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Abstract. Multi-spacecraft missions allow the gradient of the true gradient does not deviate too much from the average
important physical quantities in the terrestrial environmentgradient over the spacecraft configuration. A second set of
to be determined. The gradient can be computed from fouproblems is related to the measurement precision: gradients
simultaneous measurements in a straightforward way, buére differences of data values that differ only slightly, which
this computation does not produce proper error estimatednevitably leads to large relative errors on the results. This
making it hard to assess the meaningfulness of the resulis true in particular when the spacecraft are closely spaced,
Recently developed least-squares gradient computation techwhich is often required by the homogeneity conditions. A
niques offer the possibility to obtain more precise results withthird set of problems is due to imperfect knowledge of the ex-
all-inclusive error estimates, provided that information aboutact place and time where the measurements are made, owing
the non-linearity of the space and time variations of the ob-to uncertainties in the spacecraft positions, spacecraft clock
served quantity is given. The present paper describes severaynchronization errors, and the data acquisition time dura-
heuristics for estimating these variations, thereby enabling dion. Finally, while it is possible to assess the uncertainty
fully automatic computation of the gradient and the associ-on the computed spatial gradient that results from the mea-
ated error estimates. The performance of these heuristics isurement errors, the instantaneous four-spacecraft calcula-
illustrated with synthetic data corresponding to 4- and 10-tion provides no information about the error that stems from
spacecraft configurations. the fact that the gradient in reality is not constant over the

Keywords. Magnetospheric physics (Magnetospheric con- SPacecraft tetrahedron.

figuration and dynamics; Instruments and techniques) Many of these difficulties can be SUCCGSfU”y addressed by
least-squares gradient computation (LSGC), as recently de-

scribed byDe Keyser et al(2007). The rationale is that, if
the gradient remains constant over a given time interval (thus
relaxing the requirement of simultaneity), the information

Computing gradients from in situ measurements is an es_content from a larger set of data points can be exploited for

sential element of multi-spacecraft missions, in particulangTpm:ﬁl the grﬁd'ﬁ?ﬁ An over?_etermlng_d ptroblerrg)ls then
the QLUSTER mission consisting of four identical space- 0 ta:jn_e rom Vr\1lt Igl et space-time gra I?r? can be Cgmé
craft flying in formation. The classical gradient computa- puted in a weighted least-squares sense. 1he error made by

tion (CGC) technique exploits the fact that exactly four si- approximating the field by a locally linear one ("approxima-

multaneous non-coplanar measurements are needed to det ilo_n error” or “curvature error”) is related to the distance of
mine the three spatial gradient componersryey, 1998 the measurement point_s fro_m the po_int where the_gradient is
Chanteuy 1998 Chanteur and Harvey1998 Robert et al. computed. The approximation error is expressed in terms of

1998a Darrouzet et a).2006. Although the basic idea is :Ee gotmogen_eltty I??hgth and “T“e ts_cales. Thedt;)r:al erroron
simple, such gradient computations are difficult in practice. € data consists of this approximation error and the measure-

A first set of problems has to do with the requirement of ment error. The inverse of the total e_rroris used as the weight
homogeneity: Computing the gradient makes sense only in the measurement, S0 that oqu points close tq the center of
the homogeneity domain contribute to the solution. An error
Correspondence tal. De Keyser estimate on the gradient is obtained that accounts for both
(johan.dekeyser@bira-iasb.oma.be) sources of error. Many data points are usually involved in the

1 Introduction
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3296 J. De Keyser: Gradient calculation with automatic error estimation

the spacecraft traverse different regions of geospace. The
goal of the present paper is to introduce heuristic techniques
to estimate the homogeneity scales (and thus the approx-
imation error) automatically. Armed with such estimates,
this least-squares gradient computation with adaptive scales
(LSGC-AS) will use an appropriately sized homogeneity do-
main with the optimal set of data points, and the total error
estimate on the computed gradient will be much more realis-
tic.

Section2 briefly reviews the least-squares gradient com-
putation technique. We adopt standard linear algebra nota-
tion: Bold lower-case symbols represent vectors, bold upper-
case symbols are matrices, and all other symbols denote
scalars. SectioB introduces various ways for modelling the
approximation error. Sectiohdescribes techniques for auto-
matic estimation of the parameters in those descriptions. The
Fig. 1. lllustration of least-squares gradient computation in a 2- techniques will be illustrated with synthetic data correspond-
dimensional setting. The algorithm uses data obtained in a set ofg to 4- and 10-spacecraft configurations in Séct.The
points in space-time. In this example, the data are acquired bypaper ends with an evaluation of the proposed techniques.
three spacecraft (red dots on the dotted spacecraft trajectories); the
method can deal with any number of spacecraft. The approximation
error in each data point grows with its distance frej where the 2 Least-squares gradient computation
gradient is computed. This distance is measured in a frame,(
loup) that may be rotated and scaled relative to the original frame.This section summarizes the least-squares technique devel-
Points on the ellipse with semi-axésandl, are assigned a unit oped byDe Keyser et al(2007) for computing the gradient.
distance. Points inside the ellipse (dark shaded area) correspond /e slightly generalize the description of the approximation
smaller distances and therefore a smaller error. Points outside thasrror as this will turn out to be useful later on.
ellipse (lightly shaded region) will have a larger error so that they
are less relevant, thus reflecting the homogeneity condition. Point®.1  Problem formulation
outside the shaded regions are ignored.

Consider a scalar fielgf(x, ¢) that is sampled at positions
and timesx; =[x;; y;; zi; t;1, i=1, ..., N, relative to a given

calculation of an individual gradient, depending on the sizereference frame in 4-dimensional space-time. The measure-
of the homogeneity domain relative to the spacecraft sepamentsy; have known random error variano&y&nl? and there
rations and the sampling frequency; the uncertainty due taare no systematic errors. The cross-correlations between
random measurement errors can therefore be somewhat sugreasurement errors at different points vanish. To illustrate
pressed. the idea, consider the 2-dimensional situation sketched in

Gradient computations suffer badly from systematic errorsrig. 1. We want to compute the gradient &4 from mea-
on the data: They require properly intercalibrated data. How-surements made by several spacecrsdt (sco, ...). The
ever, intercalibration is difficult as the instruments and their measurement points; are indicated by the red dots. The
operating environments are never identical. Systematic grafield f can be locally approximated by a Taylor expansion
dient computations with ESA's USTER multi-spacecraft  aroundxo. With Ax=x—xg the relative position of a mea-
mission have been limited to magnetometer data (FGM in-surement point, and denoting the function value, the gradient,
strument, Balogh et al. 1997 2001 with their high pre-  and the Hessian at by fo, go=V . fo, andHo=V, V.} fo,
cision and good calibrationDunlop et al, 2001, Dunlop this expansion gives
and Balogh 2005 Vallat et al, 2005 Dunlop et al, 2006, 1
and to electron density data derived from the plasma fre-f(x) = fo+ Ax " go + =Ax "HoAx + . .. (1)
quency (WHISPER instrumenBDéciéau et al. 1997, 200%; 2
Trotignon et al. 2003 because of their absolute calibration Truncating this expansion after the linear term defines the
(Darrouzet et a).2006 De Keyser et a}.2007). approximating functiornya(x)= fo+Ax " go and the approx-

De Keyser et al(2007 assume that the homogeneity imation error 8 fa(x)=3Ax"HoAx+.... Requiring the
length and time scales are given. While they point out thatresiduals to be zero,
a suitable value can be chosen based on physical consider- . _ .
ations, this may not always be easy to do in practice. Theyri =rxi) = fax) = fi =0 )
also take this scale factor to be constant over the analysifeads to a system @¥ equations (one for each measurement)
time interval, while the degree of curvature may change ador fy andgo. The number of unknowng/, is 5. SystemZ2)
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J. De Keyser: Gradient calculation with automatic error estimation

is usually overdeterminedV(>>M) so that it cannot be satis-
fied exactly, but it can be solved in a least-squares sense.
Approximation @) is valid in a region arouna that can

3297

data points that are used is limited to those whose total error
is less than a given facter (typically, =1000) times the
smallest total error in the set of data points. If the measure-

be described by a hyperellipsoid in 4-dimensional spaceiment errors are all equal, the domain from which data points

time (the dark shaded ellipse in Fid). Such an el-
lipsoid is uniquely specified by four mutually orthogonal
unit vectorsuy, which constitute the columns of a rota-
tion matrix U=[..., ug,...], and by the four homogene-
ity length and time scalel, which define a scaling matrix
L=diag({. .., &, .. .]) (this notation means: the diagonal ma-
trix with the /; on the diagonal). Transforming the problem
into a new reference frame by meansxéEPx=(UL) 1x,

are accepted then is a large ellipsoid (the lightly shaded el-
lipse in Fig.1). The number of measurements, is therefore
rather large, so that>>M.

