eq. (11)
at three frequencies: 6 Hz, 8 Hz, and 10 Hz. According to
Eq. (11) the phase at 6 Hz and 10 Hz should reflect both ran-
domness due to the added GWN components and the influ-
ence of the scale at 8 Hz through the correlation between ad-
jacent scales. The phase pattern at 8 Hz is evident, including
a linear increase in the first 200-point period, a relatively sta-
ble negative phase angle in the middle 200-point period, and
a nearly constant positive phase angle in the last portion of
the period. However, the nearly constant phase angles in the
second and third intervals are not exactly−2π/3 and 2π/3
as prescribed by Eq. (11). This is not completely unexpected
since the phase difference betweenx andy (Eq. 3) at any
frequency has been perturbed by the different GWN compo-
nents added tox andy. Affected by the scale at 8 Hz, the
phase angle of the WCS at 10 Hz bears resemblance to that
at 8 Hz, while the pattern of the phase appears to be much
more irregular. The phase angle at 6 Hz reflects randomness
with values close to±π occurring more often than rarely,
especially within the interval of the last 200 points. The dif-
ference between the phase patterns at 8 Hz and those at 6 Hz
and 10 Hz are consistent with the deduced properties of the
phase angle of the WCS of two GWNs. It hence appears
that if the phase difference between two signals has a regu-
lar pattern the phase of the WCS tends to become stable and
reveal that pattern rather than fluctuate everywhere. The sig-
nificance test of the phase angle of the WCS should thus be
replaced by identification of regular phase patterns. Since it
is still quite subjective to distinguish a regular phase pattern
from randomly fluctuating ones, we suggest that the wavelet
linear coherence of the same two signals be inspected. More
details are given in Sect.4.

4 Significance test of the wavelet linear coherence

The definition of the WLC is given by Eq. (4). For a certain
a, the discrete form of Eq. (4) can be expressed as

Lxy(a) =
|
∑
mX

∗
a(b)Ya(b)|

2∑
m |Xa(b)|2

∑
m |Ya(b)|2

, (16)
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29

Fig. 2. Phase angle of the wavelet cross spectrum,φ(a, b)

(φ∈[−π, π]), of two simulated signals given by Eq. (11) at 6 Hz
(blue), 8 Hz (red), and 10 Hz (black).

where the summations are overm data points such that
T=mδt . This form of the WLC can be readily viewed as
a squared correlation coefficient between twom-point time
series:

{
X∗
a

}
and{Ya}. As Jenkins and Watts (1968, p. 379)

pointed out, the sampling distribution of the correlation co-
efficient (not squared) of two normally distributed random
variables can be obtained by Fisher’s z-transformation. Then
the only problem to consider now is how the two series,

{
X∗
a

}
and{Ya}, can be treated as realisations of two random vari-
ables.

The continuous wavelet transform as used in the present
work gives rise to redundancy when one-dimensional time
series is resolved into a two-dimensional time-scale do-
main. Neither of the two series,

{
X∗
a(j)

}
and {Ya(j)}

(j=1,2, · · · , m), can be considered to be a series of inde-
pendent observations unless the inter-correlation of adjacent
data points in

{
X∗
a

}
and{Ya} is removed. It can be deduced

that the covariance of two wavelet coefficients of a GWN se-
riesx at scalea and timesbi andbj , i.e.

|Cov[Xa(bi), Xa(bj )]| = δtσ 2
x e

−1b2/4a2
, (17)

where1b=|bi−bj | (AppendixC). The decay of the corre-
lation coefficient of wavelet coefficients of the same scale
with a separation in time1b is determined by the exponen-
tial functione−1b

2/4a2
, or

ρ(1b) = e−1b
2/4a2

(18)

with ρ(1b) denoting the absolute value of the correlation
coefficient of temporally adjacent wavelet coefficients. Ob-
viously, farther apart wavelet coefficients are less correlated.
More discussion can be found in AppendixC.

