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Abstract. A novel approach to nonlinear simulations of the
Farley-Buneman (FB) instability in the E-region ionosphere
is developed. The mathematical model includes a fluid de-
scription of electrons and a simplified kinetic description of
ions based on a kinetic equation with the Bhatnagar-Gross-
Crook (BGK) collision term. This hybrid model takes into
account all major factors crucial for development and nonlin-
ear stabilization of the instability (collisional drag forces, ion
inertia and Landau damping, dominant electron nonlinearity,
etc.). At the same time, these simulations are free of noises
caused by the finite number of particles and may require less
computer resources than particle-in-cell (PIC) or hybrid –
semi-fluid semi-PIC – simulations. First results of 2-D simu-
lations are presented which agree reasonably well with those
of previous 2-D PIC simulations. One of the potentially use-
ful applications of the novel computational approach is mod-
eling of the FB instability not far from its threshold.

Keywords. Ionosphere (Ionospheric irregularities; Plasma
waves and instabilities) – Space plasma physics (Nonlinear
phenomena)

1 Introduction

The Farley-Buneman (FB) instability is a low-frequency
plasma instability driven by a sufficiently strong quasi-
stationary electric fieldE0 perpendicular to the geomag-
netic fieldB0. This instability occurs in the weakly ionized
E-region ionosphere where electrons are magnetized, while
ions are unmagnetized due to frequent collisions with neu-
tral particles. As a result, the velocity distribution of elec-
trons is shifted relative to that of ions by the drift veloc-
ity V ≈cE0×B0/B

2
0 (that is why the FB instability is also

named the modified two-stream instability). In the equato-
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rial and high-latitude electrojets, if the ambient electric field
E0≡|E0| exceeds a threshold value,EThr'(10 – 20)mV/m,
the average flow motion of electrons with respect to ions
becomes supersonic. While average motion of frequently
colliding ions is predominantly diffusive, their relatively
small inertia is of importance. It results in excitation of
field-aligned density perturbations,k‖�k⊥, coupled to low-
frequency electrostatic fluctuations (herek‖ andk⊥ are the
components of characteristic turbulence wavevectorsk par-
allel and perpendicular toB0, respectively). Average am-
plitudes of density fluctuations usually do not exceed sev-
eral percent (e.g.Pfaff et al., 1987, 1997). Typical wave-
lengths of density fluctuations, detected mostly through nar-
rowband type 1 radar echoes (Cohen and Bowles, 1967; Bal-
sley and Farley, 1971; Crochet et al., 1979; Kudeki et al.,
1987; Ravindran and Reddy, 1993), are usually in a meter-
scale range (for review on observations at both equatorial
and auroral latitudes seeFejer and Kelley, 1980; Kelley,
1989; Haldoupis, 1989; Sahr and Fejer, 1996). In addition to
the equatorial and high-latitude electrojets, the FB instabil-
ity can also develop at midlatitude sporadic-E layers where
local electrostatic fields can exceed the FB threshold field
(Schlegel and Haldoupis, 1994; Haldoupis et al., 1996; Hal-
doupis et al., 1997).

Starting from the two pioneering papers byFarley(1963)
andBuneman(1963), the linear theory of the FB instability
has been developed for many years (Lee et al., 1971; Schmidt
and Gary, 1973; Ossakow et al., 1975; Fejer et al., 1984; St.-
Maurice, 1985; Dimant and Sudan, 1995a,b,c; Kissack et al.,
1995; Kissack et al., 1997; St.-Maurice and Kissack, 2000;
Drexler et al., 2002; Dimant and Oppenheim, 2004; Kagan
and St.-Maurice, 2004; Drexler and St. Maurice, 2005; Kis-
sack et al., 2008a,b). This theory, however, has limited ap-
plications. It may give the threshold conditions for the insta-
bility, describe the initial stage immediately after the insta-
bility onset, and show some tendencies, such as field-aligned
nature of irregularities. However, the linear theory per se
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cannot describe the process of nonlinear saturation of the in-
stability and provide amplitude and spectral characteristics
of developed turbulence. To explain observations and make
quantitative predictions, one needs a nonlinear theory. There
are many important questions that must be answered by such
a theory. Among those: What are the major factors that lead
to nonlinear saturation of the instability? Depending on the
ambient electric fieldE0 and ionospheric parameters, what
is the average level of density and electric field fluctuations,
what are the wavelengths, phase velocities, and other spec-
tral characteristics of the most pronounced waves in the bulk
of turbulence?