Solving the weighted least-squares minimization problem
is a classical application of the singular value decomposition.
With g=[ fo; LU T go] grouping the unknowns, the linear ap-
proximation can be written ag,=Ag=[1, L-1UTAX"1q.

The solution of the weighted overdetermined syst&8jrtcén

the ellipsoid becomes a hypersphere. We will often use thebe expressed as

euclidian norm in the new frame:

[Ax'|2 = Ax TUL2UT Ax.

g=(ATC?A)IATC2f = MY. (4)

If the new frame involves only a rescaling and no rotation The solution is obtained by applying the linear operado

(U=I), this simply amounts to
Axy

Ax’ 2 — 2_

lAx]l Ek (_lk )

The dark shaded ellipse in Fifjcorresponds t¢ Ax’||<1.
Assume that an estimate for the approximation esyGr

is known. How to obtain such an estimate will be the sub-

ject of Sect3. At present, it suffices to remark that this error
increases witH Ax’||. The total error consists of the mea-
surement and the approximation error,

812 = 8fm? + 8fal;

the dataf. The inverse of the symmetrized weighted system
matrix AT C—2A is computed by means of the singular value
decomposition oZ=C~1A (seeDe Keyser et a).2007, for
more details). Expressiod) indicates how measurement
errorsé f produce an error on the result:

dq =MJf,

with covariancesCZ=MC*MT=(ATC~2A)"1. Small sin-
gular values therefore imply strong error propagation. In par-
ticular, zero singular values indicate that the measurements
do not completely define the solution. The singular values
offer a convenient generalization of the tetrahedron geomet-

these are the diagonal elements of the total error covariancfc factors (size, elongation, and planarity) for 4-spacecraft

matrix C2. For the sake of simplicity small-scale fluctuation
errors are not considered here ($&= Keyser et a).2007).

configurationsRobert et al.1998h. In generalpg is not di-
agonal: The errors on different solution components are cor-

We also do not address spacecraft position or timing errors. related. Such correlations are often ignored, and one adopts

2.2 Problem solution

The gradient is computed in a weighted least-squares sen

by first multiplying system2) with C~1. If C2 is diagonal,
this amounts to multiplying each equation with=1/4f;,

the weight for thei-th equation. IfC? is not diagonal, a
diagonalization has to be computed first, which we will t

[diag(C2)]*/2 as the error margins.
The least-squares gradient method can be applied to vec-

St@r fields as well; the number of unknowns then\Ms=15.

The cross-correlations between the errors on the gradients
of the different field components must be taken into account
when computing the error margins on the curl or the diver-

ry gence of the vector field. The least-squares method can also

to avoid as this can be very compute-intensive. Solving thehandle constraints, e.g., when a vector field is divergence-

weighted overdetermined system

ri/8fi=0 3)

is equivalent to minimizing the least-squares expression
N 2

2_N i

i=1

free (De Keyser et a).2007), in which caseM=14. Applied
to the magnetic field, this leads to a new curlometer since
Jj=V xB/ug if there is no time dependence.

The method described here relies on an unconstrained
approximation of the scalar or vector field. If f is
strictly positive, like for plasma densities or temperatures,
the method should be applied to Iggather than tof itself.

The choice of weights makes sure that measurements with a

large total error do not contribute much to the solution. In3 Maodelling the approximation error

particular, data outside the homogeneity domain have a large

approximation error and do not add any significant informa-We consider different descriptions of the approximation error
tion. To limit the amount of computational work, the set of §f,, depending on the desired level of detalil.
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Table 1. Relative contributions of different regions ix’-space to the sum of the weighis of all points. If the data points are

the least-squares solution for different approximation error models,d'smk_)UtG(_j uniformly ind-dimensional spac_e, and 'f,th's se.t
assuming uniform coverage. See the text for an interpretation, ~ Of POINts is dense enough to use the continuous-distribution

limit, it is found that

d AYe[0 3] AYe[3.1] AYe[l2 Ax'>2 ¢ = lim I;(1)/Iu(R)

2 R—o0 ’
(A)  bfacc Ax/

where

1 04447 0.3358 01829  0.0365
2 0.1560 0.3440 0.3440 0.1560 R Racypi1
3 0.0365 0.1829 03359 04447  la(B®)= | w(p)Salp)dp = | == o dp.
4 00016 0.0172 00581  0.9231

in which the constant,;=V,;(p)/p?, with V;(p) andS;(p)

B ) Ax’? max(A ’2,1 . . .
B dfaccAx Ao 1 representing the volume and surface ofZalimensional

1 0.5100 0.3851 0.1037 0.0012 sphere with radiup, respectively. Whatever the value of

2 0.2380 0.5251 0.2318 0.0051 p, there is always a dimensiahfor which 1, is unbounded

3 0.1028 0.5144 0.3670  0.0158  for R0, so thaty—0: The far-away points dominate the

4 0.0410 0.4278 0.4890 0.0422 solution despite the fact that the weak locality principle is sat-

€)  5facc Ax’2maxery' -1 1 isfied_. Requir?ng that the solutio_n is not d_omingted by the set
of points outside the homogeneity domain, which we refer to

1 0.6647 0.3031 0.0317 0.0004 as the “strong locality principle”, leads tp2d—1. For the

g 8;’23? 8'2222’ 8'(1)233 8'8823 space—time settipg of thg muIFi—spacecraft gradient problem

4 0:1058 0:5529 0:3138 0:0275 (d<4), this requirement is satisfied fgr<2. To be general
for all d, § fa must increase at least exponentially with':

(D)  §faoc Ax'? max{eAX’Z—l, 1} Only if the approximation error increases rapidly, the sum
of the weights of far-away points decreases quickly enough

; 8:232(2) 8:222;’ 8:8;22 8:8888 to yield a finite contribution. Tablé lists the relative con-

3 0.2209 0.6684 0.1106 0.0001 tributions of the sets of points with differemtx’-ranges in

4 0.1184 0.6980 0.1835 0.0002 the uniform and continuous distribution limit, for four ap-

proximation error bounds. Fai=4, a bound(Sfaoch’2 is
problematic as more than 90% of the solution is contributed
by points outsideAx’>2. A higherp or an exponential error
3.1 Weak and strong locality bound is needed to enforce strong locality; the table gives a
few alternatives. The assumption of a uniform coverage of
It is clear that the approximation tends to degrade with dis-the homogeneity domain is often not realistic, as the num-
tanceAx’=| Ax’| away fromxo, where the gradient has to ber of spacecraft is usually limited. As an alternative, con-
be computed. By choosing the weights inversely propor-sider the case where the data covérdimensional cylinder
tional to the total error, the “(weak) locality principle” is sat- whose cross-section has dimensions well below the homo-
isfied: an individual point closer t®g contributes more to  geneity scales, as for closely spaced spacecraft crossing a
the least-squares solution than a point far anag. Keyser  large structure. The contribution then is proportionalip
et al.(2007) use this principle to argue that the set of points giving the results listed in Tablefor d=1, regardless of the
included in the calculation can be limited (cf. thethresh-  actual dimensioni. For the quadratic approximation error
old that was introduced in Se@). Upon closer inspection, bound, the contribution from points outsider’>2 is less
however, it turns out that one must be very careful in draw-than 4%, so that the situation is not that bad. Note that these
ing that conclusion. Let us assume that the approximatiorassessments ¢fin different circumstances are rather crude
error can be modelled a;< f.Ax'’, where f. is a scal-  since the approximation errors at different points are not sta-
ing constant reflecting the approximation errorat =1. If tistically independent. Summing or integrating the squared
the measurement errors are all the same, and eqyaltbe  weights is therefore only indicative of the contribution of a
weights used in the least-squares problem are particular set of points to the solution.

