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Abstract. A new method for ionospheric predictions based Unfortunately these parameters are not easy to predict. In ad-
on time series autoregressive modd&)that was recently  dition, the functions relating these parameters with the iono-
developed to serve the needs of the European Digital Upsphere are imprecise. Therefore, long term predictions are
per Atmosphere Server (DIAS) for short term forecast of thesubject to a considerable amount of uncertainty even in the
foF2 parameter over Europe (up to the next 24 h) is de-medians. Short-term ionospheric predictions (or forecasts)
scribed. Its performance for various steps ahead is comparegenerally refer to departures from the median behavior. The
with the outcome of neural network predictors for both storm short-term fluctuations may be specified in terms of hour-
and quiet periods in two DIAS locations, Athens and Pruhon-to-hour, day-to-day, and week-to-week variabilities. There
ice. The results indicate that the proposed method providesre also second-to-second and minute-to-minute variations
robust short term forecasts of thf@ F2 for the middle lati-  but this class of variations generally falls within the realm of
tude ionosphere. unpredictable behavior (Goodman, 2005). These very short-
Keywords. lonosphere (lonospheric disturbances; Mid- term f.orecas_ts.are .generally referr_ed to as.nowcasts. ano—
spheric predictions in the short and intermediate term provide

latitude ionosphere; Modeling and forecasting; Instrumentsth  excil hall for the | heri h
and techniques) e most exciting challenge for the ionospheric researchers.

lonospheric predictions are mainly based on ionospheric
modeling that assumes a number of forms ranging from the
purely theoretical to the totally empirical. Although theoret-
ical models (e.g., Crowley et al., 1996; Daniell et al., 1995)

The accurate prediction of ionospheric conditions especiallyCOUId be considered as powerful tools for physical analy-

during periods characterized by solar and geomagnetic disS€s providing real mput_ in the un_derstand_lng of the me_tch-
anisms that govern the ionospheric formation under various

turbances is a strong requirement for the reliable perfor- . . oo
mance of several applications including HF communicationsgeOphys'Cal conditions, they hardly offer real contribution

and satellite positioning and navigation applications. In par-In operational appllcgt.lons (Mikhailov et al., 2007). On th?

ticular, the parameters that have received a great deal of aEther hand, the emplm_:al gpproach based on the correlation
tention are the peak region electron density (NmF2) and etween _the |o_n_osphe_r|f: d|sturbances and_the level of the ge-
the related critical frequencyfp F2), since they are both re- omagnetic activity as it is described by various geomagnetic

lated to the maximum usable frequency (MUF) for oblique activity indices (Fuller-Rowell et al., 2000b; Fuller-Rowell et
. . l., 2002; Kutiev and Muhtarov, 2001 a, b, 2003; Muhtarov

ropagation of radio waves, as well as the total electron con@' - ' - A

propag nd Kutiev, 1999; Muhtarov et al., 2002; Tsagouri and Bele-

TE hich i her ki I h
tent (TEC), which is another key parameter related to phas aki, 2006), is widely used in practice. Besides the opera-

delay effects on the GPS navigation signals (Fuller-Rowell et . ) : - : o
al., 2000a). tional implementation, the empirical modelling exhibits cer-

Glain advantages compared to the theoretical modelling if a
ogood data set is available. The main advantage of the em-
pirical models is that their analytical expressions are fitted to
the data, so there is no systematic deviation (offset) between
Correspondence taK. Koutroumbas the model and data. However, the main problem of empirical
(koutroum@space.noa.gr) models is how well their analytical expressions describe the

1 Introduction

Long-term ionospheric predictions are generally base
upon predictions of driving parameters such as the sunsp
number, the 10.7 cm solar flux, and magnetic activity indices.
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372 K. Koutroumbas et al.: lonospheric forecast by time series autoregression technique

