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3Swedish Institute of Space Physics, Uppsala, Sweden

Received: 20 May 2008 – Revised: 8 October 2008 – Accepted: 15 October 2008 – Published: 10 November 2008

Abstract. We present a method, GALS (Gradient Analysis
by Least Squares) for estimating the gradient of a physical
field from multi-spacecraft observations. To obtain the best
possible spatial resolution, the gradient is estimated in the
frame of reference where structures in the field are essentially
locally stationary. The estimates are refined iteratively by a
least squares method.

We show that GALS is not very sensitive to the space-
craft configuration and resolves structures much smaller than
the characteristic size of the spacecraft distribution. Further-
more, GALS requires little user input.

GALS has been tested on synthetic magnetic field data and
data from the Cluster FGM instrument. GALS will also be
useful for other types of data. The results indicate that GALS
is robust and superior to the curlometer method for estimat-
ing the current from magnetic field measurements.

Keywords. Space plasma physics (Experimental and math-
ematical techniques; Instruments and techniques) – General
or miscellaneous (Techniques applicable in three or more
fields)

1 Introduction

The fundamental equations of space physics, such as the
MHD equations, Maxwell’s equations, and the Vlasov equa-
tion, are all first order differential equations relating the tem-
poral evolution to spatial gradients of physical fields. To
compare in situ observations with theory we must hence be
able to calculate gradients from measurements. In space
physics the calculation of space and time gradients from
satellite measurements is not a trivial problem. Using a sin-
gle spacecraft we can determine how a measured field varies
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along the satellite orbit, but without complementary infor-
mation we cannot tell whether these variations are spatial or
temporal. Furthermore, we have no information about gradi-
ents in directions perpendicular to the spacecraft orbit. The
unique capability of resolving three-dimensional spatial vari-
ations was an important motivation for the Cluster mission,
comprising four identical spacecraft launched in 2000. De-
scriptions of methods for analyzing multi-spacecraft data,
for example the curlometer method, the wave telescope
technique, and the discontinuity analyzer, are collected in
Paschmann and Daly(1998). In this study we will compare
GALS to the curlometer and to a single spacecraft method
(Lühr et al., 1996).

From four simultaneous measurements in space we can
obtain reasonable estimates of the spatial derivatives. For
example, the curlometer method (Robert et al., 1998) esti-
mates the rotation of the magnetic field,∇×B, and (neglect-
ing the displacement current) the corresponding current den-
sity j , can be calculated. However, the curlometer cannot
estimate spatial variations on length scales smaller than the
spacecraft configuration.De Keyser et al.(2007) recently
described a method based on least squares fitting for calcu-
lating gradients from multi-point observations. This method
is demonstrated to be very robust, and it can provide reliable
error estimates.

Gradients with scalelengths significantly shorter than the
distance between spacecraft can be resolved by combining
a discontinuity analysis (Dunlop and Woodward, 1998) to
determine the orientation and velocity of the boundary with
single spacecraft techniques (Lühr et al., 1996) to compute
gradients. The spatial resolution of these methods is deter-
mined by the data sampling frequency and the velocity of
the spacecraft relative to the discontinuity. These methods
can produce very good results under favorable conditions,
but their application requires significant effort and skill.

This paper presents a method called GALS (Gradient
Analysis by Least Squares), which in many cases can
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Fig. 1. (a) A current sheet passing four satellites,s1–s4, in the frame
of reference moving with the satellites. (b) The current sheet and the
spacecraft in the reference frame moving with the sheet.
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Fig. 2. Setup for a test run on synthetic magnetic field data. Rela-
tive to a fixed reference system, the spacecraft and the structure are
moving with+5 km/s and−15 km/s, respectively.
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Fig. 3. (a) Magnetic fieldy component for the narrow current sheet
in Figure 2 as observed by the four satellites. The reconstructed field
from GALS (magenta) and the true field (black, dotted) are also
shown. (b)–(c) Current densityJx andJz from GALS (magenta),
the curlometer (dark green), and the single-spacecraft method (red,
yellow, blue, and green). The true current is shown with the black
dotted line. (d) GALS estimated structure velocityux, uy anduz

(red, green and blue) for theBz component. (e) Resolution parame-
terΛ(By) obtained by GALS in the reconstruction ofBy . The high-
lighted time window indicates the used coherence timeTc = 12 s.