w2 — i _ 1/f2 3.2 Homogeneity properties and the second-order term
OS2 14 Ax

The approximation error is due to the second- and higher-
The contribution; of the set of points inside the homogene- orqger terms in the Taylor expansiot){

ity domain to the computed solution can be quantified by
summing the weights of these points, and comparing that t& fa(Ax’) = 8 fso(Ax") + & fho(Ax"),

Ann. Geophys., 26, 3298316 2008 www.ann-geophys.net/26/3295/2008/
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wheres fso=0(Ax'?) is the second-order term, correspond- 20 ; ; ;
ing to the term with the Hessian. It can be written as A: Az D
1 d B: Az max{Az?,1} B//
15+
8f$0i = éAxiTHOAxi = fc Z Sk Ax,izk C: Az max{e® =1 1} /
k=1 D: Az max{eA®”~1 1} /
if the Hessian iso=UAUT with A = diag2f.s;/[2), that S 107

is, if the eigen-vectors of the Hessian are the homogene-
ity directions, if its eigen-valueg; determine the homo-
geneity lengthg,=+/2f./]1«] and if the sense of curvature
sk=sigm, in each direction, withy, an a priori given scaling

constant. The homogeneity properties therefore determine % 0s T s 5 25
the second-order term in the Taylor approximation. ' Az '
3.3 Description of the approximation error Fig. 2. Behaviour of four different upper bounds for the approx-
) L imation error. These four models adopt a quadratic behaviour for
Because of the strong locality principle, we use Ax'<1, but differ in the way in which they estimate the higher-

d order terms in the Taylor approximation for larget’.

2
Sfai = fe Y skAx'j - max(n(Ax')¢(Ax'), 1)
k=1
can only assume that the covariances of the higher-order part
of the solution vanish. In fact, as the higher-order terms rep-
resent a residual error, typically with oscillatory behaviour,
such correlations can indeed often be ignored. The covari-
ances therefore are due to the second-order part alone:

to express the approximation error, whef@Ax')e[—1, 1] is
bounded an@ (Ax’) is a monotonically increasing function
with ¢ (1)=1. Four approximation error models are consid-
ered here: (Ap=1, (B) p=Ax'?, (C) =21, and (D)
¢>=eA’“’2‘1. The actual behaviour of functiom(Ax’), and

especially its sign, is not known. This limits our ability to d d
estimate the variances. A simple estimate is faidfap) = 2O siAx O siax'S).
4 =1 k=1
2 2 12.\2 N2
(8faf) < [ (];Skm i) max{[¢ (Ax)]%, 1. In the particular situation where the sigag are not

known, an upper bound on the variances is given by
For Ax'=1, the variance i8f2?< £2, in line with the defini-

tion of the homogeneity lengths as the scales corresponding,? ~ fCZAx"‘{[(p(Ax’)]Z, 1}
to an approximation errof.. The above approximation er-

ror estimate is correct for smallx” when the homogeneity the covariances can only be taken zero. This simplified de-
properties are well estimated. The higher-order terms are description with a diagonal covariance mat@¢ is computa-
scribed rather poorly, but points where those terms play aionally much cheaper.

role do not contribute much to the solution anyway because

of the strong locality principle. This can be appreciated by3.4 Role of error cross-correlations

looking at the upper bounds given by the four approxima-

tion error models. These are the four alternatives discusse@onsider the following toy problem faf=1 with s;=+1,

in Tablel; they are illustrated for the one-dimensional casewhere the data points can be grouped in three sets: set | con-
in Fig. 2. For Ax’<1 the approximation error is quadratic taining points well inside the homogeneity domaix(«1),

in all four cases. For points that are farther away, the errorset Il grouping points near the edge of the homogeneity do-
grows more rapidly with alternatives B, C, and D, so that main (Ax’~1), and set Il containing points outside the ho-
such points have substantially less weight. While model Bmogeneity domain4x’'=£¢>1). These sets contait,, Ny,
initially grows faster than model C, the converse is true asand N, points, respectively. For the sake of simplicity, con-
Ax’—o00. Model D produces a very steep increase of the ap-siders fi; = f.. The covariance matrix then is

proximation error, so that points beyond roughly’>1.7 do

’

not count at all. Inthe sequel, model C has been adopted, as it 1 0 0
offers the best compromise between guaranteeing strong loe? = fc2 0 I+E £2E ,
cality and allowing points outsidax’=1 to contribute some 0 E2E [1+&%[¢p®)P—DI+EE

information to the solution.
The approximation errors at two pointandj are notin-  with cross-correlations due to the quadratic terihd€notes
dependent. Because of the lack of knowledge alyowte identity matricesE represents matrices whose elements are

www.ann-geophys.net/26/3295/2008/ Ann. Geophys., 26, 32355-2008
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all 1). With a scalingSc=f.diag[...1...v2...5...]), by simply ignoring the cross-correlations, thus avoiding the

wheres?=1+£%[¢(£)]?, one obtains inversion of the correlation matrix altogether.
1 0 0
c2=sl| O %(H—E) %E Se 4 Automatic determination of homogeneity parameters
2 4 4
0 %E (1—%)1+§—2E The LSGC technique explained in SeBtrequires that an

) ] ) ) ) approximation error estimate is given. Secti®rshowed
If ¢ is strictly increasing (as in models B, C, and D), the oy that error can be described in terms of the homogeneity
cross—corrglatlons between points of sets Il and I2II, aqd thos%irectionSuk, the homogeneity scalds, and the curvature
among points of set I1l, are/3/2¢ (¢) and ¥[¢(£)1?, which  genses;, . Applying the least-squares gradient method would
tend to zero ag— oo, so that be much easier if these parameters could be determined au-
I 0 0 tomatically. It can intuitively be understood that this must
c2~sl| o Lu+E) 0 |sc. somehow be possible: the residuals reflect the behaviour of
0 2 0 I the error, from which the parameter values can be extracted.
We assume here that the orientatiansn space-time are
This indicates that only total error cross-correlations betweergiven: Most often, one direction is along the time axis, a sec-
points of set Il matter: Those involving points of set | are ond one is along the magnetic field direction, while there is
negligble since uncorrelated measurement errors dominatgo a priori homogeneity anisotropy perpendicular to the field.
the total error there, while those involving points of set Ill The set of parameter values that must be estimated there-
are negligible since the second-order error is dwarfed by thdore is eitheiS={l,}, or S={I, s}, depending on the desired
uncorrelated higher-order contributions there. The approxidevel of detail. In all cases, approximation error model C has
mate eigen-values @2 are the variances of seth, times  been used. It can sometimes be useful to adopt a more com-
12, the variances of set IIly, times(1+£%[¢(£)]?) f?, and  plicated choice for tha,. For instance, for convecting time-
those of set II, which for the special form of tf%I+E) stationary structures, and knovying the convection speed (e.g.
diagonal block are known to be on¢&,—1) £2 and Np—1 fr_om plasma _measureme_nts), itcan be ad\{antageous to con-
times f2. The corresponding eigen-vectors indicate how theSider computing the gradients in the comoving frame defined
original set of equations is reordered into an equivalent sePY the specific choice of they as discussed bpe Keyser
of equations that each represent a statistically independerfit al-(2007 Appendix A2). S
piece of information. The equations for set | remain unaf- _ We will determine the parameter values by optimization:
fected; the eigen-values indicate essentially the independerN€ least-squares gradient is computed for different sets of
measurement error variances. The equations for set Ill ar@arameter values so as to minimize a functio®) that rep-
unaffected as well, corresponding to variances that reflect th&eSents the quality of a set. Different functiofislead to
higher-order errors. The equations for the points of set |1, different heuristic parameter estimation techniques.
however, are linearly combined into a setf—1 equations .
with an improved precision as the correlated second-ordef-1 ~Heuristics based o
part of the error can be eliminated there, while there remains; ¢ denotes the gradient computed with parameter vafijes

one equat|or_1 with a much_hlgher variance, which is eqUIva'thenAq are the observations that would have been made if
lent to dropping that equation from the system.