observed variations (Kutiev and Muhtarov, 2003). Moreovercurate forecasting information in long term and short term
the utilization of geomagnetic indices to ionospheric predic-time scaleslfttp://www.iono.noa.gr/DIAE To achieve this
tion models may cause a humber of complications that arisgoal, DIAS designed and developed a full range of iono-
from the following two facts a) geomagnetic indices do not spheric products, such as real-time ionograms with the au-
provide high enough correlation with the relatife F2 devi-  tomatic scaling results, frequency plots of ionospheric pa-
ation from monthly medians (Mikhailov et al., 2007); b) the rameters important for radio propagation, mapsfefF2,
only geomagnetic index which is available for real-time use M(3000)F2, MUF and electron density for specification, long
is the predicted daily Ap index. The accuracy of the geomag-term prediction and short term forecast, as well as alerts and
netic index predictability is an issue of major consideration. warnings for forthcoming ionospheric disturbances. In order
In addition, the transformation of the daily Ap to an hourly to deliver those products, DIAS developed a pan-European
index would impose additional uncertainty in the forecastingdigital data collection, based on real-time information as well
models. as historical data provided by most of the operating iono-
To overcome these problems, an alternative approach ispheric stations in Europe. DIAS has already started its oper-
provided by the real-time ionospheric models that are usedation in August 2006, and the delivered products and services
for ionospheric specification and short term prediction of theare available in the addrek#tp://dias.space.noa.gr
absolute value of the ionospheric parameters and are sup- The aim of this paper is to present a new method for short
ported mainly by time series forecasting techniques. Dataterm ionospheric forecast up to 24 h ahead, based on the
driven modelling techniques of this kind are the standardautoregression models. To assess the performance of the
auto-correlation and autocovariance prediction models. Inmethod we compare the results with those obtained from a
addition, neural network models have also been used in thisimilar method that employs neural network models. The
framework. Their utilization is based on the assumption proposed method is currently used by the DIAS system and
that ionospheric variability is dominated by non linear pro- delivers forecasts of th¢go F2 parameter for up to the next
cesses (e.g. Koutroumbas and Belehaki, 2005; Tulunay et al24 h, for several middle latitude locations in Europe where
20044, b; Cander, 2003; Stanislawska and Zbyszynski, 200IDIAS ionospheric stations operate.
McKinnell and Poole, 2001; Wintoft and Cander, 20003, b). In Sect. 2 we present a description of the proposed method
In the utmost case only previous observations of the preand in Sect. 3 the method’s performance is assessed under
dicted parameter are used for training the adopted modelktorm and quiet conditions using data from Athens° (S8
By using these techniques, one can obtain predictions 0£3.5° E) and Pruhonice (50N, 14.8 E) digisondes. In addi-
the hourly values of the ionospheri€2 layer critical fre-  tion, this section includes a comparison of the above results
quency,foF2, up to 24 h ahead. Statistical studies suggesiwith those obtained by using the neural network (NN) based

that time series forecasting techniques usually provide verymethod. Finally in the last section we summarize our con-
useful tools for reliable predictions under relatively quiet or clusions.

moderate geomagnetic conditions, but they have been proved

inadequate under intensively disturbed geomagnetic condi-

tions (Cander, 2003; Stanislawska and Zbyszynski, 2002)2 Proposed method

The results reveal a general problem related to any statistical

approach: intense or great storms are rare events and pracin this paper we deal with the problem of forecastifw 2.

cally they are not included in the training period when it is More specifically, based on its current as well as its previ-

relatively short. On the other hand, when the training periodous M values, the aim is to forecagb F2 s steps ahead (in

is long the effects of such outstanding events are just lost irour cases=1 for 15 min,s=4 for 1 h, s=8 for 2h,...,s=96

the sea of quiet time and slightly disturbed conditions after afor 24 h) using autoregressive (AR) modeling. Focusing on

statistical treatment (Mikhailov et al., 2007). a specific value of at the beginning of a calendar month,
The field of ionospheric predictions is undergoing contin- the data of the previous calendar month are used to estimate

uous evolution with the introduction of new scientific meth- the AR model that will be used for the estimation o F2

ods and instruments. The requirement for quasi-real-timefor the current calendar month. More precisely, various AR

products based upon current ionospheric specification hamodels are tested on the above data of the previous calendar

led to an increased importance of so-called real-time iono-month and the best one (according to the mean square error

spheric models. lonospheric specification tools comprise tereriterion) is adopted.

restrial sounding systems, including real-time networks of Before we state explicitly the proposed method, a short

ionospheric sounders (Galkin et al., 2006). The Europeardescription of AR models is in order.

Digital Upper Atmosphere Server — DIAS (Belehaki et al.,

2005; 2006) is based on the European real-time network oP.1 Basics of AR modeling

ionosondes and has as primary objective to cover the needs

of the operational applications for reliable information on the Consider a stochastic proce¢s(n)}. The problem of

current conditions of the ionosphere over Europe and for acinterest is the estimation of the value of the process
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2.2 Choice of the best AR model

1 52 83
A, A B A N <, - P Clearly, an AR model is completely determined by its order
@ | . } @ ® M and its parameter vectar. In practice, however, the or-
_ _ _ der M of the model that best describes the data is unknown.
(i-1)- month ith month (i+1-ronth

A simple method for estimating/ and the corresponding
_ _ parameter vectow of the AR model that best describes the
Fig. 1. At each epoch AR models are re-estimated based on thgy5i4 using the time series data{x(0),. .., x(1), x((+1),. ..

measurements of the previous month. x(m) }, calledBest Model Determination Methd@MDM),
is given next:

steps ahead. More specifically, we would like to es- — Divide § into two sets X1={x(0),..., x(/)} and

timate the valuex(n + s) based on the set of values Xo={x(I+1),...,x(m) }.