Although nonlinear theory of the FB instability has been
also under development for quite a long time (Skadron and
Weinstock, 1969; Weinstock and Sleeper, 1972; Sudan et al.,
1973; Lee et al., 1974; Rogister and Jamin, 1975; Sudan,
1983a,b; Robinson, 1986; Hamza and St.-Maurice, 1993,
1995; Smolyakov et al., 2001; Bahcivan and Hysell, 2006),
it is still far from completion. A mode-coupling anomalous-
transport theory has been proposed bySudan(1983a,b, for
earlier nonlinear theories see references therein). Sudan’s
theory, following the resonance broadening approach by
Dupree(1968), results in a concept of anomalous collision
frequency (for review seeHamza and St.-Maurice, 1993;
Robinson, 1994; Hamza and St.-Maurice, 1995). Note that
some nonlinear theories employ interplay between the two-
stream and gradient-drift instabilities (Sudan, 1983b; Sudan
et al., 1973; Keskinen, 1981). Being capable to explain some
observed features of FB turbulence, resonance broadening
theories of the FB instability, however, encounter certain
conceptual problems and are not quite satisfactory from the
theoretical viewpoint (for discussion see, e.g.Hamza and St.-
Maurice, 1995).

The FB instability has been also extensively studied nu-
merically. Nonlinear simulations of the FB instability are
based on the two-fluid (Newman and Ott, 1981), particle-
in-cell (PIC) (Machida and Goertz, 1988; Schlegel and Thie-
mann, 1994; Janhunen, 1994; Oppenheim and Dimant, 2004;
Oppenheim et al., 2008), or hybrid (Oppenheim et al., 1996;
Oppenheim and Otani, 1996; Dyrud et al., 2006) – semi-
fluid, semi-PIC – codes. Note that for the FB instability,
the kinetic effect of ion Landau damping is crucial because
it gives the short-wavelength restriction on linearly unstable
spectral domain. (According to the conventional two-fluid
theory without ion Landau damping, the growth rate of lin-
early unstable Fourier harmonics would increase infinitely
with the wavenumber,γk∝k

2.) Therefore, two-fluid equa-
tions must include an artificial viscosity to model important
kinetic effects, which is in the general case not satisfactory.

Simulations using PIC codes represent a fully kinetic treat-
ment which automatically includes all physics of the plasma
processes. However, PIC simulations have restrictions asso-
ciated with the finite number of particles and the correspond-
ing noises. In order to decrease the computational time, one
usually has to aggregate the actual particles into bigger clus-

ters. Besides, in order to avoid very short time steps, one
often has to reduce the electron gyro-frequency and plasma
frequency via the artificially increased electron mass. Even
properly rescaled, such computational results not fully model
the actual physical situation. Furthermore, numerical studies
of wave activity have been mostly limited to 2-D cases: either
in the plane parallel to the magnetic field (Machida and Go-
ertz, 1988; Schlegel and Thiemann, 1994) or in the perpen-
dicular plane (Newman and Ott, 1981; Janhunen, 1994; Op-
penheim et al., 1996; Oppenheim and Dimant, 2004; Dyrud
et al., 2006; Oppenheim et al., 2008). The latter simulations
are more relevant to the actual situation because they cor-
rectly take into account the dominant electron nonlinearity
associated with the fluid-model term∝δE×∇δne, whereδE
andδne are the turbulent electric field and electron density
perturbations, respectively. These simulations reveal a new
insight into the problem of nonlinear saturation of the FB in-
stability. In particular, they (as well as rocket observations)
show that turbulence, in addition to chaotic features, often
has a pronounced ordered structure with dynamical behavior.
Such 2-D simulations, however, cannot consistently model
the effects of finitek‖ which are responsible for high-latitude
anomalous electron heating during magnetospheric storms or
substorms (Schlegel and St.-Maurice, 1981; St.-Maurice and
Laher, 1985; Providakes et al., 1988; St.-Maurice et al., 1990;
Dimant and Milikh, 2003; Milikh and Dimant, 2003). While
3-D PIC simulations of the FB instability are currently un-
der way, modeling the nonlinear stage by simpler continuous
equations that sufficiently correctly take into account princi-
pal kinetic effects would be beneficial for both analytical and
numerical treatment.