Generalizing the conclusions of this toy problem to ar the gradient were exact, amd-Aq— are the residuals. It
. S . . is a basic property of -statistics that
bitrary distributions of data points, as well as to the multi- property of

dimensional case, one finds that adding the cross-correlations N
helps to partially eliminate the effect of the approximation x* =r'C™%r = 2:(5—1')2 =N-M, 5)
error in points near and beyond the edge of the homogeneity i=1 ofi

domain, but the contribution of those points is limited be-
cause of the strong locality principle. Overall, including the
correlation tends to reduce the error margin on the gradien
a little, but it does not have a dramatic effect. Even rough
estimates of the cross-correlations are therefore sufficient.

This has important practical consequences. Solving the » n-12 ¢ ;(n—-1)2
weighted overdetermined problem requires inverting the toX = Zri /31, '

l

tal error covariance matrix. This computationally very ex-
pensive operation can be accelerated, for instance, by settini this value matchesV — M, the specified variances did cor-
small correlations to zero in order to improve the sparsity ofrespond to the observed variability. If this is not the case,
the matrix. An even more dramatic acceleration is obtainedsomething was wrong with the given error estimatﬁ@’?_l).

the effective number of degrees of freedom. We can use this
Property to estimate the approximation error.

Starting with a set of parameter valug$ 7, the gradient
is computed, as well as

Ann. Geophys., 26, 3298316 2008 www.ann-geophys.net/26/3295/2008/
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If the measurement errors are well-known, the approximatiorheuristic does not allow to estimate the individual homogene-
error estimates must have been incorrect. Improved estimataty lengths, nor the sense of curvature. Different initial ho-

chl.(”) and the corresponding residua}? should satisfy

2 2
N—M=Y"r" 5™

mogeneity scales in various directions can be specified; they
are rescaled while keeping their relative proportions.

The value ofa™ and the corresponding scalé” are
some sort of mean value as the technique cannot distinguish

Changing the weights in the overdetermined problem onlythe relative contributions from different directions. If one

has a modest effect on its solution, so tk}(ﬁfwrl.("_l) and

e

=12 _ w2 ,(—-1)2,
N—M(Sfi = a5, :

2

the factora®™ should be used to rescale the total error esti-

is dealing with gradients of one-dimensional structures (a
rather common situation), the approximation error is due to
one of thed dimensions only, so that the actual rescaling fac-
tor must be takew times larger. Even if there is no single

dominant curvature direction, it is safe to do so. Also, as
we work with three-standard-deviation error bounds rather

mates. To understand the consequences of this, assume thahy, the one-standard-deviation bounds used in the defining

we are working with approximation error model A (second-

order term only, without knowledge of curvature sens;es)na"y

and that the homogeneity directions are along the coordi

nate axes. Denoting the improved homogeneity lengths by

l,ﬁ”)zx(")l,in_l), the total error estimates are
2
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Such a solution exists only if the right hand side is positive.
This condition is satisfied i ")>1, when the approximation
error was underestimated. A solution also exisis® <1,

>

k

2
SFMT = 8fm? + [
so that in an average sense

AXxig

-4 2 2 (8fmd)
A =g (@) = =Y
k

c

property ofx2, the corresponding factor must be added. Fi-
in order to give more emphasis to points where the ap-
proximation error is small, we introduce an additional factor
u = 2 to force the homogeneity lengths to be chosen a little
bit smaller than they would otherwise. We therefore define

X2
N-M
producing a rescaling that reflects the smallest spatial scale.
If the number of available dat&/, is not large, the statis-
tical properties ofy? cannot be relied upon. This problem
can be overcome by determining the correction not on the
basis of an individual gradient computation, but for a set of
gradient computations performed over a certain time inter-
val. Doing so leads to proportionally larger valueshaf M,
andN—M, so thaty?-statistics do apply. The homogeneity
scaled; then remain constant throughout the time interval,
so that this approach is useful only when the curvature prop-
erties do not change significantly over that interval. We refer
to this technique as “globai? optimization”.

2
a™® = 9/L2d2

but only if the measurement error is small compared to the4.2 Heuristics based on the distribution of the residuals

approximation error: If the measurement errors dominate

rescaling the homogeneity lengths does not affect the residuMore detailed heuristics analyze the spatial distribution of

als very much. In the particular situation whe8¢m§)<<f62,

the residuals to find thig in each direction individually. Also

this amounts to rescaling the homogeneity lengths with a facthe curvature signs, can be determined.

tor \(W=1/va®.

In conclusion: If the obtainegi? was too large, the ap-

Figure 3 sketches a typical distribution of the (non-
weighted) residuals for the one-dimensional case. The mea-

proximation error was underestimated and the homogeneitgurement errors lead to non-zero values faxx| close

lengths must be decreasedx# was too small, the converse

is true. Because of the simplifying assumptions made aboveguadratic behaviour.

this adaptation process is an iterative one. As the process
repeatedy ™ — 1. This amounts to minimizing

1
F=a’+5>2
o

a technique that we call “local? optimization”. The min-
imum of F is uniquely defined if the curvature lengths
are I =(lim,- o A(”)-...~)L(1))l,(<°)=)\l,<<0) with a direction-
independent proportionality constant, so that minimizing
F(x (1)) is a one-dimensional optimization problem. The

www.ann-geophys.net/26/3295/2008/

to zero. Farther away, the second-order terms lead to a
Still farther away, the higher-order

erms dominate so that there is not necessarily an obvious
systematic behaviour anymore. We can subtract the measure-

ment errors and estimate the approximation errors
8fa2 ~ max(r? — 3(8fm?), O},

from which we try to recover the properties of the second-
order errors.

A first possibility is to fit the approximation errors with a
second-order expression of the form

2
|8 fail = €fe AX';
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Fig. 4. If the spacecraft sample the homogeneity domain only par-
Fig. 3. Typical spatial distribution of the residuals in the one- tally forinstance only along homogeneity directiepas sketched

dimensional case. The diamonds indicate the absolute values df this example, the residuals do not contain any information about
the residuals. For smallAx|, the measurement errors dominate the approximation error along the other directions so that the corre-

(measurement error bound: green line). At intermediate values, th§Ponding homogeneity lengths cannot be derived.

second-order behaviour is evident (measurement error plus second-

order term: blue curve). For largénx ||, higher-order terms play ) ) o
arole and may result in residuals whose upper bound can be highégan be used to find the parametegs-0; this coincides
or lower. The goal of solution adaptivity is to find the homogene- With the previous technique if ally=¢ are identical. The
ity length scale (marked by the dashed vertical line), at which theweighted least-squares solution can be formally written as

transition of second-order to higher-order behaviour occurs. 1
2 2 2
[ex] = [Z w2 Ax'S Ax’jm] |:Zw31 AX} 18 far |/fc]
to determine the parametet0. This is an overdetermined m m
problem. To eliminate the impact of the higher-order terms,\yhere the same weighting is used as before. One has to be

. 2 . . . .
weightsw?=e~4* i/X?  Ax'? are associated with each equa- careful to verify that alle,<0; if not, one has to explore
tion; X=3 is used here. The weighted least-squares solutiora number of combinations in which one or more of the

is are zero and the remaining values are computed from the
P above system of equations, and retain the solution that mini-
. > e A8 | mizes the weighted residuals. The effectively used values are
fe 3 e—AX’f/XZAx/iZ' taken aSa,E")zsuepO, from which A,((”):l/[oz,?”]l/2 and
- 14,0 0
L=(img oo A A0 =240

We take the valueeto be an approximate upper bound for = a5 heen our experience that this multi-dimensional fit-
the approximation error. It is again possible to obtaln. a su't'ting procedure fails to work properly if the homogeneity do-
able value (c?rrespondlng to the smallest homoger;elty scalfain is only partially sampled. And this, unfortunately, is
by settinga™ =3 ude, similar to what was done for® 0p- ey often the case with data recorded by spacecraft that
timization, implying a rescaling of the homogeneity lengths fly in formation along a common trajectory. Suppose that
by a common fathk(?):.l/V ™ at each step. One can the spacecraft orbit is along one of the homogeneity direc-
again define an optimization process that determines the hoc‘ions, as depicted in Figl. If the homogeneity scales in the

mogeneity scales that minimize perpendicular directions happen to be much larger than the
1 transverse spacecraft separations, the residuals do not contain
F=a?+ — =2 much information about the approximation error in those di-
o

rections, so that the corresponding homogeneity lengths can-

As o™ —1 near the optimum, the homogeneity lengths Not be properly estimatec_i. This is not r_eally a prok_JIem: As
Li=(lim, oo 2. . ')‘(1))1/50)=M/EO) have the desired val- there are no data points in Fhose d|re9t|on§, there is no need
ues. This “solution-adaptive technique with common rescal-1© evaluate the c_orrespondlng approximation errors, and so
ing” is similar to localy 2 optimization. those homogeneity Iengt.hs'are not.needled. One only has to
A direction-dependent fit of the form make sure thf_;lt the heuristic technique is robust enough to

handle such circumstances.