Fig. 1. (a)A current sheet passing four satellites, s1–s4, in the frame
of reference moving with the satellites.(b) The current sheet and
the spacecraft in the reference frame moving with the sheet.

estimate spatial gradients on length scales shorter than the
characteristic size of the spacecraft configuration. Since
GALS is based on weighted least squares similar to those
used byDe Keyser et al.(2007), it is possible to produce er-
ror estimates of comparable quality. However, in this first
study we will not discuss error estimates. Instead, we will
focus on describing how GALS combines the best features
of the curlometer and theDe Keyser et al.(2007) methods
with the high resolution of the discontinuity analysis/single
spacecraft techniques.

The gradients of scalar physical fields are invariant under
Galilei transformations. A simple consequence of Galilei in-
variance is that there almost always exist a frame of reference
where the local time derivative is zero. The only exception is
the case when the spatial gradient vanishes. In that particular
case the time derivative cannot be transformed away.

The quality of the gradient estimates that can be obtained
from spacecraft observations of the field depends crucially
on the choice of frame of reference. The best possible esti-
mate is obtained in the frame of reference where the field lo-
cally appears stationary. Notice that “stationary” here means
that the partial time derivative of the physical field is zero at
the point in space-time where the gradient is computed. In

this reference frame, time variations at nearby points are also
minimized, although they cannot be completely eliminated.
As will be explained below, the usually rather high time res-
olution obtained from in situ satellite measurements may in
this optimal frame of reference be converted into a spatial
sampling along the gradient at distances much shorter than
the satellite separation.

2 Method

Let the position of satellites at timet be given byr s=Rs(t).
In the following, the satellite subscripts will be omitted un-
less it is needed for clarity. Assuming a cluster ofS satellites,
we will estimate the space and time gradients of a physi-
cal fieldF along the trajectoryRcm(t)= 1

S

∑S
s=1 Rs(t) of the

center of mass of the satellites. At the reconstruction timetp
the gradients are determined at the pointrp=Rcm(tp). Trans-
forming to a frame of reference moving with the velocity
Prp=dtRcm(tp) of the center of mass, we introduce the new
coordinates

τ = t − tp, (1)

x0(τ ) = r − rp − τPrp. (2)

Here, τ is the time relative to the reconstruction time and
x0(τ ) is the corresponding spatial coordinates relative to
the reconstruction pointrp moving with velocityPrp. Us-
ing these substitutions, the functionF(r , t) describing the
field in the original coordinate system is in the new system
replaced byF 0(x0, τ )=F(x0(τ )+rp+τPrp, tp+τ)=F(r , t).
The first derivatives ofF 0 form a linear approximant
F 0

L(x0, τ )=Fp+x0
·∂0

x0F
0
p+τ∂τF

0
p to the exactF 0, valid for

small x0 and τ . Considering a reference frame moving
with velocity u relative to the satellites and introducing the
new coordinatesxu

=x0
−uτ , we find that the approximant is

transformed into

F u
L(xu, τ ) = F u

p + xu
· ∂xuF u

p + τ∂τF
u
p (3)

whereF u
p=F 0

p=Fp and ∂xuF u
p=∂x0F 0

p=∂xFp are indepen-
dent of the reference frame, but the time derivatives are re-
lated by∂τF

u
p=∂τF

0
p+u·∂x0F 0

p . From this we see that by
choosing a velocity

u = −
∂τF

0
p ∂xFp

‖∂xFp‖2
(4)

we can always find a reference frame where∂τF
u
p=0.