Our major goal is to reach a further progress in model-
ing nonlinear saturation of the FB instability. Fully-kinetic
PIC simulations are one of the most powerful modeling tools,
but they require significant computer resources and still have
drawbacks described above. In this study, we are testing an
alternative computational approach which by its physical im-
plications is similar to the hybrid code byOppenheim et al.
(1996); Oppenheim and Otani(1996). In this, also hybrid,
approach we consider a fluid model for electrons coupled to
a continuous kinetic model for ions. The latter includes ion
Landau damping and some important ion thermal factors, but
does not involve discrete particles. The reason for choosing
this hybrid approach is as follows. While both electrons and
ions are prone to Landau damping resulting in an efficient
suppression of the instability, electron Landau damping is
only effective at a short-wavelength, high-frequency range
where the wave growth rate is already effectively suppressed
by ion Landau damping. This allows us to use for electrons
the fluid model. In this paper we explore isothermal elec-
trons, so that no electron thermal effects, as well as other
kinetic effects of electrons (Dimant and Sudan, 1995a,b,c;
Dimant and Sudan, 1997; Kagan and St.-Maurice, 2004; Kis-
sack et al., 2008b,a), have not yet been included. As we ex-
plained above, ion Landau damping is of crucial importance
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for the FB instability, so that ions have to be treated kinet-
ically. In our new treatment, we employ modeling tech-
nique based on continuous equations rather than on discrete-
particle codes (Filbet and Sonnendrücker, 2003), so that we
make use of an ion kinetic equation. Unlike electrons, heavy
ions have comparable rates of collisional losses of energy
and momentum, and a kinetic equation with the simple BGK
collision term (Bhatnagar et al., 1954) seems to be a reason-
able approximation for them. Furthermore, this equation in-
cludes ion-thermal effects which may affect significantly FB
turbulence (Dimant and Oppenheim, 2004). The hybrid set
of electron-fluid and ion-kinetic equations takes into account
the major factors important for nonlinear saturation of the FB
instability: the dominant electron nonlinearity∝δE×∇δne
and ion Landau damping. In this paper, we restrict ourselves
to the 2-D space perpendicular toB0, so thatk‖=0.

The remainder of the present paper is organized as fol-
lows. Section2 examines the physical conditions applying in
the FB instability and presents the new hybrid method used
in the simulations. Section3 describes the numerical solver,
whereas Sect.4 presents the results of the performed simula-
tions. Section5 discusses some implications of our results,
while Sect. 6 summarizes the main findings of this work, fol-
lowed by an Appendix where some basics of the two-fluid
linear theory are given for the purpose of completeness.

2 Hybrid fluid-kinetic model

2.1 Basic conditions

The FB instability can be efficiently excited at upper D/lower
E-region altitudes roughly between 80 and 120 km where
electrons are strongly magnetized, while ions are essentially
unmagnetized,

νen

�e
� 1 ,

νin

�i
> 1 . (1)

Here νen and νin are the average frequencies of electron-
neutral and ion-neutral collisions;�e,i=eB0/me,i are the gy-
rofrequencies of electrons and ions of massesme,i , respec-
tively (e is the elementary charge;B0≡|B0|; mi≈30 amu).
The collision frequencies, which are proportional to the neu-
tral density, decrease exponentially with increasing altitude.
However, throughout the entire E-region ionosphere their ra-
tio remains nearly constant,νen'10νin.