18 fail = £ ZekAx/izk The strategy_a_dopted he_re i_s tq guide the directio_n-

T dependent heuristic by the direction-independent one. First
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obtain amale/kﬁqm from the common rescaling method, It also allows the cross-correlations on the data used in the
corresponding to the minimum scale length in any direction.overdetermined system to be estimated, although we do not
Then apply the direction-dependent technique. In each stepxploit that in order limit computation time.
we obtain thexlg”) values. Definingvy=omax/Ax With

4.3 Homogeneity parameters from a second-order fit

Ap=a P

o 05(1),
¢ An alternative approach would be to compute both a first-
and a second-order fit, and use the difference between both
ﬁlog((x,({")/&k) as an error estimate. _Computing a seco_nd-_o_rder_fit is, how-
TgLZ’ 0} ever, usually not feasible. A ful] quadratlg fit implies many
unknowns: M=15 for a scalar field (function value, gradi-
whereL>1 is a given constant. This restriat§, to the in-  €nt, and symmetric hessian matrix) aht=45 for a vector
v 12, it s outside,whie keepingty ~c(” 1411 8 Sfied versin where e Pomogenely drec:
inside that interval. This choice guarantees that . h . .
hessian, the hessian off-diagonals vanish, so a9 or

1 aé’f’f)kAk ]E’D M=27 for a scalar or a vector field. In either case, there

12 = o <1 and thus 1< 0 <L. usually is not enough information available to determine all
mink these unknowns because the homogeneity domain is not fully

This choice therefore makes sure that the homogeneitgovered by the sampling points.
lengths all lie in a bounded interval above the minimum
length as determined by common rescaling. This make#.4 Optimization procedure
this “solution-adaptive technique with direction-dependent
rescaling” very robust, while at the same time allowing someThe heuristic techniques described above rely on minimizing
adaptivity. The constarit can be freely chosen, but it should target functionF, a multi-dimensional optimization prob-
not be too |arge to avoid ill-defined values when the homo-|em. The optimization algorithm used here is the classical
geneity domain is not well covered. The choite-10 has ~ Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method
been adopted here, which is sufficient to capture the effectyvith numerical derivatives. This algorithm progressively
of direction-dependent homogeneity properties. The targegVolves from a steepest descent method to a quasi-Newton

function that is minimized in the direction-dependent case ismethod. Starting from an initial guess and an estimate of the
target function gradient at that point (obtained by numerical

differentiation), a line search is performed to find the (ap-
proximate) minimum in that direction. The line search iter-
atively uses an interpolating parabola to approach that min-
under the constraints discussed above. imum. This procedure is repeated, but at each step the tar-
Yet another way to improve the well-posedness of theget function gradient is used to improve an estimate of the
direction-dependent adaptation process is to limit the numbeHessjanH ~ of the target function near the minimum, from
of unknown homogeneity scales by introducing constraints\yhich the next search direction is computed. Rather than
For instance, one might require the spatial homogeneitystoring the Hessian, one stores its Cholesky facietwhere
lengths to be all equal. This is done by taking equal referenceq =L ~TL r); the BFGS algorithm relies on a specific up-
Iengthsl)(co):lﬁo):lz(o) and by forcingh,=1,=A;, while the  date and downdate of the Cholesky factor that is computa-
homogeneity time is determined by a reference tiffleand  tionally efficient.
arescaling factok,. The corresponding direction-dependent  Given the algorithm to compute the least-squares gradi-
technigque then becomes a two-dimensional optimization proent and the choices made therein (such as the selection of
cess, which is also computationally easier to solve. data points to be used), the target functiBnwhile having
The “solution-adaptive technique with direction- a smooth overall behaviour as a function of its arguments,
dependent rescaling and curvature” goes one step furthefs not necessarily smooth locally. This behaviour manifests
from the signs of the (non-weighted) residuals f —Agq itself when solving the optimization problem with high preci-
one can infer the curvature sigeg. In this case, too, it sion: The optimization might get trapped in a local minimum
can be useful to set constraints on the set of homogeneitglose to the global minimum. To avoid this, we let BFGS op-
scales; introducing constraints on the curvature signsfimization be followed by a comparison of the BFGS solution
however, is of little practical use. The curvature sign in awith the target function values in a set of nearby alternatives
particular direction is deemed to be zero if the correspondingn all directions. If a lower value is found, BFGS is used to
homogeneity length is large: in such directions the curvaturemprove that solution even further.
error is small. As explained in Se@&.3, knowing the signs We formally describe 7/ as being a function of
allows a more precise evaluation of the approximation errorloga=—2logl or loga;=—2logl. We solve each

we set the effective direction-dependent rescaling factors to

log agif)k = logéy +max{log L erf

d
1
k=1 O
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optimization problem until the solution updates becomea starting guess for the optimization at the next point. This is
smaller than a specified precision of £0 This implies that  advantageous mostly in cases where the gradients are com-
the values of or [, are determined with a relative error of puted with a rather high time resolution, since then the homo-
0.1%, which is more than adequate for our purpose. geneity lengths do not change much from point to point. For

The globaly? optimization heuristic requires solving one testing purposes, however, we have not followed this strategy
optimization problem in just a single variable. On one hand,here: By keeping the computation at each point independent
the evaluation of the target function is pretty expensive, asdrom that in the other points it is easier to evaluate the cor-
it consists of computing the gradients at all points for the rectness and the efficiency of the optimization processes.
current values of the homogeneity lengths to evaluat®n
the other hand, for a one-dimensional search space the BFGS
technique reduces to a line search, so that only a limited num® Algorithm performance
ber of evaluations is needed.

For the localy 2 technique, an optimization problem must
be solved at each point where the gradient is to be computed’f’
Each optimization problem is one-dimensional, with a tar-
get function that involves computing one gradient, which is
fairly easy.

The solution-adaptive technique with common rescaling is
similar to localy 2 optimization: Only the definition of is

In this section we illustrate the performance of LSGC-AS
ith the error estimation heuristics proposed above.

5.1 Gradient of a scalar field: a planar transition layer

In a first series of tests we consider a planar interface in a
scalar field, e.g. plasma density (see FEY. The interface
has its normal direction along and is characterized by a

different. . . . o smooth transition profile of the form
The solution-adaptive technique with direction-dependent
rescaling is more expensive, in that there are abar 3¢ n(x) = n 1+ erf(x/D) N 1—erf(x/D)
e

parameters at each point, the homogeneity scales for th 2 Mt 2
scalar and vector cases, respectively. (The number of pa- . » s
rameters is less when constraints on the homogeneity scaled'€ WO asymptotic densities are chosenn@s0.1cm

_ 3 g - -
are being used.) The heuristic benefits from the computa@d #-=10cnT> and the characteristic half-thickness is

tional efficiency of BFGS for such multi-dimensional prob- ?=100 km. Synthetic data have been produced for multi-
lems. We perform the optimization in three steps. First, thespa.cecraft constellations, in Wh.ICh the spacecraft fly through
common rescaling problem is solved. The multi-dimensionalth® interface along parallel straight lines from th? lef0)
direction-dependent problem is then solved with the BFGSI the right &>0) with a constant speed =1 kmls‘ , While
algorithm, while forcing the homogeneity scales in a bandM0Ving along the y-direction wit,=0.5kms™%; there is

within a factor L=+/10 above the direction-independent no motion alpngz. The synthetic .data sample the.stru_cture
minimum length. Finally, this solution is used as the start- at 5 s resolution. Note that there is only a single direction of

ing guess for solving the direction-dependent problem over@rying curvature in this example. _
again, now withL=10. Note that choosing a larger value We first consider the case of a 4-spacecraft constellation

of L would require solving the optimization problem up to a that is about 150km wide, on the order of the layer thick-
(much) larger precision; as explained before, the valsd0 ness. The spacecraft therefore cross the_boun(_jary with de-
is quite sufficient for our purposes. lays .that are less than the crossing durathn (E@): The_