At this point we can prescribe a decorrelation parameter
κ such that the correlation coefficientρ(1b)=1/κ. Solving
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Fig. 3. Decorrelation of wavelet coefficients of a GWN with an in-
creasing time separation reflected by the decorrelation of wavelets.
The mother Morlet waveletsψ(t) are used for illustration. The blue
and the black wavelets have a correlation coefficient of 1/5 (κ=5);
the red and the black wavelets have a correlation coefficient of 1/20
(κ=20).

for 1b we are able to determine the time separation1b be-
yond which the correlation coefficient between wavelet co-
efficients falls below 1/κ. The decorrelation parameterκ
can be set at a large positive number such as 5 or 20, cor-
responding to correlation levels of 1/5 or 1/20, respectively.
We can further assume that the wavelet coefficients are con-
sidered to be independent of each other when their correla-
tion coefficient is below 1/κ. In this approach, a series of
wavelet coefficients, such as

{
X∗
a(j)

}
(j=1,2, · · · , m), can

be grouped into a number of independent sub-series. Within
any individual sub-series the correlation coefficient of any
two wavelet coefficients is larger than 1/κ, while the wavelet
coefficients belonging to different sub-series have a correla-
tion coefficient lower than 1/κ. Therefore, each sub-series
is equivalent to an independent observation in a sample, and
the number of the sub-series is equivalent to the sample size.
More specifically, settingρ(1b)=1/κ yields

1b = 2
√

ln κa. (19)

The sample size, denoted asN(a) which is a function of the
scale, can be estimated through the relationN(a)=T/1b, so
that

N(a) =
mδt

2
√

ln κa
. (20)

Since the correlation coefficient of the wavelet coefficients of
a GWNy decays at the same rate as described by Eq. (18),
Eq. (20) is also applicable to the wavelet coefficient ofy. For
example, for the case ofa=1 (the mother Morlet wavelet),
the time separation1b for κ=5 is 2

√
ln 5 and that forκ=20

is 2
√

ln 20. The Morlet wavelets with these two separations
from a Morlet wavelet at the origin are shown in Fig.3, giv-
ing an idea about how wavelet coefficients become decor-
related as they are more and more separated in time. The
correlation coefficient of wavelet coefficients essentially is
reflected by that of wavelet functions when the analysed
time series is a GWN (AppendixC). For clarity, the Mor-
let wavelets (real part), instead of the wavelet coefficients,
are shown in Fig.3. Figure3 also indicates that increasing
κ from 5 to 20 does not require a much wider separation.
Hence, we will simply setκ at 5 for most cases in the follow-
ing sections.

The two original series
{
X∗
a

}
and{Ya} of lengthm can now

be treated as two reduced series of independent observations
of lengthN(a). Using Fisher’s transformation we have

arctanh(rxy) ∼ N(arctanh(ρxy),
1

√
N(a)− 3

), (21)

whererxy andρxy are the theoretical and estimated corre-
lation coefficients of

{
X∗
a

}
and {Ya}. In the case ofx and

y being GWNs and a largeN(a) (i.e. at reasonably small
scales), the probability distribution is approximately

arctanh(rxy) ∼ N(0,
1

√
N(a)

) ≈ N(0,

√
2
√

ln κa

mδt
). (22)

Theα significance level of the WLC is hence

Dα(Lxy) = tanh2

sα
√

2
√

ln κfcFs
mf

 (23)

with sα denoting the 1−α percentile of the standard normal
distribution and scales converted into frequencies through
Eq. (12). More detailed derivation can be found in Ap-
pendixC. WhenN(a) is close to or even smaller than 3, as
is often the case at very large scales, the resultingα signifi-
cance level according to Eqs. (21) and (22) tends to be larger
than one. For most cases, therefore, no WLC results should
be trusted with confidence at the largest scales.