As illustrated in Fig.1, we can convert the temporal res-
olution of the observations into a spatial resolution by trans-
forming to a reference frame where∂τF

u
p=0. Figure1a

shows the situation in the center of mass frame of reference.
The satellites sample the field at the discrete timesτn=n1t ,
n=0, ±1, . . . ,±N . At the timeτn satellites is atx0

sn=x0
s (τn)

and observes the fieldFsn=F 0(x0
sn, τn). The spatial coordi-

natesx0
sn of the satellites are essentially independent ofτn,
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and take on only four distinct values. While the satellites are
at rest, a point of constantF 0

L moves to the right with velocity
u, that is,F 0

L(τu, τ )≈Fp.
Figure1b illustrates the same scene in the reference frame

moving with velocityu. At xu
=0 the value ofF u

L is now time
independent andF u

L(0, τ )≈Fp to first order inτ . Since the
field is as stationary as possible, the distortion caused by time
averaging is minimized in this reference frame. The satellites
moving through the structure now provide measurements at
the coordinatesxu

sn=x0
sn−uτn, with a spatial separationu1t

along the gradient direction. In many cases, this will allow
us to resolve the gradient with higher resolution and better
statistics than using only four points with separations deter-
mined by the satellite configuration.

The field and its derivatives at the reconstruction point are
estimated by minimizing the weighted least squares problem

∑
s,n

[
F u

p + xu
sn · ∂xuF u

p + τn∂τF
u
p − Fsn

]2
Wu(xu

sn, τn), (5)

In this first study, this problem is solved by a simple itera-
tive method, described in the Appendix. The Maxwell equa-
tion ∇·B=0 is used as constraint in our least squares rou-
tines. The weight functionW is initially an isotropic Gaus-
sian whose width is determined by the characteristic space-
craft separationL, but its width along the gradient will be
adjusted in the algorithm to a value3<L whenever possi-
ble.

The GALS method is designed to optimize the resolution
in the direction of the gradient by transforming to a reference
frame where∂τF

u
p=0 and reducing3. The resolution in the

plane perpendicular to the gradient is still determined by the
satellite separation, but since this is a plane of minimal field
variations the resolution is not critical.

Structures in the observed field will in practice have a finite
lifetime. By specifying a parameter, which we call the coher-
ence timeTc, the user can to some extent tune GALS to the
problem and the data at hand. In the algorithm, a time win-
dow is created by restricting theτ -values toτn≤Tc/2. The
optimal choice will depend on the data at hand, but also on
the physical phenomenon of interest. IfTc is chosen longer
that the actual coherence time of relevant structures in the
field, it may be impossible to find a meaningful velocity. On
the other hand, ifTc is chosen too short, the GALS algorithm
may not be able to interpret data from separate spacecraft as
a single, coherent, structure. For a particular feature in the
data, it is often possible to estimate a suitableTc by inspect-
ing when and how well this feature is reproduced in the data
from the other spacecraft. In practice, it often makes sense
to use the rule of thumb thatTc is chosen to match the “clus-
ter transition time”, i.e., the approximate time from when the
first spacecraft enters the structure until the last spacecraft
leaves it.

3 Results

In this section we present the capacity of GALS as an esti-
mator for the current density. The performance of GALS is
investigated by using both synthetic and real magnetic field
data, and the GALS results are compared with what can be
obtained with two other tools for estimating the current: the
curlometer(Robert et al., 1998; Dunlop et al., 2002) and the
single-spacecraft technique (Lühr et al., 1996).

The curlometer uses multi-spacecraft, e.g. Cluster, mag-
netic field data to calculate the current density from∇×B
(assuming that the displacement current is negligible in Am-
pere’s law). The current is estimated from four simultane-
ous measurements of the magnetic field, and the curlome-
ter therefore captures the instantaneous current density as a
snapshot in time. Since the curlometer technique is based on
the assumption that the current is constant over the tetrahe-
dral volume defined by the four spacecraft, the spatial reso-
lution of the curlometer current density depends directly on
the satellite configuration.