If the signs are to be computed as well, this would increaséelat“’e errors on the _data have a normal distribution Wlth a
the dimension of the search space even more. However, pdhree-standard-deviation range of 5% (constant relative er-
cause of their discrete nature, they are treated differently’©")- The X~ y-, -, and t-axes are taken to be the homogene-
First, a solution is computed corresponding to the commonity directions. The reference homo%enegy lengths have been
rescaling case. This solution is then improved by solvingChosen isotropic in space, wit? =1\ =1{” =1000 km, and
the directional-dependent rescaling case for unknown signghe reference homogeneity time scalé,(%:GOO s. The ap-

As the result is pretty close to the final solution, the signsproximation error scaling factor ig.=1cm 3. The gradi-
can be determined at this point. Finally, a more detailed cal-ents were computed with a selection limsii=1000.

culation of the homogeneity lengths is carried out with the The least-squares gradient of (the logarithm of) the den-
given signs, first with.=+/10 and then with.=10. This  sity has been computed every 30s. Figéee-d shows
procedure circumvents the need to solve a mixed continuousthe space-time gradient components obtained with differ-
discrete multi-dimensional optimization problem. ent heuristic techniques for estimating the approximation er-

The optimization processes needed for iteratively estabror. Each of these techniques provides the gradient with
lishing the homogeneity parameters are computationally exa different total error estimate. The figure plots the re-
pensive: The gradients at each point have to be computed sults for global x? optimization (orange), locak? opti-
number of times. One way to accelerate this optimizationmization (red), solution-adaptive common rescaling (green),
would be to use the solution obtained in the previous point aglirection-dependent rescaling with curvature while requiring
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Fig. 5. Multiple spacecraft crossing a planar density interface with a half-width of 100 km. The density changes by two orders of magnitude.
(a) 4 spacecraft, small separation (constellation sedlB0 km) with relative measurement errors of 53) Idem, with 20% measurement
errors.(c) 4 spacecraft, large separationg00 km), 5% errors(d) 10 spacecraft, large separatior§00 km), 5% measurement errors.

A2=A3 (blue), and direction-dependent rescaling with curva- of the transition, where the gradient reaches its peak value.
ture (black). The magenta lines correspond to the exact soluThere is no minimum at the right edge of the transition as this
tion. All techniques recover thén/dx profile and find that edge is smoother than the left edge when viewed in terms
the other gradient components are zero within the error maref the logarithm of the density. Note that thevalue for
gins. While the gradients obtained with these techniques arglobal x2 optimization is basically set by the most difficult
very similar, the error estimates are different. Obviously, theregion encountered. The method therefore produces correct
error bars are largest on the high-density side of the boundresults, but fails to exploit the smoothness of the solution
ary, since the absolute density errors are two orders of magelsewhere, thereby overestimating the error margins dramat-
nitude larger there. The error bars &m/ox anddn/dy are ically. The local technigues, on the contrary, demonstrate the
found to have the same order of magnitude, while those orpower of automatic approximation error estimation: As the
dn/dz are larger. This is because/dz is obtained from  homogeneity lengths adapt to the changing situation, the cur-
differences over the spacecraft separation distance along vature errors (and hence the total error margins) are estimated
while the x- and y-derivatives are obtained with a longer in a more realistic fashion.

baseline as the spacecraft are moving along those directions. _ ) . _ )
Relying on a common for all dimensions is adequate if

Global x? optimization is a robust and fast technique, the relative proportions of the reference homogeneity scales
just like local x2 optimization and solution-adaptive com- are appropriate for the whole time interval. If not, direction-
mon rescaling. Figurée displays the relative homogene- dependent rescaling is advisable, although it is more time-
ity rescaling factorr for these three methods. Because of consuming. Since the curvature signs can be obtained at
our choice ofl@, A expresses the homogeneity lengths in nearly no additional cost, only direction-dependent rescal-
units of 1000 km as well as the homogeneity time as a mul-ing with curvature is to be used in practice. Knowing the
tiple of 600's. By construction, the globaf technique pro-  curvature signs allows a more precise estimation of the cur-
vides a constant value af over the whole time interval, so vature error. Since in the present example the true situation
it is not able to adapt to space-time variations in the wayhas a nonzero curvature in a single dimension only (algng
the local x2 heuristic and the common rescaling technique both types of methods are essentially equivalent. We have
do: Those techniques correctly infer a minimum in the ho-tried both the heuristic that impos@s=213 (corresponding
mogeneity scale as one crosses the density interface. Th® the y- and z-directions) to limit the number of parameters
minimum A~0.02 corresponds to a spatial homogeneity do-to be determined, and the full direction-dependent heuristic
main diameter of 40 km, less than the layer half-thicknesswith four homogeneity scales. The two techniques give sim-
as expected. In fact, the local techniques find two minima.ilar results, while the computing times are not very differ-
The first one corresponds to the gradient change at the lef¢nt. Both techniques find thag (Fig. 6f and h, orange), the
edge of the transition. The second one is located at the centescale along the x-direction, as being the smallest scale. As
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Fig. 6. Least-squares gradient at a density interface (4 spacecraft, small separation, 5% error)(aPdhslow the x-, y-, z-, and-
derivatives obtained with automatic error estimation using global and jdcaptimization (orange and red), common rescaling (green), and
direction-dependent rescaling with curvature (wWith=13, blue, and the general case, black). Magenta lines indicate the exact gradient. All
methods compute the gradients at the same instants; the data have been offset a little bit in time to improve (@sidiative homogeneity
scale for global and local? optimization (orange and red), and for common rescaling (gréBrand(g) Relative homogeneity scales and
curvature signs for direction-dependent rescaling with curvaturerasd 3 (orange:iq, alongx; red: Ao, y; green: iz, z; blue: A4, 1).