Van Milligen et al. (1995) estimated the “statistical noise
level” of the WLC as

DVM(Lxy) ≈ 2

√
Fs

mf
(24)

through a similar but much more heuristic reasoning. We be-
lieve that their so-called statistical noise level is exactly the
significance level, but it is not clear whatα value was asso-
ciated with Eq. (24). Comparing Eqs. (23) and (24) we have
an impression that Eq. (23), with more factors taken into ac-
count, is a much more accurate form than the one suggested
by van Milligen et al. (1995).

As an example, Fig.4 shows two sets of significance lev-
els. The blue set of curves is significance levels form of 40,
80, 140, 200, and 400 points, from top to bottom, for the case
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30

Fig. 4. 5% significance levels of the wavelet linear coherence: red:
κ=5,m=40, 80, 140, 200, and 400 from top to bottom; blue:κ=20,
m=40, 80, 140, 200, and 400 from top to bottom.

of κ=20. It is obvious that the low frequency range tends to
be seriously affected by random noise, and the significance
levels drop rapidly with increasingm. When the decorrela-
tion condition is relaxed toκ=5, the resulting significance
levels (the red set of curves) are evidently, but not consid-
erably, lower than their corresponding ones forκ=20. For
example, form=80, the difference of the significance levels
betweenκ=20 andκ=5 is approximately 0.08 for most of
the frequencies. The difference seems to be much smaller
whenm is increased to 200 or 400. In most practical cases,
therefore,κ=5 should be reasonably effective. Another fea-
ture of Fig.4 is that all significance level curves are below
one. This is not realistic because Eq. (23) is only applicable
to scales that are not too large. One should be aware of the
possibility ofN(a) being close to 3, and, practically, should
not make use of any results below 5 Hz in Fig.4.

Figure 5 shows three WLC curves starting atb=50δt ,
250δt , and 450δt with an integration lengthm of 120 points
(κ=5), so that the three WLC curves are completely esti-
mated within the three intervals respectively. In Fig.5, the
WLC levels around 8 Hz for the second and third intervals
are well above the local 5% significance level, while that
for the first interval cannot be distinguished from the WLC
caused by random noise. This clearly exhibits the effect of
the phase-difference pattern ofx andy on the resulting WLC
values. During the second and third intervals, the stability in
the phase difference (Fig.2) yields a peak in the WLC at the
associated frequency. In contrast, the linearly varying, i.e.
inconstant, phase difference betweenx andy in the first in-
terval leads to a low level of WLC that is considered not to be
significantly larger than zero. Furthermore, the rapid fluctua-
tions at low frequencies, which have obviously resulted from
randomness, are collectively far below the 5% significance
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31

Fig. 5. Wavelet linear coherenceLxy of two simulated signals given
by Eq. (11) estimated overm=120 points starting fromb=50δt
(blue),b=250δt (red), andb=450δt (black). The three WLC curves
represent, respectively, the linear relations in the three intervals as
in Eq. (11).

level, especially from 1 Hz to 5 Hz. This implies the possi-
bility of relaxingα to larger values, such as 10% or 20%, for
this particular case.

5 Significance tests on actually observed data sets

As pointed out previously, theoretically developed signifi-
cance tests should be examined and validated by actually
observed data, simply because assumptions, simplifications,
and approximations have been inevitably made in the course
of derivation. The NOAA’s (National Oceanic and Atmo-
spheric Administration) Lake Michigan wind-wave data set
is used here again. The description of the data set can
be found in Ge and Liu (2007 and 2008) and Ge (2007).
Briefly, the horizontal wind velocity time series (denoted as
u) and the wave elevation (denoted asη) were simultane-
ously recorded by a NOAA 3-m discus buoy, deployed dur-
ing the autumn of 1997 in nearshore eastern Lake Michigan
of the United States (43.02◦ N, 86.27◦ W) with a sampling
frequencyFs=1.7 Hz. The data set exhibits a long process
of wave growth in response to increasing wind forcing, as
discussed previously by Ge and Liu (2008).