The most of developed FB turbulence is characterized
by sufficiently low-frequency and long-wavelength waves,
ω∼kvT i.νin�νen (Dimant and Oppenheim, 2004), where
ω and k≈k⊥ are characteristic wave frequency and wave
number,vT i=(Ti/mi)1/2 is the characteristic ion thermal
speed, andTe,i are the temperatures (in energy units) of elec-
trons and ions, respectively. Low-frequency and low-current
plasma processes in the E-region ionosphere result in in-
significant magnetic field variations. This means that these

processes have an electrostatic nature and the turbulent elec-
tric field can be adequately described by an electrostatic po-
tential8, E=−∇8.

2.2 Electron fluid model

Under conditionω�νen, one can neglect both inertia and
Landau damping of electrons. Assuming relatively low E-
region altitudes, we will also neglect kinetic corrections that
describe electron thermal effects (Dimant and Sudan, 1995a;
Kagan and St.-Maurice, 2004). For isothermal electrons, the
standard continuity and momentum equations result in the
diffusion-convection equation

∂ne

∂t
+
∂0e‖

∂z
+ ∇⊥ · 0e⊥ = 0 , (2)

where the electron flux components are given by

0e‖ ≡ neVe‖ = −
Te

meνen

(
∇‖ne −

ene

Te
∇‖δ8

)
, (3)

0e⊥ ≡ neV e⊥ = −
Teνen

me�2
e

[
∇⊥ne −

ene

Te
(∇⊥δ8− E0)

]
+ neV 0 +

ene

mi�i
b̂ × ∇⊥δ8 . (4)

V e‖,⊥ are the components of the electron fluid velocities,δ8

is the fluctuating electrostatic potential,E0 is the ambient
electric field which is practically perpendicular to the geo-
magnetic fieldB0, V 0=cE0×b̂/B0 is theE0×B drift veloc-
ity, b̂ is the unit vector alongB0, and the ‘nabla’ operators
∇‖,⊥ pertain to the coordinates parallel and perpendicular to
B0 respectively.

Now we consider a purely 2-D case when all spatial
variations are perpendicular to the magnetic field. Bear-
ing in mind the characteristic time and length scales for
developed FB turbulence,τ=ν−1

in and lx,y=vT i/νin, where
vT i=(Ti/mi)

1/2 (Dimant and Oppenheim, 2004), we will
normalize the time and coordinates to these quantities,
tνin→t ; x/lx,y, y/ lx,y→x, y, wherex and y are coordi-
nates along theV 0 andE0, respectively. We will also intro-
duce a dimensionless potential,φ=e8/Ti , and parameters

ψ⊥ =
νenνin

�e�i
, (5)

20 =

(
meνen

miνin

)1/2

(6)

(Farley, 1985; Dimant and Milikh, 2003). The parameterψ⊥

exponentially decreases as altitude increases, reaching unity
at altitudes 94–97 km (e.g.Dimant and Oppenheim, 2004,
Fig. 2). At the same time, the small parameter20 remains
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nearly constant,20'1.35×10−2. In the renormalized vari-
ables, Eqs. (2) to (4) reduce to

1

ψ⊥

∂ne

∂t
=
∂2ne

∂x2
+
∂2ne

∂y2
− ne

(
∂2φ

∂x2
+
∂2φ

∂y2

)

+
∂ne

∂y

(
eE0vT i

Tiνin
+

1

20
√
ψ⊥

∂φ

∂x
−
∂φ

∂y

)
+
∂ne

∂x

(
V0

vT iψ⊥

−
1

20
√
ψ⊥

∂φ

∂y
−
∂φ

∂x

)
. (7)

2.3 Ion kinetic model

As stated above, ion Landau damping is crucial for the FB
instability, so that ions must be treated kinetically. Assuming
for simplicity altitudes below 110 km where ions are practi-
cally fully unmagnetized, we will use a kinetic equation with
the BGK collision term (Bhatnagar et al., 1954; Gross and
Krook, 1956; Morse, 1964):