The single spacecraft technique can very efficiently re-
solve, e.g., thin current sheets when it is combined with a
method such as the discontinuity analyzer for obtaining the
velocity of the spacecraft relative to the sheet. Consider-
ing the sheet to be stationary, the observed total derivative
is interpreted as a spatial gradient and the resolution is deter-
mined by the data sampling rate rather than by the size of the
satellite tetrahedron. The quality of the velocity estimate is of
crucial importance when determining the full current density
vector with the single-spacecraft technique. When analyzing
a convecting, planar, current sheet passing all four spacecraft
this is generally not a problem, but investigations of more
general current density structures with the single-spacecraft
technique are limited by the lack of good velocity estimates.

The least squares method for gradient calculation devel-
oped byDe Keyser et al.(2007) is more robust than the cur-
lometer, but they did not explicitly exploit the advantages
of a moving reference system. In the absence of signifi-
cant correlations between the spacecraft, GALS will calcu-
late gradients by a method very similar to that ofDe Keyser
et al.(2007). However, whenever a coherent structure can be
found, GALS will automatically attempt to determine its ve-
locity and and estimate the gradients by a method related to
the single spacecraft technique. We will show that GALS
combines the robustness of the least squares method with
the high spatial resolution of the single spacecraft technique.
We will also show that it is possible to tune the behaviour
of GALS to the problem at hand by changing the coherence
time,Tc.

The setup for a test run of GALS on synthetic magnetic
field data is shown in Fig.2. Four identical spacecraft ob-
serve a Gaussian current sheet that is infinite in they and
z directions. The spacecraft and the current sheet approach
each other along thex direction with a relative velocity of
20 km/s. The current sheet width isW=20 km, which is

www.ann-geophys.net/26/3491/2008/ Ann. Geophys., 26, 3491–3499, 2008
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Fig. 1. (a) A current sheet passing four satellites,s1–s4, in the frame
of reference moving with the satellites. (b) The current sheet and the
spacecraft in the reference frame moving with the sheet.
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Fig. 2. Setup for a test run on synthetic magnetic field data. Rela-
tive to a fixed reference system, the spacecraft and the structure are
moving with+5 km/s and−15 km/s, respectively.
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Fig. 3. (a) Magnetic fieldy component for the narrow current sheet
in Figure 2 as observed by the four satellites. The reconstructed field
from GALS (magenta) and the true field (black, dotted) are also
shown. (b)–(c) Current densityJx andJz from GALS (magenta),
the curlometer (dark green), and the single-spacecraft method (red,
yellow, blue, and green). The true current is shown with the black
dotted line. (d) GALS estimated structure velocityux, uy anduz

(red, green and blue) for theBz component. (e) Resolution parame-
terΛ(By) obtained by GALS in the reconstruction ofBy . The high-
lighted time window indicates the used coherence timeTc = 12 s.

Fig. 2. Setup for a test run on synthetic magnetic field data. Rela-
tive to a fixed reference system, the spacecraft and the structure are
moving with+5 km/s and−15 km/s, respectively.

small compared to the characteristic size of the satellite tetra-
hedron,L=200 km. The tetrahedron has elongation and pla-
narityE=P=0.75 (Paschmann and Daly, 1998).

Panel (a) of Fig.3 shows theBy component of the mag-
netic field sampled by the four spacecraft. The other field
components are identically zero,Bx≡Bz≡0. The solid ma-
genta line and the dotted black line show the field recon-
structed by GALS and the true magnetic field at the center
of mass of the satellites. It is evident that GALS reconstructs
By correctly although the current sheet is narrow and could
be difficult to resolve. The coherence timeTc is chosen as
12 s, as indicated by the width of the highlighted yellow re-
gion.