A 2000-point data segment was picked out from the wind-
wave data set, and the central 600-point wavelet coefficients
were used for further analysis. The WLCLηu estimated over
the period fromb=200δt to 299δt (m=100 andT=58.8 s)
is shown in Fig.6 against the 5% and 20% significance lev-
els. Two peaks in the WLC are well above the 5% signifi-
cance level, one at 0.15 Hz and the other around 0.5 Hz. The
broader peak around 0.5 Hz is in fact a frequency range from
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Fig. 6. Wavelet linear coherence of the wave elevationη and
the wind velocity fluctuationsu estimated over the period from
b=200δt to b=299δt (m=100), compared with the 5% and 20%
significance levels.

0.35 Hz to 0.65 Hz in which all frequency components in the
winds are linearly coupled with those in the waves, because
the width of this peak should not be the consequence of lo-
cally poor resolution in frequency. A third peak at 0.07 Hz is
also above the 5% significance level with a high WLC value
of 0.94. Since the local significance level is almost equally
high (about 0.84), we do not consider this peak to be statisti-
cally significant.

The phase difference between the wave and wind time
series, or the phase angle of their WCSCηu at three rep-
resentative frequencies, 0.15 Hz (for extremely high WLC),
0.28 Hz (for extremely low WLC), and 0.5 Hz (for locally
high WLC), is shown in Fig.7. Fromb=200δt to 299δt , the
phase difference at 0.15 Hz is very stable around±180◦ (note
that the large steps are artificially caused by the definition of
the phase angle), indicating that the wind and wave time se-
ries are almost perfectly out of phase at 0.15 Hz during the
time period fromb=200δt to 299δt . This characteristic is
however not as evident in other time periods. At 0.5 Hz in the
same period, the phase difference also appears to be centered
around 180◦, while its deviation from 180◦ is relatively larger
than that at 0.15 Hz (e.g. fromb=230δt to 260δt). In com-
parison, the phase difference in the same period at 0.28 Hz
exhibits a much more random pattern. The phase angle does
not seem to settle around any particular value. The different
characteristics of the phase angle at these three frequencies
in the studied 100-point period are consistent with the de-
duced properties of the phase angle of the WCS and its re-
lation to the WLC in the previous sections. Consequently,
a significance test of the WLC can be used to help identify
meaningful patterns in the phase angle of the WCS.
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Fig. 7. Phase angle of the wavelet cross spectrumCηu at 0.15 Hz
(blue), 0.28 Hz (red), and 0.5 Hz (black). Wide curves of all colors
highlight the period fromb=200δt to b=299δt .

Figure7 also reveals the randomness and intermittency of
the phase angle. During the period fromb=50δt to 150δt ,
for example, the wind velocity fluctuations lead the wave
elevation by a linearly varying phase angle growing from
−180◦ to 180◦ from 50δt to 100δt and then growing from 0
to 180◦ from 110δt to 150δt at 0.15 Hz. At 0.28 Hz and in the
same interval, however, the winds appear to lead the waves
by a relatively constant phase angle of approximately 90◦,
which is only briefly interrupted by a sharp peak at around
b=100δt . According to Sect.4, this pattern implies a rela-
tively high WLC value over that period. At 0.5 Hz, the winds
lag behind the waves by about 160◦ in most part of the same
period, while fromb=100δt to 120δt the phase difference
between the winds and the waves is slightly larger than 180◦,
so that the angle wraps around and appears to be+180◦.