T={x(n), x(n—1),... . X\n—M)}. Assuming that the process
at hand is described by an AR model, the minimum mean — ForM=110Mmaxdo
square error (MMSE) linear estimator ofn+s), denoted

by Z(n-+5), is given by — Determinew using Eq. (3), adopting’1 in the place

of Y.
x(n+s)=wox (M) +wix(n—D)+...4+wyx(n—M)=w’ -x,, (1) — Estimate the mean square error MpHor the
above model by using the subsét as
whereM is theorder of the AR modelw=[wo, w1,... wy 1" s
is its parameter vector(see Kalouptsidis, 1997) and MSEy, = Z x(m+s)—xyn+ s))2
x, =[x(n), x(n-1),... x(n—M)]T. Both M andw are cru- neitl
cial for the complete determination of an AR model. m—s
Fixing M, the determination o is based on a time series = Z xn+s)—w'-x,)?% )
n=I[+1
Y={x(0), x(D), ..., x(DO}, (2) wherex y (n+s)=w”-x, is the linear MMSE es-

timate of orderM computed by Eq. (1), where as
parameter vectow we use the one produced in the
previous step.

of lengthl, with />> M. More specifically, it can be shown
(see e.g. Kalouptsidis, 1997) thatis the solution of the
following system of linear equations

— End{ For}
Rw = p, 3
— Adopt the model with the smallest MSE as the one that
where best describes the data under study.
r©@  r@) - r(M) 2.3 Application tofoF 2 forecasting

r(1) r@ ---r(M-12

, 4) Let us turn our attention now on the specific problem of the
: : : : estimation of the values of thi®F2 parameter. More pre-
r(Myr(M =1 --- r0 cisely, taking into account that the sampling rate is 15 min,

we would like to have estimates of tHeF2 after 15 min
p=1[r(s), r(s+1), .., rs+M)]" 1 (5) (s=1), lhour (s=4), 2h (=8),..., 24h £(=96). Thus, we

need to estimate 25 AR models denoted byAR5 min),
AR1 (1h), AR (2h),..., ARg4 (24 h).
Based on the systematic variations of flo&2 value, it
as been decided to re-estimate the 25 AR models at the be-
ginning of every calendar month, by taking into account the
measurements of the previous calendar month. More specif-
I—i ically (see Fig. 1), suppose that we are at tiléhe begin-
r@i) = i Zx(j)x(i +j) 2 (6) ning of a new calendar month). At this time the AR i=0
[ —i =1 .., 24 are re-estimated based on fiime series segment
(which corresponds to the previous month). In particular, we
divide S1 in two subsetsX1, which contains the data of the
17 denotes the transpose operator. first half of the previous month ani,, which contains the
2|t is assumed that the process under study is ergodic. data of the second half of the previous month, and we apply

and r(i) is the i-th lag autocorrelation coefficientwhich
measures the correlation between two values of the time seﬁ
ries that lie at time distancefrom each otherr (i) is esti-
mated via the following equation
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the BMDM method described above. Clearly, BMDM will for the same reason. For clarity reasons, we remind that in

be applied 25 times, one for each ARodel. AttimeC (the = TSAR1 and TSARZ2, the number of the past valueg of 2

beginning of the next month), we re-estimate the ARased  that are used for prediction is specified by the ordeof the

on S and so forth. Note that after its estimation, each AR  corresponding AR model.

applied every time a new observation becomes available (in Before we proceed, it is important to remind that the main

our case every 15 min). aim of the present paper is to evaluate the performance of the

proposed TSAR methods during both geomagnetically quiet

) intervals and storms. For comparison purposes we also con-

3 Performance evaluation sider the performance of TSNN method. The methods’ per-

T ; fth d method. h Her denot Ermance was first investigated during the occurrence of geo-
€ performance of the proposed method, hereafter denotg agnetic storms. The Dstindex was selected as geomagnetic

by TSAR1 {Time Series AutoRegressive usingl month storm indicator since it “monitors” the storm development,

data), Wh'Ch. IS the' Version running in DIAS. System, IS 5ssess its intensity and identifies two or three storm phases
compared with predictions obtained using a similar methOdthat correspond to different physical processes. Moreover,

thatl,(lnsFth;\\ld of AE m(_)dells,hl_t dtésesl feedf(;]rwar(itnegral ne;[j'besides; the well established dependence of the ionospheric
works ( §) with a single hidden layer (hereafter denote storm-time response on the season and the local time of the

(tj)y TSNII\IZT(QSSZSQI\:ES Neural Net.work (;Jsinth mboth . __storm onset in conjunction with the local time and the lat-
ata)). In ' S are re-estimated at the beginningy, e of the observation point, there is strong evidence for

gf a nevvﬂzn orI:;h taking '.?.to ﬁlcc:'oupém\empr_ew%us twolcalen-the correlation of the storm development conditions, which
ar months. More specifically, in TSNN21={x(0),... x())} re controlled by the IMF and are reflected in the Dst de-
consists of the observations of the first and a half month an%elopment pattern, with the qualitative signature of iono-