Panels (b) and (c) show the two non-zero components
of the current density estimates,Jx andJz, obtained from
GALS, the curlometer and the single-spacecraft method, re-
spectively. As indicated in Fig.2, the true current is along
the z-direction. However, the curlometer (dark green line)
produces an artificialJx , which is bi-polar and comparable
to the true current in magnitude. The correspondingJx from
GALS (magenta) is three orders of magnitude smaller and
not visible in Fig.3b. In panel (c) we see that GALS (ma-
genta) correctly identifies the magnitude and position of the
true current sheet (black dotted line). The single-spacecraft
method, utilizing the known relative velocity of 20 km/s, also
clearly identifies the narrow current sheet for each satellite
crossing. In contrast, the curlometer cannot properly resolve
this narrow current sheet, and underestimates the peak cur-
rent density by more than a factor of two.

In Fig. 3d we see that GALS identifies the structure in
theBy data and obtains the correct velocity(−20, 0, 0) km/s
with respect to the satellites in the neighborhood of the cur-
rent sheet. Further away the magnetic gradient is weak, and
the velocity is not well defined. Figure3e shows the res-
olution 3 in the reconstruction ofBy and how it adapts to
the data. In the region of the strong magnetic field gradi-
ent 3(By)≈4 km, indicating that GALS resolves the struc-
ture on scale lengths much shorter thanL. The exact value
of the resolution is determined by details in the GALS algo-
rithm. Since the results presented here are based on a pro-
totype code, the detailed behaviour of the resolution will not
be discussed further in this article.

Next we will illustrate GALS capacity to resolve struc-
tures on various scale lengths by using real magnetic field
data from the FGM instrument (Balogh et al., 1997) on board
the Cluster satellites. Figures 4 and 5 show a Cluster magne-
topause crossing with a thin current sheet on 30 March 2002.
This magnetopause crossing has already been investigated in
some detail in the literature (De Keyser et al., 2005; Panov
et al., 2006). In this paper we present this sample event just
to show the capabilities of GALS, and not to investigate any
specific physical details of the event.

In panels (a–c) of Figs. 4 and 5, we show thex, y and
z magnetic field components as observed by the four space-
craft (red, yellow, blue, green). We see that the main con-
tribution to this current sheet comes from theBz compo-
nent. The magenta curve in the same panels correspond to
the GALS reconstructed magnetic field along thex, y andz

directions. Panels (d–f) contain the current estimated with
three different methods: 1) The GALS current (magenta);
2) The curlometer current (dark green); 3) The current from
the single-spacecraft method (red, yellow, blue, green). The
single-spacecraft current is calculated using a current sheet
velocity of (−23, −11, −4) km/s, derived by a timing anal-
ysis of the encounter of the gradient inBz. The results from
each satellite are time-shifted to make the peaks coincide. In
the last three panels of Figs. 4 and 5 we show the GALS es-
timated velocity componentsux , uy anduz (red, green and
blue) for each magnetic field component (Bx , By andBz).
No pre-processing of the data was performed but the output
from all methods were smoothed by a 0.25 s sliding window.

In the GALS reconstruction in Fig. 4 we have used a rather
small value of the coherence time,Tc=0.6 s, indicated by
the highlighted yellow region. The result is that the current
from GALS is smooth and similar to the curlometer result.
Choosing a small value ofTc, only very few observations
from a short time interval are included in the GALS least
squares problem. GALS will then not be able to determine a
meaningful velocity, and the resulting current will be similar
to the curlometer result, which can be viewed as a snapshot
in time of the current along the satellites’ center of mass.

In Fig. 5, the same event is analyzed with the coherence
time Tc=6 s according to our rule of thumb. The coherence
time is indicated by the highlighted region. Using a larger
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Fig. 3. (a) Magnetic fieldy component for the narrow current sheet
in Figure 2 as observed by the four satellites. The reconstructed field
from GALS (magenta) and the true field (black, dotted) are also
shown. (b)–(c) Current densityJx andJz from GALS (magenta),
the curlometer (dark green), and the single-spacecraft method (red,
yellow, blue, and green). The true current is shown with the black
dotted line. (d) GALS estimated structure velocityux, uy anduz

(red, green and blue) for theBz component. (e) Resolution parame-
terΛ(By) obtained by GALS in the reconstruction ofBy . The high-
lighted time window indicates the used coherence timeTc = 12 s.