6 Conclusion

Significance testing is an important step in interpreting re-
sults based on the wavelet analysis and wavelet-based spec-
tral moments. In many cases, in practice, even large peaks
could be merely artifacts resulting from randomness due to
the nature of the problem and errors in the measurements.
Significance testing helps to establish a basis upon which
one can reject a peak value in the wavelet-based quantity
or accept it with a degree of confidence. It becomes even
more important when the wavelet analysis, initially devel-
oped as an exploratory tool, is being merged into the system
of statistics. In the scenario of statistical signal processing,
observed data records should be viewed as realisations of sta-
tionary or nonstationary random processes, and all large val-
ues in the results are not considered to be equally meaningful.
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Interpretation of results using wavelet-based techniques then
should be done in the same manner as for statistical infer-
ence.

On the other hand, significance testing on wavelet-based
quantities (now treated as wavelet-based “statistics”) can be
extremely difficult, because the wavelet analysis is most fre-
quently used for processing nonstationary time series. When
using sampling distributions based on background noise time
series to establish the null hypothesis, we are clear that the
choice of the background noise signals can be subjective and
arbitrary. Instead of examining an exhaustive list of back-
ground noise series, the present work is focused on a rep-
resentative combination, two independent Gaussian white
noise series. Sampling distributions of the WCS and the
WLC of two independent GWN series are estimated through
rigorous statistical reasoning. When other combinations of
reference series are preferred, the same procedure can be
followed to obtain their associated sampling distributions.
Significance levels of these two wavelet-based quantities are
then deduced based on the sampling distributions.

In the present work, the sampling distributions of the WCS
and the WLC are derived by analytical approaches, which
are preferred by TC98. In many cases where the analyt-
ical approach seems to be difficult, Monte Carlo simula-
tions can be employed (TC98). The Monte Carlo simula-
tion, however, has disadvantages of high computation cost
and the inability to provide the user with a clear mathemat-
ical form for the sampling distributions or the significance
levels. Through simulated noisy sinusoidal signals and ac-
tual wind-wave time series observed from Lake Michigan, it
is shown that the analytically developed significance tests are
reasonably effective in distinguishing large WCS and WLC
values that indicate meaningful linear spectral relations from
those generated by random noise. Furthermore, in the ab-
sence of significance tests for the wavelet phase difference
between time series (i.e. the phase angle of the WCS), the
significance test of the WLC can help identify meaningful
patterns in the phase difference. In contrast to earlier appli-
cations of the wavelet analysis (e.g. Foufoula-Georgiou and
Kumar, 1994), significance tests help to place the interpreta-
tion of results on a rigorous statistical basis, so that the in-
terpretation no longer depends on the researcher’s personal
experience and judgment.

Significance tests of third-order wavelet spectral moments,
such as the wavelet bispectrum and the wavelet bicoherence
(van Milligen, 1995; Ge and Liu, 2007; Elsayed, 2008), will
be investigated in a future work.

Appendix A

Sampling distribution of the WCS given by TC98

According to Eq. (10), the α significance level of
|Cxy(a, b)|

2/σ 2
x σ

2
y is δt2Z(1−α)/4, whereZ(1−α) is the

1−α percentile of theW2 distribution. Alternatively, since
the conventionally defined wavelet coefficient ofx(t) at
time b and scalea, i.e. X(a, b), and the wavelet coeffi-
cient of x(t) at time tn and scalea defined by TC98, i.e.
W x
n (a), are related by|X(a, b)|2=δt |W x

n (a)|
2 (Ge, 2007) (a

similar relation holds fory(t)), the α significance level of
|W x

n (a)W
y
n (a)|

2/σ 2
x σ

2
y becomesZ(1−α)/4. Therefore the

α significance level of|W x
n (a)W

y
n (a)|/σxσy is

√
Z(1−α)/2.

Compared with TC98’s result that theα significance level
of |W x

n (a)W
y
n (a)|/σxσy is ZT C(1−α)/2 for GWNsx andy

and complex wavelets (ν=2) with ZT C(1−α) denoting the
1−α percentile of the distribution given by Eq. (8), the only
question now remaining is whetherZT C(1−α) is equal to
√
Z(1−α). We only have to consider two PDFs: Eq. (8)

given by TC98 without any explanation and Eq. (9) as a par-
ticular case of the results given by Wells et al. (1962).