Xo={x(I+1),... x(m)} consists of the rest obsgrvations of the spheric storm disturbances at middle latitudes (Belehaki and
second month. The neural networks used in TSNN take asl’sagouri 2002)

input t.he 6 previous values .Of tHieF2 (this implies that it Four storm events of moderate to intense intensity oc-
has 6 input nodes) and predicts o€2 values steps ahead curred in the following time intervals: 28 August 2004—

(that is it has 1 output nod®) Seven such neural networks 5 September 2004 (first storm event), 21-31 January 2004

are .considered. at the beginning of each month., for eac;h pre(second storm event), 2-5 April 2004 (third storm event) and
diction step, with 2, 4, 6, 8, 10, 12, 14 nodes in the hidden

o 5-9 April 2004 (fourth storm event) are considered here. The
layer* and the one that exhibits the lowest mean square err.obeomagnetic conditions in the one and two calendar month
over thehtest,fet IS gdoptedS. ;I' he gbove TNS USZ aTs tra"beriods before each storm event (which were used for the
'n% set theXy'={ (gx( ) xl( )T] .+ x(6)), ([x(d)" - x(B)]7, training of TSAR1 and TSAR2, TSNN2 respectively) could
x(3)). p 1@“(1' )’l' 6’X(Tl )]l ’7x(l)) ; 3” as lte7sthet be described as follows: for the case of the first storm event,
X2 ={ ([x(1+1),... x(+E)], x( +T))’ (x(+2),... x(+DI. 3yne 2004 is characterized by very low geomagnetic activity,
x(1+8)), ... (kk(m-6),... x(m-1)]", x(m)) }. Both TSAR1

4 TSNN2 hode sh h | ohil h .while in July 2004 four disturbed periods were recorded in
an methods share the same general philosophy Ify,o second half of the month. The first one was of moderate

thedsl;:e’\r;;e that ea_chlone of them p'Ck? the.leISt moocljell (AI\ ctivity (min Dst~80nT), while for the rest three succes-
an , respectively), among a set of available models. Sive storm disturbances the Dst index reached a minimum

the first method, the set of AR models is obtained by varyingvaIue of about-197 nT. During August 2004, a storm event
the orderM of the AR model, while in the second method is recorded at the end of the month whicril is the one un-

the set of the single hidden layer FNN models is obtained by, study. Here it is important to clarify that the methods’

varying the number of nodes in the hidden_ If_:\yer. Howe\_/er'predictions for this storm event were based on the models’
the TSNN2 uses two months of data for training and testing.. ¢imation by using observations of July (for TSAR1) and
This led us, for reasons of thoroughness, to consider also iGune—JuIy (for TSAR2 and TSNN2) for the storm days in
our comparison the TSAR2 meth(_)d, which is the same a ugust and of August (for TSAR1) and July—August (for
TSAR1 except that for the estimation of the new AR model TSAR2 and TSNN2) for the storm days in September 2004
at the beginning of each month, the data of the last two Calen'Regarding the second storm, during the preceding month
dar months are taken into account. Besides their similarities(December 2003) geomagne',[ic activity of very low inten-
TSAR and TSNN d|ffe_r significantly in the mod_ell_mg ap- sity was recorded, while a great geomagnetic storm (min Dst
proach: TSAR adopts linear models for the prediction of the _~ ,,, nT) occurred in November 2003. In the case of the
absolutefoF2 values, while TSNN uses non linear models third and forth storm events under study, both the two months

3 The reasoning for choosing the 6 most recent values for the sPriOr t0 the storms (February and March 2004) were in gen-
steps ahead prediction can be found in Koutroumbas and Belehaigral characterized by low geomagnetic activity.

(2005). lonospheric data from Athens (38M, 23.3 E) and
4For more nodes in the hidden layer no significant differencesPruhonice (50.ON, 14.6 E) of 15 min sampling rate are
were encountered. used to evaluate the performance of the method at middle

Ann. Geophys., 26, 37886 2008 www.ann-geophys.net/26/371/2008/
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Fig. 2. The Dstindex is presented in the top panel followed by the obsefwét® parameter from Athens Digisonde and its monthly median

value (dashed line), for the storm interval 28 August—4 September 2004. The prediction error parameter is presented in the last four panels
for 15min, 1hr, 3h and 6 h prediction window. In each panel the prediction error is calculated using the results of the three models under
discussion, TSAR2, TSAR1 and TSNN2.
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Athens Digisonde: 21/01/2004 - 01/02/2004
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Fig. 3. The same as Fig. 2 for the storm interval 21-31 January 2004.