∂f

∂t
+ (v · ∇)f +

e(E0 − ∇8)

mi
·
∂f

∂v
= − νin (f − f0) . (8)

Herev is the ion velocity,f (r, v, t) is the ion distribution
function normalized according as

ni(r, t) =

∫
f (r, v, t)d3v , (9)

whereni≡ni(r, t) is the local ion density;

f0(r, v, t) = ni

(
mi

2πTi

)3/2

exp

(
−
miv

2

2Ti

)
is the ion Maxwellian function normalized to the actual den-
sity, andn0 is the undisturbed plasma density. In the present
simulations, for simplicity, we setTi=Te, whereTi is the av-
erage ion temperature, although in the general case the two
undisturbed temperatures may differ. Note that Eq. (8) al-
lows for wavelike temperature perturbations associated with
density fluctuations and variations of local ohmic heating.

It should be noted that the BGK collisional term is a
model approximation which does not follow from the rigor-
ous Boltzmann collision operator, so its use is restricted. The
BGK model is usually a reasonable approximation for low-
collisional, high-frequency regimes where the typical wave
frequencies are much larger than the collision rates. How-
ever, for highly collisional, low-frequency E-region instabil-
ities, the situation is more complicated. Indeed, in frame-
work of the BGK collision term, collisions of charged parti-
cles with neutrals have the same characteristic rate for both
momentum and energy changes. Besides, this collisional
rate is not allowed to have a dependence on the particle
velocity. For low-energy (E�1 eV) light electrons collid-
ing with heavy neutrals, the characteristic rates of energy
losses (mainly inelastic) and momentum changes (mainly
elastic) differ by two-three orders of magnitude, and these

rates depend strongly on the electron velocity (Gurevich,
1978; Schunk and Nagy, 2000). That is why the electron
BGK model for low-frequency E-region processes is a rather
poor approximation (for discussion, seeDimant and Sudan,
1995a,c). At the same time, ions in the E-region ionosphere
collide with neutrals of about the same mass. As a result, the
collisional changes of ion energy and momentum are deter-
mined roughly by the same characteristic timeτ=ν−1

in which
is essentially independent of the ion velocity (Schunk and
Nagy, 2000). That is why the ion kinetic equation with the
BGK collision rate can be considered as a reasonable approx-
imation. Comparison of our numerical results with those for
PIC ions supports this assertion.

Regardless of the spatial dimension of the problem, the ion
distribution functionf (v) has all three velocity components,
vx,y,z. In the 2-D case, Eq. (8) involves novz-derivatives.
Integrating linear Eq. (8) overvz and passing to the dimen-
sionless coordinates and time, we obtain

∂F

∂t
+ vx

∂F

∂x
+ vy

∂F

∂y
−
∂φ

∂x

∂F

∂vx

+

(
eE0τ

mivT i
−
∂φ

∂y

)
∂F

∂vy
= −(F − F0) , (10)

where

F(vx, vy, x, y) ≡

∫
∞

−∞

f (v, x, y)dvz ,

F0 ≡

∫
∞

−∞

f0(v)dvz =
ni

2πv2
T i

exp

(
−
v2
x + v2

y

2v2
T i

)
,

and, according to Eq. (9), we have

ni(x, y) ≡

∫
∞

−∞

F(vx, vy, x, y)dvxdvy . (11)

2.4 Electrostatic potential

For the E-region plasma processes, inequalitiesω�ωpi
and kλD�1 usually hold, whereω and k are the typi-
cal perturbation wave frequency and wave number, whereas
ωpi(ni)=(nie

2/ε0mi)
1/2 and λD=vT i/ωpi are the ion

plasma frequency and Debye length, respectively. This usu-
ally results in quasi-neutrality,ni≈ne=n. However, we use
here the more general treatment without considering the elec-
tron and ion densities equal but solving directly for the elec-
trostatic potential via Poisson’s equation,

ε0∇
28 = e(ne − ni) , (12)

or, in terms of the above dimensionless variables,

∂2φ

∂x2
+
∂2φ

∂y2
= τ2ω2

pi(n0)

(
ne − ni

n0

)
. (13)
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3 Brief description of the solver

Our code solves combined nonlinear Eqs. (7), (10), and (13)
for the electron densityne, 2-D ion distribution functionF ,
and electrostatic potentialφ, using Eq. (11).