The cumulant probability functions (CDF) can be obtained
from Eqs. (8) and (9), respectively. The CDF based on
TC98’s form is

FT C(z) = 1 − zK1(z) (A1)

and the CDF associated with the PDF given by Eq. (9) is

F(z) = 1 −
√
zK1(

√
z) (A2)

for any real positivez. It is obvious immediately that
ZT C(1−α)=

√
Z(1−α) holds for anyα value from zero to

one. TC98’s forms, Eqs. (7) and (8), are hence reconciled
with Eq. (9) developed in the present work.

Appendix B

More details on the sampling distribution of the
phase angle of the WCS

A property will be useful for the following discussion: if two
time series (more rigorously, random variables or stationary
random processes) are independent, the mean value of their
product is the product of their respective means, i.e.

E[xy] =

∫ ∫
xyf (x, y)dxdy

=

∫ ∫
xyf (x)f (y)dxdy

= E[x]E[y], (B1)

whereE[· · ·] means the expectation,f (x, y) denotes the
joint probability density function ofx andy, andf (x) and
f (y) are the marginal probability density functions ofx and
y, respectively.

From Eq. (14), tanφ0 is the ratio of
A=Re[X]Im[Y ]−Im[X]Re[Y ] to
B=Re[X]Re[Y ]+Im[X]Im[Y ]. It is easy to see that
they can be both positive and negative with unbounded
values. Jenkins and Watts (1968, p. 366) suggested that
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Fig. B1. Probability density function of the standard Cauchy distri-
butionC(0,1).

they can be approximately treated as normally distributed
variables. Following the same approach that leads to the
independency of the real and imaginary parts of the wavelet
coefficient of a GWN (Ge, 2007), we have the independency
between any two ofRe[X], Im[X], Re[Y ], and Im[Y ].
Therefore, also using Eq. (B1),

E[A] = E[Re[X]Im[Y ]] − E[Im[X]Re[Y ]]

= E[Re[X]]E[Im[Y ]] − E[Im[X]]E[Re[Y ]] = 0,

and similarlyE[B]=0. Hence,

Var[A] = E[A2
]

= E[Re2
[X]Im2

[Y ] + Im2
[X]Re2

[Y ]

−2Re[X]Im[Y ]Im[X]Re[Y ]]

= E[Re2
[X]]E[Im2

[Y ]] + E[Im2
[X]]E[Re2

[Y ]].

SinceRe[X], Im[X], Re[Y ], andIm[Y ] of GWN x andy
all have zero means,

Var[A] = Var[Re[X]]V ar[Im[Y ]] + Var[Im[X]]Var[Re[Y ]],

which yields

Var[A] =
1

2
δt2σ 2

x σ
2
y . (B2)

Similarly,B has the same variance.
With zero means, their covariance

Cov[A,B] = E[AB]

= E[(Re[X]Im[Y ]

−Im[X]Re[Y ])(Re[X]Re[Y ]

+Im[X]Im[Y ])].

Expanding the right side of the equality above and using the
properties ofRe[X], Im[X], Re[Y ], andIm[Y ], we have

Cov[A,B] = 0. (B3)

Therefore, the two random variables,A andB, both have an
approximately normal distributionN(0, δtσxσy/

√
2) and are

independent of each other. Their ratio, tanφ0, has a standard
Cauchy distributionC(0,1), whose PDF is expressed as

f (z) =
1

π(1 + z2)

and is shown in Fig.B1. The PDF of the Cauchy distribu-
tion in Fig.B1 has a sharp peak at the origin and quite heavy
tails at positive and negative ends. Because of the slow decay
of the PDF values at large positive and negativez, integrals
such as