Ann. Geophys., 26, 37886, 2008



377

Athens Digisonde: 02/04/2004 - 09/04/2004

lonospheric forecast by time series autoregression technique

i
v
—_—
i
R
-
s
i)

c | : i : 2
o & i ; ;i i
3 e L Lol
: | VR HE! b
| R R I A
" Cle e LS % LY R
L | & Ll % ...... Fol L e m ...... U BF REN S w ...... i
| m_ i w : - | m . {
[ L ; ! 3
T ( SRRRE RN IRy Cols e R Rl
Wm (| | nme
m by | y i
1 H "a b m .MNI.J s
s M Mm .m.w m i a WWJ

e e AR SENEREN 38 SR 18 105
RN SN A 20 % F S
f : “ £ .
m_ P w W W E:
AR T O R e S SR
LR LR L Bl e | F e

gy

!

h
W
i,
’ w’;‘ﬂl
1
i
e m,..n.n‘lﬁll'h; -
A

A o B ctmite i,

P AT ([ S Y
7 -
N i

K. Koutroumbas et al.:

mw
i
¥ B
: . H { i |
E L L ] L
Pl PlE | B . F
e I R e
m. m.w = w. m_v mw a
i i [
! < M M
i £ ) n
| w 4 W W ) . -
H L .Mu £ I R : i
L B b |8 : | g
| mwr W : W 4 £ z z
S A 0 I S O FRE A S S . LA L LLF : W\\: bod- SR Bl
! m =4 m i } w {
L 1 ! i : i m
£ & i =
i i ¢ i m | | £
SRRAE| _ E] M
i § m ; s i {
{ ' { q s ( ’
H a 3 H
A TS S S s S e S S S S E SIS NS m.wuu: bopadee - w |||||| m.umuuu. Fedo |- SHERE M Lo
H 3 ; [y H
> i ] = ; i mw
_ | (] IS IR R
i g H 3 3 =
] ) ; m W i m w
m : { 4 ‘ t m i
i 4 4 ! § b 4 m
] [ £ ] ]
1 { 4 t % 4 ,m mw w h H
. i i H 1 i ; 5 §
QRCS93F3RY VoW~ IMN-O BETRE LRGSR TR SRS LFTREERTRS] B8RS LRGSR 55755 R ER TS}
_ =% "2 "= g "2 "E g "2 "E g "2 TE 7
ANIEH ¢d04 ) | =3 ) | =3 ) | =3 ) | =1
(L) 1sa & % z & % z & % z & % z

Ann. Geophys., 26, 3862008

Fig. 4. The same as Fig. 2 for the storm interval 2—8 April 2004.
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Fig. 5. The mean absolute relative error values for Athens location and for prediction windows 15 min, 1 h, 3h and 6 h calculated over the
three phases of each storm (initial, main and recovery) using the prediction results of the three methods TSNN2 (left column), TSAR1 (right
column), TSARZ2 (continued in the next page).

latitudes. Concerning the time step of the data samplingposes, the availability of predictions 15 min and 1 h ahead is
one can argue that since the large scale ionospheric distua strong requirement and therefore the usage of 15 min sam-
bances have a time scale from several hours to one or twgling rate becomes a necessity. In addition, preliminary tests
days, the 15-min time step used here may considered tperformed with our time series sampled every hour, gave
be too small, introducing variations of smaller time scales,no significantly different results than the 15 min sample rate
which may affect the prediction efficiency of the proposed case. For the same reason, the predictions of 15min and 1 h
method. However, the TSAR method was developed to servahead are evaluated next, although they can hardly demon-
not only the delivery of reliable ionospheric forecasts somestrate the merits of a method, since the characteristic e-fold
hours ahead, but also interpolation purposes for the develtime of NmF2 variations is greater than 1.5h (Mikhailov et
opment of reliable near real-time products and services ofil., 2007).

ionospheric specification within DIAS system. For these pur-
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Athens: TSAR2 predictions eter, computed in real-time with the automatic scaling soft-

60 e ware ARTIST andfoF2noq is the forecastedfoF2 value
50 | extracted from the model. The error parameter is presented
104 in the last four panels of Figs. 2—4 for 15min, 1hr, 3h and

6 h prediction window. In each panel the prediction error is
calculated using the results of all three methods under dis-
cussion, TSAR2, TSAR1 and TSNN2.