Fig. 3. (a)Magnetic field y-component for the narrow current sheet in Fig.2 as observed by the four satellites. The reconstructed field from
GALS (magenta) and the true field (black, dotted) are also shown.(b–c) Current densityJx andJz from GALS (magenta), the curlometer
(dark green), and the single-spacecraft method (red, yellow, blue, and green). The true current is shown with the black dotted line.(d) GALS
estimated structure velocityux , uy anduz (red, green and blue) for theBz component.(e) Resolution parameter3(By) obtained by GALS
in the reconstruction ofBy . The highlighted time window indicates the used coherence timeTc=12 s.

value ofTc, more space-time observation points are included
in the GALS least squares problem. The extra information
from the included time domain is used to improve the spa-
tial resolution. Of course, this requires that the shape of the
investigated convective structure is approximately stable on
these time scales. In this case, the GALS current will there-
fore be more similar to the result from the single-spacecraft
method, which is highly capable to resolve small scale struc-
tures. In panels (d–f) of Fig.5 we clearly see that the GALS
result rather closely follows the single-spacecraft currents.
The curlometer, on the other hand, fails to resolve the small
scale variations. Notice that the estimated thickness of the
current sheet is about 50 km, which is of the order of the
proton gyroradius (in the magnetosheath plasma the gyrora-
dius is about 50 km and in the magnetospheric plasma about
25 km).

Panels (i) of Figs. 4 and 5 show the structure velocity
obtained in the GALS reconstruction of theBz data which
causes the dominant part of the current sheet. Using a large

coherence time,Tc=6 s as in Fig. 5, we see in panel (i) that
the velocity around the time of the current sheet crossing
(about 13:11:46.50) is approximately consistent with the re-
sult from the timing analysis, (−23,−11,−4) km/s. On the
other hand, using a smallerTc=0.6 s as in Fig. 4, the veloc-
ity estimate in theBz reconstruction does not stabilize on a
specific value during the magnetopause crossing. However,
it should be noted that the velocity estimated by GALS is not
necessarily closely related to the velocity of a current sheet
or some other physical structure in the magnetic field. In
many cases it is completely unrelated to the velocity of large
scale field structures. As discussed in Sect. 2, the velocity
obtained by GALS describes the motion of the frame of ref-
erence where the field signal is locally stationary. In that
sense, the GALS velocity should rather be regarded as a lo-
cal phase velocity than as the velocity of a physical structure.

www.ann-geophys.net/26/3491/2008/ Ann. Geophys., 26, 3491–3499, 2008
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Fig. 4. Cluster crossing a thin magnetopause current sheet on March
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4 Summary and discussion

Above we have shown that it is possible to tune GALS to the
problem at hand by changing the coherence time,Tc. Choos-
ing a small value ofTc, the current resulting from GALS
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becomes similar to that from the curlometer while a largerTc

improves the spatial resolution and makes the current more
similar to the result from the single-spacecraft method. This
demonstrates that GALS is a tool that easily can be applied
to large amounts of data and yet provides a resolution com-
parable to the single-spacecraft method.

We have applied the GALS method to synthetic magnetic
field data and data from the FGM instrument on board the
Cluster satellites. The results indicate that GALS is a ro-
bust method to obtain high-resolution spatial gradients from
multi-spacecraft observations. Furthermore, GALS is sim-
ple to use since the user needs to specify only a single pa-
rameter, the coherence timeTc. This makes GALS comple-
mentary to the discontinuity analyzer/single-spacecraft tech-
nique, which demands substantial user input.