∫
∞

−∞
znf (z)dz do not exist in the real domain. The

Cauchy distribution hence has no moments of any order, not
even a mean value. Zero is obviously its median, but a me-
dian is not meaningful in determining its significance levels
or confidence intervals. One might also attempt to estimate
the integrals, such as

∫ z0
−z0

f (z)dz and
∫

∞

z0
f (z)dz, to deter-

mine the critical valuez0 for establishing an associated sig-
nificance level. In fact, however, neither of them converges
in the real domain. For example, we have∫

∞

z0

dz

π(1 + z2)
=

1

2π
[π + i(ln(1 + z0i)− ln(1 − z0i))],

which is not a real number unlessz0=0, a trivial case.

Appendix C

More details on the sampling distribution
of the WLC

First of all, more detailed derivation of Eq. (17) is given. De-
noting the wavelets evaluated at(a, bi) and (a, bj ) asψa,i
andψa,j respectively, we have

Cov[Xa(bi), Xa(bj )]

= Cov

[∫
x(t)ψ∗

a,i(t)dt,

∫
x(t)ψ∗

a,j (t)dt

]
= E

[∫
x(t)ψ∗

a,i(t)dt

∫
x(t)ψ∗

a,j (t)dt

]
due to the zero-mean property. Therefore,

Cov[Xa(bi), Xa(bj )]

= E

[∫ ∫
x(t)x(t ′)ψ∗

a,i(t)ψ
∗

a,j (t
′)dtdt ′

]
=

∫ ∫
E[x(t)x(t ′)]ψ∗

a,i(t)ψ
∗

a,j (t
′)dtdt ′

= δtσ 2
x

∫
ψ∗

a,i(t)ψ
∗

a,j (t)dt.

Taking the absolute value of both sides of the equation above,

|Cov[Xa(bi), Xa(bj )]| = δtσ 2
x |

∫
ψ∗

a,i(t)ψ
∗

a,j (t)dt |. (C1)
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In Ge (2007) it was defined thatI2=|
∫
ψa,i(t)ψa,j (t)dt |

2,
and hence

|Cov[Xa(bi), Xa(bj )]| = δtσ 2
x

√
I2. (C2)

Using the results in Ge (2007) that

I2 = e−1b
2/2a2

with 1b=|bi−bj |, we reach Eq. (17).
Moreover, since

Var[X(a, b)] = Var[Re[X] + iIm[X]]

= Var[Re[X]] + Var[Im[X]],

using results in Ge (2007) we obtain

Var[X(a, b)] = δtσ 2
x . (C3)

Comparing Eqs. (17) and (C3), we immediately have

ρ(1b) = e−1b
2/4a2

= |

∫
ψ∗

a,i(t)ψ
∗

a,j (t)dt |,

i.e. Eq. (18), whereρ is the correlation coefficient of the
wavelet coefficients that are separated by1b. Particularly,
when1b=0, ρ(0)=1.

Furthermore, Eq. (C1) indicates that the covariance of two
wavelet coefficients of a GWN that are separated in time is
determined by the integral|

∫
ψ∗

a,i(t)ψ
∗

a,j (t)dt |. This inte-
gral can be viewed as the covariance of two wavelets, one at
(a, bi) and the other at(a, bj ). Noting that when1b=0 the
integral becomes

|

∫
ψ∗

a,i(t)ψ
∗

a,i(t)dt | =

√
I2|1b=0 = 1,

this kind of covariance has the same properties as the ab-
solute value of a correlation coefficient. Consequently, the
correlation coefficient between wavelet coefficients,ρ(1b),
can be expressed as the correlation coefficient between two
wavelets that are at the same locations as their associated
wavelet coefficients in the time-scale domain. This justifies
the use of wavelets in Fig.3 to show the decorrelation of
wavelet coefficients with an increasing time separation.
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Van Milligen, B. Ph., Śanchez, E., Estrada, T., Hidalgo, C., Brañas,
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