304

20+

mean Abs.Rel.Error (%)

& 8 — ' Accordingl to the Dst irujgx the first storm event (Fig. 2)
0-— - - is characterized by an initial phase, followed by a grad-
o ually evolving main phase and a slowing recovery lasted

lnaurslaticad for several days. Positive storm effects of short duration

1 recorded during the initial phase, positive storm effects of

0 long duration during the main phase and negative storm

mean Abs.Rel.Error (%)

301 effects recorded during the recovery phase, formulate the
20 ionospheric response over Athens during this storm event.
101 i{l‘:*ﬁ The performance of all three methods TSAR1, TSAR2 and
0 k | | TSNN2 present the same qualitative characteristics during
the initial and the main phase of the storm, tending to over-
60 3 hours ahead estimate foF2 during the night, and to underestimate it
= 501 during the day. However, the prediction pattern of TSAR1
g 10 and TSAR?2 differs significantly from the prediction pattern
Egu_ of TSNN2 during the next days of the recovery phase of
£ r’/ the storm when negative effects are recorded over Athens:
5 < TSNN2 systematically overestimates tfieF2 forecasts at
5

" — night, especially for predictions 3 and 6h ahead. On the

contrary during the day, where negative effects are recorded,
6 TSNN2 gives successful predictions.

6 hours ahead The second storm event (Fig. 3) is also characterized by
an initial phase, followed by a rapidly evolving main phase
and a long lasting recovery phase during which the Dst index

/ presents several excursions. With Athens being in the morn-

ing sector during the storm onset, the ionospheric response
10 ./,J—E over Athens is characterized by positive storm effects of long
0

duration during the whole period. All methods’ predictions
present in general the same qualitative characteristics during
the initial and the main phases of the storm, while the pattern

]
=]
L

mean Abs.Rel.Error (%)
w
=

initial main recovery
Storm Phases

- dstStorm  ~O-2nd Storm  —-3rd Storm - dth Storm of TSNN2 predictions differentiates systematically from the
_ _ other two during the recovery phase, although positive storm
Fig. 5. Continued. effects are still recorded over Athens. Once again TSNN2

systematically overestimates tlie F 2 forecasts at night, es-

. i pecially for predictions 3 and 6 h ahead. Another point of

The development characteristics of the Dst index refleCtnerest is that the prediction errors are significantly higher

the different conditions of magnetospheric — ionosphericin the case of the TSNN2 method. It is noteworthy that for
coupling occurred for each storm, which result to different jonqgpheric forecasts 3 and 6 h ahead this deviation exceeded

ionospheric storm pattern over Athens. The storm condihe 1009 during the night, when no significant ionospheric
tions for each of the selected interval are presented in Figs. Zjisturbances are recorded. This may be considered as ev-

3 and 4, where the Kyoto Dst index is presented in thejgence that the TSNN2 predictions suffers from systematic

top panel followed by the observefb F2 parameter from  qgsers which are not correlated to the ionosheric storm-time

Athens Digisonde and its monthly median value (dasheqggponse neither in terms of negative or positive storm effects
line). The performance of the ionospheric methods duringgccyrrence nor in terms of ionospheric storm effects’ inten-
the storm events is evaluated using the prediction error pagjr,

rameter defined as:

F20ps— fOoF2
error—f 0F20bs— f 0F 2mod x 100 (8)

foF2ops

The last presented time interval concerns two successive
storm events (the third and the fourth storm events described
above) and this point is of special interest, since in such cases
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the ionospheric response could be very complicated. Theies for foF2 during early morning hours and lowgiw F2
predictions obtained by the three above methods (TSAR1yalues during the day for the whole period, when the pre-
TSAR2 and TSNNZ2) for the two storm events are given in diction pattern of TSAR1 and TSAR2 differs for positive
Fig. 4. No initial phase is identified for these storms, while and negative ionospheric storm time response, giving more
the main phase is characterized by a rather gradual develogvidence for the existence of systematic offsets in TSNN2
ment. The first storm recovers within 30 h while the recov- predictions and for more robust predictions of TSAR1 and
ery phase of the second one is much more gradual. Positiv€ SAR2 methods.

effects during the first day and negative during the second

day of each storm formulate the ionospheric response over. n geperal, the comparison between the three methods
Athens. Once again, the performance of TSAR1 and TSAR2YVES evidence for consistency between TSAR1 and TSAR2

exhibits in general a different pattern in comparison to thepredictions, in that the two methods give qualitatively simi-

performance of TSNN2. The latter tends to give higher vaI-Ialr re_s_ults_ in all cases. In partlc_:ular, AR models Seem more
sensitive in capturing successive changes from positive to
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Fig. 6. Continued.
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Athens: Averaged MSE for Quiet conditions
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Fig. 7. The average values of the MSE over each season for the

quiet intervals listed in Table 1, using the prediction results of the

three models TSNN2 (top), TSAR2 (middle), TSAR1 (bottom) for

Athens location, for prediction windows 1 h, 3h and 6 h.