Comparing GALS with the curlometer and the single-
spacecraft method, we find that GALS resolves thin current
sheets better than the curlometer. GALS can resolve struc-
tures on scales considerably smaller than the characteristic
size of the satellite configuration, and our tests indicate that it
is less sensitive to the spacecraft configuration than the cur-
lometer. The single-spacecraft method and GALS provide
similar resolutions, but the single-spacecraft method requires
a separate calculation of the velocity of the current sheet.

GALS is related to the method ofDe Keyser et al.(2007)
in the sense that they are both based on a weighted least
squares fit to the data. However,De Keyser et al.(2007) does
not take advantage of the freedom to choose a frame of ref-
erence moving with convecting structures in the field. In the
absence of coherent convective structures, GALS will com-
pute gradients on scale lengths determined by the spacecraft
separation, similar to theDe Keyser et al.(2007) method.
However, when a coherent structure is found, GALS will au-
tomatically determine its velocity and produce gradients with
resolution similar to the single-spacecraft technique.

Current sheets are important in space physics, since they
are ubiquitous at boundaries between plasma populations.
Here, we have illustrated the principles behind GALS using
current sheets, but it should be clear from the design that nei-
ther a current nor a sheet is essential. However, the method
requires that the surface of constantF is not too strongly
curved within the volume spanned by the spacecraft config-
uration. Without this assumption, which is implicit in the
curlometer as well as the single-spacecraft methods, it seems
impossible to derive meaningful information about gradients.
Moreover, GALS requires that the life time of relevant struc-
tures in the field is not too short.

We consider our results promising and we expect that the
GALS method will be useful when reliable high resolution
estimates of spatial gradients are needed. In the future, we
intend to develop reliable error estimates, investigate the ca-
pacity to separate spatial and temporal variations, and apply
the method toN 6=4 spacecraft.

Appendix A

The GALS algorithm

A1 Initial setup

Let τn=n1t , n=0, ±1, . . . ,±N , be the discrete times at
which the satellites sample the field. At the timeτn satellite
s is at x0

sn=x0
s (τn) and observes the fieldFsn=F 0(x0

sn, τn).
The field sampled by the satellites can be expressed as a Tay-
lor expansion

Fsn ≈ F 0
p + x0

sn · ∂x0F
0
p + τn∂τF

0
p , (A1)

whereF 0
p and its derivatives atx0

=0 andτ=0 are five un-
known parameters. The field and its derivatives at the re-
construction point are estimated by minimizing the weighted
least squares problem

∑
−N≤n≤N

1≤s≤S

[
F 0

p + x0
sn· ∂x0F

0
p + τn∂τF

0
p − Fsn

]2
W0(x0

sn, τn),

(A2)

where the weight function

W0(x, τ ) = exp
[
−x · κ0

· (κ0)T · xT
− τ2�2

]
(A3)

is spatially isotropic. The matrixκ0 is

κ0
=

L−1 0 0
0 L−1 0
0 0 L−1

 , (A4)

whereL is the characteristic size of the spacecraft configu-
ration (Paschmann and Daly, 1998) and�=1/Tc. The co-
herence timeTc is a user-defined parameter that designates
the time scale during which the local structure of the field is
expected to retain its approximate shape.

Figure1a illustrates the sampling of the field in the satel-
lites frame of reference. The spatial coordinatesx0

sn of the
satellites are essentially independent ofn (i.e., time), and
take on only four distinct values. Although the spatial res-
olution will be as low as if we used only one observation per
spacecraft, minimizing Eq. (A2) will give us a first estimate
of F 0

p , ∂x0F 0
p , and∂τF

0
p . These estimates can then be im-

proved by iteration.