(h) and (i) Idem for the general direction-dependent ca§g.Number of equations (global and locaf optimization: orange and red;
common rescaling: green; direction-dependent rescaling with curvateie: s, blue, and the general case, black).
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explained in Sec#.2, curvature estimation depends strongly the observed quantity (assuming this variability to be gaus-
on how well the homogeneity domain is covered by the ob-sian, requiring an estimate of the standard deviation of the
servations. Because of the limited size of the space-time voldistribution). The data set subsequently has to be resampled
ume that is sampled by the four spacecratft, it is impossible taat roughly the same time scale: Resampling it with a lower
infer thatio, A3 andiz are actually infinite, but one can set time resolution (larger time scale) would disregard some of
lower limits. By construction, the four curves in Figf. are the data, while data resampled at a higher time resolution
situated in a band with a ran@gin<ir <10\ min, Whereimin (smaller time scale) or not resampled at all no longer are
is the value obtained by the common rescaling heuristic. Thestatistically independent. In summary: There are less data,
lengths alongy (red) andz (green) are at the upper limit of but they are more precise. In the present example, we have
the band, while the relative time scalg (blue) roughly con-  carried out a modest smoothing of the 5s data over a time
stant and always inside the band. The curvature sigase  scaler=30s, followed by a resampling at 15s resolution.
shown in Fig6g and i. The signsp, s3, ands, are ill-defined  Figure 8a—d does not show a qualitative difference in the
since the residuals in those directions are small, as indicatedradients, but especially for loca® optimization the error
by the large homogeneity scales. The important sign here isnargins are smaller. The heuristics work better so that the
s1, the curvature in the x-direction; switches its sign at the fluctuations in the values of the homogeneity scales and the
center of the transition in log. curvature signs are suppressed somewhat @gi). The
The computational complexity of the techniques is to aresampling procedure reduces the number of available data
large extent determined by the size of the overdeterminedo about one third of the original number as reflected in the
systems that have to be solved to obtain the gradients. Figeverdetermined system size (F8j); the gradients are there-
ure 6} shows how the number of equations reflects thefore computed significantly faster. Note that the resampling
changes in the homogeneity scales. time scale should not be too large: Enough data points should
Repeating these calculations with data onto which no meabe left to ensure a smooth behaviour of the target functon
surement errors have been superposed, gives almost the same a function of the homogeneity parameters (see the dis-
results (not shown). Larger measurement errors, howevegussion on the danger of getting trapped in local minima in
may have an effect on the ability of the heuristics to detectSect.4.4). In conclusion, a certain degree of a priori smooth-
the homogeneity scales properly. The above example haimg can efficiently remove a significant fraction of the mea-
been reconsidered, now for the case of 20% measurement esurement errors, thus facilitating error estimation and speed-
rors (see Figbb). The results are summarized in Frig.The ing up the computation.
correcton/dx profile is retrieved despite the larger measure- We have repeated the calculations for a 4-spacecraft con-
ment errors. The gradient components are fluctuating somestellation with a larger spatial dimension of 600 km, and with
what, but remain compatible with the exact solution given measurement errors of 5% (FEg), again smoothed ata 30 s
the larger error margins. Local? optimization systemat- time scale and resampled at 15 s resolution. The spacecraft
ically produces smaller homogeneity lengths (Fig, red  separation is now larger than the layer thickness. The com-
curve) and correspondingly larger error margins on the graputed gradients (Fida—d) deviate somewhat from the exact
dients, with a certain degree of variability. Th®f common  solution: Spurious y- and z-components appear in the layer,
rescaling (Fig7e, green) and the, ands; of both direction-  a phenomenon that is well known for the standard CGC tech-
dependent rescaling variants (Fiff-i) are largely the same nique. The techniques indicate quite precise results outside
as for the 5% measurement error case, be it with some rarthe layer, where the length scales are large anyhow and the
dom fluctuations: These heuristics are sufficiently robust sdarger separation allows a more precise evaluation of the gra-
as not to be fooled too much by the large measurement errorglient. Inside the layer, the computed gradients carry larger
Problems with random measurement errors can be parerror bars as expected. In fact, the error bars that are asso-
tially avoided by first time-averaging the data on a time scaleciated with global and locat? optimization and with com-
7 that is small enough not to blur the structures at hand: mon rescaling are larger than the gradient, so that one would
_ . deem the observed result to be consistent with zero gradi-
() = Z Fo/ni, ent. Only the direction-dependent techniques, because of the
W, more precise underlying approximation error model, are able
wheren; denotes the number of data points in the averagingo produce results with smaller error estimates that clearly
window W =[1;—7/2, 1;+7/2]. This makes sense only ifthe  estaplish this gradient as being significant. The homogeneity
sampling frequency if fairly highr{;>>1). This reduces the scales and curvature signs are found to be similar as before

errors on the time-averaged measurements: (Fig. 9e—i), confirming that the heuristics are fairly robust,
although at the center of the laykr is not always the small-
f) n2 Z fmk ( Z(fk FaN®, est. The same minimum length scale is found as before, and
n; eW; tkeW

the sign change for is again correctly established.
which takes into account both the measurement errors (of di- It is particularly interesting to investigate how the heuris-
minishing importance ag grows) and the time-variability of tics behave for constellations with more spacecraft, for
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Fig. 7. Least-squares gradient at a density interface (4 spacecraft, small separation, 20% measurement error). See capdiofi®f Fig.
facilitate comparison, the same axis scales have been used.

instance forKk =10 spacecraft. The profiles for such a case The data are smoothed and resampled as before. The gradi-
are shown in Fighd. More spacecraft lead to a larger set ent components are found to be determined quite accurately
of data with a better sampling of the homogeneity domain.(Fig. 10a—d), with reasonable error bars. The direction-
The 10-spacecraft configuration considered here is an exdependent methods recover the length scales and curvature
tension of the 600 km-separation 4-spacecraft configuratiorsigns pretty well; there are still some problems at the center
of the previous example; spacecraft have been added besf the layer (Fig10e—i) whereirs is not always identified as
tween and around the original set, which should help to betthe smallest scale. The larger number of data points involved
ter define both the small and the large homogeneity scalesn these calculations is reflected in Fig).
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When one attempts to compute gradients with spacecraf.2 Gradients of a vector field: a dipole with a ring current

that are too far apart, LSGC-AS finds that there are not

enough measurement points in the homogeneity domainpe appiication of LSGC to vector fields has been demon-

The data points closest i already carry large approxima- - gyated hyDe Keyser et al(2007). They have shown that for

tion errors. The resulting gradients therefore have excessiVergence-free vector fields, such as the magnetic field, the

error bars. In our implementation, such results are simplyitterence between solutions obtained with or without im-

discarded. posing the divergence-free constraint is not very large. That
should not be a surprise, as imposing this constraint reduces
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Fig. 9. Least-squares gradient at a density interface (4 spacecraft, medium separation, 5% measurement error, smoothed at a 30 s time scal
resampled at 15 s resolution). See caption of Eig.

the dimension of the solution space fra=15 to M=14 proximation error estimation. Consider a dipole magnetic
only. Nevertheless, adding the- B=0 condition does im- field with its axis along;, on top of which the field induced
prove the realism of the result. Its usefulness might be moreby a toroidal ring current is superposed. The ring current
pronounced when the number of measurements is limiteddensity is defined by

Moreover, including such a constraint in LSGC is not diffi-

cult. Therefore only this improved curlometer is used here.

Given its geophysical importance, we examine how thisJ (r: 2) = 5 vl
constrained least-squares curlometer would benefit from ap- 1+ [(’;—")) + (%) ]
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Fig. 10. Least-squares gradient at a density interface (10 spacecraft, medium separation, 5% measurement error, smoothed at a 30 s tim
scale, resampled at 15 s resolution). See caption ofeFig.

where the peak current density=20 nAm 2 is centered at  the induced magnetic field of such a current loop in terms of
ro=5 Rg, with the current distribution having a broad flat the complete elliptic integrals of the first and second kind.
maximum that extends ovet22 Rg radially and =6 Rg Integrating over the current distribution gives the total in-
in the axial direction, while the current rapidly falls off out- duced field. Figurd 2 shows the magnetic field profiles that
side that region. This toroidal current distribution and the as-would be recorded by four spacecraft flying at 150 km sepa-
sociated axisymmetric field are illustrated in Fid. Sucha  ration through this dipole with ring current. The spacecraft
ring current distribution can be regarded as a set of infinitelyto follow straight parallel trajectories, moving from outside
narrow current loops. An analytical expression is known for this magnetosphere towards perigee at the end of the interval
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Fig. 11. Axisymmetric ring current distributiori, with a peak current of 20 nAM?, and the magnetic field it induces, superposed onto a
(non-tilted) terrestrial dipole field. From left to right: current dengityadial field B, axial field B;, and field strengttB. Magnetic field
contours are drawn at 20 nT intervals; no contours are drawn close to Earth as the magnetic field rises sharply there.

with a velocity [2, 0.5,0kms™! at 1R above the equa- 4 for the time dimension). For comparison we also plot the
torial plane. These trajectories sample the weak magnetiexact value ofV x B, which is proportional to the current
fields far from the dipole axis, cross the ring current, and fi- density asj=V x B/uo in a steady field. The computed x-
nally observe the strong fields in the inner magnetosphereand y-components of the curl clearly trace the correct profiles
The insets show the data for a small time interval when theas the ring current region is traversed, with a gradual rise of
spacecraft enter the ring current region. The spacecraft, athe current from zero to a broad plateau and back to zero
they are closely spaced, observe fields that differ by 1 nT oragain; the z-component remains zero. The error margins for
less; as the value of reflects a typical ring current inten- direction-dependent rescaling are necessarily smaller than
sity, this is quite realistic. Nevertheless, the high measurethose of common rescaling (in which the minimum scale is
ment precision of 0.1 nT should make gradient computationused in all directions). In the ring current region, the error
feasible. The goal of our numerical experiment is to verify margins are sufficiently small so that the amplitude in the
whether such current densities can indeed be recovered fromonzero-current region is detected as being statistically sig-
such magnetic field signatures. Being able to measure suchificant. As the spacecraft approach the Earth, the error mar-
ring current densities is of considerable importandallat gins grow, since the second derivatives of the field compo-
et al, 2005. nents are much larger there. The exit of the spacecraft from
", ~the ring current region is therefore only marginally signifi-