tial, main and recovery) were calculated for all storm events
and are presented in Fig. 5 for Athens location. The absolute
relative error is defined as the absolute value of the predic-
tion error as defined in Eq. (8). The first remark from the

inspection of these results is that the prediction efficiency of
all methods becomes poorer for longer prediction time hori-
zon (up to six hours). In addition, the poorer performance of

negative (and vice versa) ionospheric storm phases. ThiFSNN2 method with respect to both TSAR1 and TSAR2 for
is in contrast to the prediction pattern of TSNN2 which is a prediction horizon greater than 1 h, is clearly demonstrated
described by the same qualitative characteristics during thevith the statistical analysis shown in Fig. 5. An interesting
whole of a geomagnetically disturbed period independentlypoint is that the three methods’ provide us with quantitatively
of the ionospheric activity pattern. The above indicates firstcomparable results in the case of the first storm event, which
that TSAR1 and TSAR2 methods are more capable in capis characterized by gradually evolving phases. For the rest
turing successive ionospheric changes, and then that TSNNgree storm periods, which are characterized either by rapid
predictions are more affected from the current ionosphericchanges in the magnetospheric-ionospheric coupling or by
conditions, which seems to introduce systematic offsets inong lasting disturbances, the TSNN2 prediction errors are
the methods’ performance. significantly greater than the prediction errors of TSAR1 and
In an effort to better organize the results and to quantifyTSAR2. This seems to confirm the argument that TSNN2
the relative performance of the three methods, the mean atperformance is not very capable in capturing rapid changes
solute relative errors over the three phases of each storm (inin ionospheric response resulting by fast changing geospace
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Table 1. List of the geomagnetically quiet intervals used for the
5 evaluation of the proposed method.

4_
Season Geomagnetically quiet intervals

w
L

MSE {MHz)
L3
<
<

Summer  1-12 June 2004
1-14 July 2004
1-20 August 2005

R - Fall 1-30 October 2005
0 - U Winter 1-31 January 2006
TSAR1 1-28 February 2006

o

Spring 1-31 March 2005

w -
L L

MSE {MHz)

the most recent measurements, which progressively include

82 ; more and more disturbed data as we move to the end of the
I . storm.

TSAR2 In an effort to investigate the validity of the results in other
DIAS locations, the mean absolute relative error over the
three phases of each storm, was also calculated for three of
the storm events under study (the first, the third and the forth
one) for Pruhonice location and is presented in Fig. 6. For the
second storm eventfo F2 observations for Pruhonice sta-
tion were no available. The main trends of the TSAR1 and
, m—\e—_{-} TSAR?2 prediction pattern obtained for Athens location are
Summer Fall Winter Spring also present in the prediction pattern obtained for Pruhonice
halssnea | M noraead  —$-3noursahead A location although milder now, showing consistency between
the two methods for this location too. In quantitative perspec-
tive, the relative errors for Pruhonice are in general slightly
greater than the corresponding ones obtained for Athens. The
most interesting point is that TSNN2 provides better predic-
environment conditions. Moreover, TSNN2 predictions aretions over Pruhonice than over Athens.
more affected by the recentionospheric conditions and when The method predictions were further evaluated during sev-
an ionospheric disturbance is in progress, systematic devidara| geomagnetically quiet time intervals listed in Table 1.
tions are reproduced in the models’ estimations. The average values of the MSE over each season are pre-
The mean absolute relative error for the predictions re-sented in Fig. 7 for Athens location and in Fig. 8 for Pruhon-
sulted from the TSAR1 and TSAR2 methods, presents comice location. It is very interesting to note the significant
parable values in all cases, sometimes in favor of TSAR1 andlifference comparing the performance of NN and AR mod-
sometimes in favor of TSAR2. Here, it is worth comment els, produced by TSNN2 and TSAR1 and TSAR2 methods.
on the methods’ performance during the last two successivén the case of AR the MSE doesn't exceed the 1 MHz for
storm events. The TSARL1 gives systematically better resultboth Athens and Pruhonice, while the NN model gives a
compared to TSAR2 in both main and recovery phases, inMSE larger than 4 MHz in Athens and close to 3MHz in
dicating a more direct response of the TSAR1 to successivéruhonice. Concerning the seasonal dependence of the meth-
and rapid changes of the ionospheric conditions. The oppoeds’ performance, the AR models present a consistent pattern
site result is observed for the case of the first storm, wheravith maximum in the MSE during the summer and minimum
the TSAR2 gives in general better predictions. However,in winter for both Athens and Pruhonice, although the pattern
despite the differences once again the comparison betweesppears milder for Pruhonice. This indicates probably a de-
the two methods gives evidence for consistency in their prependence of the model prediction on the automatic scaling
dictions, since the response of the two methods is describederformance which during summer presents the maximum
by comparable quantitative characteristics. In respect to therror due to frequent sporadic E layer or spread F occurrence,
storm development, the mean absolute relative error is rathewhich is more intense over Athens. The seasonal pattern of
small during the initial phase of the storm, with a general ten-the MSE obtained using the TSNN2 method presents notice-
dency to increase as the storm evolves and recovers. This @ble differences, with a minimum in winter but only for pre-
rather expected since the methods’ predictions are based atiction horizon greater than 3 h.