A2 Iterative improvements

The initial estimates of the field and its gradients can be im-
proved by choosing a new frame of reference that follows the
field structure rather than the satellites. As long as the gra-
dient does not vanish, we can always find a velocity, parallel
to the gradient, such that the field at a point moving with that
velocity has a constant value. To obtain an estimate of this
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velocity we introduce fori≥1 a unit vectorûi parallel to the
estimated spatial gradient,

ûi
=

∂xi−1F i−1
p∣∣∣∂xi−1F
i−1
p

∣∣∣ , (A5)

Assumingu0
=0, the velocity, relative to the satellites, of the

field structure at the reconstruction point is then determined
as

ui
=

ui−1
· ûi

−
∂τF

i−1
p∣∣∣∂xi−1F

i−1
p

∣∣∣
 ûi . (A6)

The velocityui describes how a plane, tangent to a surface
of constantF at (rp, tp), moves along the gradient. In some
simple cases, such as the magnetic field generated by a con-
vecting plane current sheet,ui will be closely related to the
velocity of the current sheet. However, in more complicated
situationsui may be completely unrelated to the motion of
large scale field structures. Notice thatui should not be inter-
preted as the velocity of a physical object, but is more similar
to a locally defined phase velocity.

To improve the resolution, an anisotropic weight function
is used in the iterations. Introduce two orthogonal unit vec-
tors v̂i andŵi in the plane perpendicular tôui . In this plane
the field will be slowly varying, and a resolution∼L is ac-
ceptable. To resolve the gradient as well as possible we focus
on measurements taken close to this plane through the origin
and within the coherence time (|τn|.Tc/2). Hence, we de-
fine the weight functionW i as

W i(x, τ ) = exp
[
−x · κ i

· (κ i)T · xT
− τ2�2

]
(A7)

where

κ i
=

(
ûi

3i
,
v̂i

L
,
ŵi

L

)
. (A8)

The resolution3i is mainly determined by the magnitude of
the velocityui

=|ui
| of the satellites in the structure’s frame

of reference. As illustrated in Fig.1b, consecutive obser-
vations from each satellite will be separated by a distance
1t>ui in the direction of the gradient. Thus we can typ-
ically choose3i

∼1t>ui
�L and still have measurements

with significant weight from all spacecraft. However, if the
velocity is low or the coherence time short, so thatTc>ui<L,
the algorithm will increase3i in order to include data from
all satellites.

A3 The algorithm

After obtaining the initial estimates according to Eq. (A2–
A4), the GALS algorithm can be summarized as follows: For
i=1, 2, . . .

I. Transform to the frame of reference moving with veloc-
ity ui by defining

xi
= x0

− τui, F i(xi, τ ) = F 0(xi
+ τui, τ ). (A9)

II. Solve the weighted least squares problem∑
n,s

[
F i

p + xi
sn · ∂xi F

i
p + τn∂τF

i
p − Fsn

]2
W i(xi

sn, τn)

(A10)

to obtain estimates of∂xi F i
p and∂τF

i
p in this reference

frame.

III. Calculate a refined velocity estimate according to
Eq. (A6).

These calculations are repeated until the velocity update falls
below a threshold. The final results are then transformed
back to the initial frame of reference according to

∂rF = ∂xi F
i, ∂tF = ∂τF

i
− (Prp + ui) · ∂xi F

i . (A11)

The GALS algorithm is applied to each timestep indepen-
dently. For the case of magnetic field observations, GALS
treats each component,Bx , By , andBz, and it obtains esti-
mates of the velocityu and resolution3 along the spacecraft
orbit for structures in each field component. However, the
three field components are coupled together with an addi-
tional constraint in our least squares routines by the use the
Maxwell equation∇·B=0.
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Lühr, H., Warnecke, J. F., and Rother, M. K. A.: An algorithm for
estimating field-aligned currents from single spacecraft magnetic
field measurements: A diagnostic tool applied to Freja satellite
data, IEEE Trans. Geosci. Remote Sens., 34, 1369–1376, 1996.

Panov. E. W., B̈uchner, J., Fr̈ana, M., Korth, A., Khotyaintsev,
Y., Nikutowski, B., Savin, S., Fornaçon, K.-H., Dandouras, I.,
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