Because of the difficulty of the problem, we have first .4t 1t should be stressed here that the 3-standard-deviation
smoothed the data at a 60 s time scale and resampled them & margins indeed comprise the deviations between com-
30 s resolution. Figuré3displays the results obtained with puted and true values of the curl everywhere. FiglBe-i

the divergence-free vector field LSGC-AS techniques, withgp oy the homogeneity scales and curvature signs determined
grad|e_nts.computed every 3min. _The three comp_onen.ts OBy LSGC-AS for the gradients a8, By, andB.. It is not
VB in Fig. 13a—c have been obtained with LSGC in which g, rhrising that the scales remain in a band (corresponding to
the gradients ofBy, By, and B; are computed simultane-  ¢act0r £ —10) that progressively decreases as the spacecraft
ously, coupled through the conditi&iB=0. The homogene-  555r6ach Earth. Since the same reference scales have been
ity directions have been chosen to align with the magneticyseq as in Sec6.1, the smallest curvature scale is seen to
field, which is a reasonable thing to do inside the magneto—vary from roughly 1000 kmi=1) down to 100 km X~0.1)
sphere, although the ring currentin the example is not strictly,s the field variations become stronger near perigee. The
aligned with the magnetic field. The figure shows the re-pmper of equations in the coupled overdetermined system is
sglts fprthe case of common resc;almg (green curves) and foéiven in Fig.13: More than 5000 equations (corresponding
direction-dependent rescaling with curvature and with fouryy 5900/3 data points) are involved in the computations in-

different scales corresponding to the homogeneity directiong;ige the ring current layer. Because of the data compression
(A1 andxz in the plane perpendicular #®, A3 along B, and
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Fig. 12. Magnetic field profiles for a 4-spacecraft configuration at 150 km separation flying through the dipole with ring current depicted in
Fig. 11 The trajectories are parallel straight lines, scanning aloagdy with speeds of 2 and 0.5 knT$, respectively, at a constanif

1Rg. The figure shows the field as the spacecraft move in towards perigee. The insets zoom in on the magnetic field data around the time
when the spacecraft enter the ring current region; the magnetic field differences are of the order of 1 nT or less while the fields are supposed
to be measured with a 0.1 nT precision.

by a factor 6 arising from the smoothing/resampling prepro-the residuals are used to improve these homogeneity param-
cessing step, each overdetermined system there combines iaters. An optimization problem can be formulated where the
formation from more than 10 000 data points. optimum corresponds to the most appropriate choice of the
homogeneity parameters. The resultis a gradient that is com-
puted from the appropriate set of data points. The associated
6 Conclusions total error estimates are usually reliable. Even in those cases
where some of the homogeneity lengths are too small to be
Least-squares methods for computing the gradient fronproperly sampled by the spacecraft configuration and the er-
multi-spacecraft data offer a number of advantages over theor estimates cannot be determined with much precision, the
classical 4-point gradient. In particular, LSGC uses infor- error margins are large so that the heuristics at least indicat-
mation from a large number of data points to obtain a morejng where the gradient should be considered with more cau-
precise result than CGC. It also provides atotal error estimatgion. An obvious advantage of LSGC-AS is that the user does

on the computed gradient. All of this, however, depends ornot have to provide any input on the homogeneity scales.
the availability of proper estimates for the approximation er-

ror due to the non-constant nature of the gradient over the set As has been shown, the precision of the computed gradi-
of points that is used to compute the gradient from. In thisent is determined largely by the measurement errors at the
paper, we have proposed and tested a number of heuristics g&ampling points that are being used, but the construction of
automatically infer such approximation error estimates, lead-that set is determined by the approximation errors (the ho-
ing to various LSGC-AS techniques with adaptive estimationmogeneity parameters). The quality of the solution therefore
of the homogeneity scales. These heuristics are built frondepends on the measurement errors as well as on the distri-
simple models of the approximation error that are expressedbution of points over the homogeneity domain, which is de-
in terms of the homogeneity parameters. After computing thetermined by the number of spacecraft, their separations, their
gradient starting from an initial choice of parameter values,velocity, and the sampling rate. While LSGC in general, and
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Fig. 13. Curl of the magnetic fieldyxB, obtained from least-squares gradient computation for the field components, subject to the condition
V-B=0, in the dipole with ring current illustrated in Figkl and12 for a 4-spacecraft configuration. The data were smoothed at a 60 s time
scale and resampled at 30 s resoluti@-c) LSGC calculation of the x-, y-, and z-componentsvof B with common rescaling (green) and
direction-dependent rescaling (black), compared to the exact solution (mag@htapd (e) Relative homogeneity lengths and curvature
signs for direction-dependent rescaling YoB, (11 orangeap red, A3 greeni4 blue). (f) and(g) Idem forV By,. (h) and(i) Idem forV B;.

(i) Number of equations in the coupled overdetermined system for the three gradients.
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LSGC-AS in particular, are independent of the actual numbelOne then identifies a homogeneity direction in which the ho-
of spacecraft, the results that one obtains in any particular sitmogeneity scale is vanishingly small. For example, if rapid
uation obviously do depend on the spacecraft configuration.temporal changes are possible, only simultaneous measure-
The proposed heuristics seem to work well if the measure-ments should be used for computing the gradient; this can
ment errors are small. They also work reasonably well if thepe enforced by setting® —0. The optimization process au-
measurement errors are larger (except forjthdased tech- tomatically finds that rescaling such a short time scale by
niques), but in such cases it can be recommended to perform finite factor does not change the results: For four space-
some a priori time-averaging on a time scale that is largecraft, and assuming the other homogeneity scales to be in-
enough to suppress the random measurement errors signifinitely large, this reduces to the standard CGC methat{
icantly, but small enough so that it does not wash away devey, 1998 Chanteuy1998 Chanteur and Harvey998.
tails at the homogeneity scales. Correspondingly resampling The choice of the homogeneity directions should be tai-
the data at a coarser time scale is a good idea as it can spegsted to the problem at hand. This is true in general, but espe-
up the computations considerably. The simpler error estimacially as soon as some of the above-mentioned constraints are
tion heuristics are robust, but tend to associate rather larggyolved. Once such a choice has been made, the heuristics
error margins with the computed gradients. The more SO+that have been explored here are able to automatically pro-
phisticated techniques produce gradients that are more prejide the corresponding homogeneity scales. If an ill-advised
cise, with narrower error margins. While the approach inchoice of homogeneity directions has been made, that does
this paper has been to consider the error margins to be &ot produce erroneous results: It only means that, with a bet-
the 3-standard-deviation level, the computed gradients cafer choice, more precise results and narrower error margins
sometimes deviate a little more from the true solution. Thatcoyld have been obtained.
can be the consequence of the simplicity of the error models, |, summary, least-squares gradient computation with au-
of ignoring the cross-correlations between the approximationgmatic homogeneity scale estimation (LSGC-AS) and the
errors, and of ignoring the covariances between the solutiolyorresponding curlometer are essential multi-spacecraft data
components. In summary: LSGC-AS produces 3-standardgnaysis tools: Up to now, LSGC-AS is the only way to ob-
deviation errors, but because of various simplifications thegin at the same time the gradient value and the correspond-
actual errors occasionaly can be alittle larger. Repeating thg,g yncertainty. Since analyzing gradients of magnetospheric
computations with different heuristics and comparing their fie|ds with limited spacecraft constellations is synonymous
respective results could help in identifying such occasionakg, \orking at the limits of precision, it is of utmost prac-
problems. . o . tical importance to have a proper estimate of the error. In
A strong point of LSGC-AS is that it is straightforward 5qgition, LSGC-AS provides some insight as to where the
to include constraints. (1) Physical constraints: The mosiyryors come from by identifying the homogeneity scales as

notable example of a physical constraint is the introductionthey vary throughout the magnetospheric regions that are tra-
of the divergence-free condition for vector fields such as thegrgeq.

magnetic field, leading to the improved curlometer proposed
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