-
L

=]
4

MSE (MHz)
L5 “ - o

-
L

Fig. 8. The same as Fig. 7 for Pruhonice location.
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Fig. 9. The mean absolute relative error estimates for Athens as a function of the prediction step (1-24 h ahead) for each season.

To explore the reliability of TSAR1 and TSAR2 predic- 4 Summary and conclusions
tions in ionospheric forecasting from 1 to 24 h ahead, the

mean absolute relative error as a function of the predictionn this paper a new method (TSAR1), designed to deliver
time horizon is shown in Fig. 9 for Athens and in Fig. 10 for short term forecasts (from 15min up to 24 h) of tfieF2
Pruhonice locations. The methods’ response shows a consigrarameter at middle latitudes has been presented. It is based
tent pattern for both Athens and Pruhonice. The relative erropn AR models and it has been implemented on line to work
gets relatively small values (4-6 %) for predictions 15 min with real-time data in DIAS system. The method uses data
ahead and reaches a maximum value of about 14% for prefrom one calendar month to estimate the best AR model for
dictions 4 or 5h ahead, which in general is maintained ancthe next calendar month according to MSE criterion. The
in some cases is decreased for predictions up to 24 h aheaghethod's performance was also evaluated during both geo-
This pattern indicates that TSAR method provide Statistica”ymagneticny quiet and storm conditions for two middle lati-
reliable ionospheric predictions up to 24 h ahead and couldude ionospheric locations, Athens and Pruhonice. For com-
be considered as robust forecasting technique for the middi@arison purposes, the performance of a similar method, that
latitude ionosphere. instead of AR model it utilizes neural network models, the

www.ann-geophys.net/26/371/2008/ Ann. Geophys., 26, 3862008
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Fig. 10. The same as Fig. 9 for Pruhonice.

TSNN2, was also considered in our analysis. The TSNN2assumed by TSNN2. Indeed, the deviations of the TSNN2
uses two months of data for training and testing and for thepredictions from the observed values were higher compared
fair evaluation of the relative performance of the two meth-to the corresponding ones obtained from both TSAR1 and
ods, the TSAR2 method was also considered in our testsTSAR2 predictions, either during storms or during quiet con-
TSAR?2 is the same us TSAR1 except that for the estima-ditions for both Athens and Pruhonice locations. Moreover,
tion of the new AR model at the beginning of each calendarTSNN2 method proved not very capable in capturing rapid
month, the data of the last two calendar months are taken intehanges in ionospheric response resulting by fast chang-
account. ing geospace environment conditions. The TSNN2 predic-
The comparison between the predictions obtained from thdions seem also to be the most affected one by the recent
TSAR and TSNN methods during the same time intervalsionospheric conditions and when an ionospheric disturbance
provided us the chance to investigate the efficiency of the lin{S in progress, systematic deviations are reproduced in the
ear modelling approach that TSAR method adopts in the premMethod’s estimations. All the above indicates that accord-
diction of o F2 parameter versus the non linear assumptiongnd to our results the ionospheric response is better modeled
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using a linear model. This may attributed to the following a powerful tool for interpolation purposes towards the de-
two reasons: i) the AR models are more capable in follow-velopment of reliable near real-time products and services
ing the general periodic pattern ¢b F2, and ii) the adopted of ionospheric specification, as well as a robust forecasting
FNN may not be the most proper one for the present applicatechnique for the delivery of reliable forecasts for the middle
tion. There may be other FNNs with better performance thanatitude ionosphere, serving successfully the objectives of the
the selected ofebut since the number of all possible FNNs DIAS system.
is huge, no exhaustive search can be performed to see if there To conclude we have to notify the significant improve-
exists indeed a better FNN. ment in the prediction results using linear models for simu-
Concerning the performance of TSAR1 and TSAR2, thelating the ionospheric response. Although more experiments
comparative analysis gave evidence for consistency betweewith the method that employs neural networks (with larger
TSAR1 and TSAR2 predictions, since the two methods pro-data set, different number of inputs etc.) remain to be made,
vide qualitatively and quantitative similar results in all casesthis result provides fresh insight in the current understanding
for both Athens and Pruhonice. In particular, during stormfor ionospheric forecasting modelling and might efficiently
conditions the AR models appear to be sensitive in capturcontribute to the development of reliable and accurate iono-
ing successive changes from positive to negative (and vicepheric specification tools, based on real-time networks of
versa) ionospheric storm phases. In respect to the storm deenospheric sounders.
velopment, the mean absolute relative error is rather small . : .
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