In order to drive the FB instability, the ambient elec-
tric field should exceed at least the minimum FB threshold
field obtained from the two-fluid linear theory, see Eq. (A4)
in Appendix (the kinetic corrections can only increase the
threshold field). Compared to the conventional two-fluid lin-
ear relations obtained under strictly quasi-neutral conditions,
Eqs. (A3) and (A4) contain an additional term∝ ν2

in/ω
2
pi .

This term arises due to small charge separation (Rosenberg
and Chow, 1998); its physical nature is discussed in Ap-
pendix A. In the daytime E-region ionosphere, as well as at
nighttime at altitudes above 100 km, we haveωpi�νin, so
that in real ionosphere the effect of charge separation usu-
ally plays no important role. However, it should be taken
into account in simulations (Oppenheim and Dimant, 2004).
In our simulations, we have modeled predominantly the day-
time ionosphere withni=1010–1011 m−3 (only one simula-
tion with ni=109 m−3) and assumedψ⊥<0.2 correspond-
ing to altitudes above 98–100 km (Dimant and Oppenheim,
2004, Fig. 2). Under these conditions, according to Eq. (A5),
the effect of the additional term is small.

As the initial condition, we have set a uniform fluctuation
noises for electrons and ions with the electric field due to
charge separation well below the FB threshold field. We have
used periodic boundary conditions in both coordinatesx and
y. This means that the values of the particle densities and
velocities are equal on the opposite sides of the simulation
box. To solve these equations, we have used finite difference
methods. In the 2-D computational box with the sizesLx,y ,
we have used a mesh with homogeneous grid sizes.

The electron equation is a nonlinear convection-diffusion
equation. Diffusion part is solved with the help of a second-
order accuracy numerical scheme. Algorithm for the con-
vection part is based on interpolation over characteristics. In
our case we use Lagrange interpolation over 5 points in each
direction.

Poisson Eq. (13) is solved using the discrete fast Fourier
transform (FFT) technique.

Kinetic Eq. (8) has a larger dimension than the two pre-
viously described equations because in addition to the spa-
tial variables it involves also a 2-D velocity space. We ap-
proximate the latter by a uniform grid which covers a finite
domain restricted in each dimension by a maximum speed
Vmax, −Vmax<vx,y<Vmax. We have found empirically that
to adequately model the FB instability, we should choose
Vmax≥6vT i . We solve kinetic Eq. (10) by splitting the en-
tire kinetic equation into two sub-equations,

∂F

∂t
+ vx

∂F

∂x
+ vy

∂F

∂y
= 0,

∂F

∂t
−
∂φ

∂x

∂F

∂vx
+

(
eE0τ

mivT i
−
∂φ

∂y

)
∂F

∂vy
= −(F − F0).

At each time step we solve for convection in the coordinate
space with initial conditions from the previous time step and
then at the same time step we solve for convection in the
velocity space with the solution of convection in the coordi-
nate space as an initial condition. A similar technique was
described inSonnendr̈ucker et al.(1999) andFilbet and Son-
nendr̈ucker(2003) for Vlasov’s equation, which differs from
our ion kinetic equation only by the right-hand side. The
fact that the two sub-equations form a set of 2-D convection
equations allows us to use fast and efficient methods for ob-
taining of solution of each equation. In the simulator we use
interpolation over characteristics essentially in the same way
as for electron convection.

We solve the full set of Eqs. (7), (10), and (13) using two
different times steps,h, andhmod≡h/N , whereN is a large
integer number,N=10–30. At each long time steph, we
solve ion kinetic Eq. (10). At each short time stephmod,
we solve alternatively electron-density Eq. (7) and Poisson’s
Eq. (13). We use two different time steps because solving 4-
D ion kinetic Eq. (10) requires a much longer computer time
than solving 2-D Eqs. (7) and (13) (more than 90% of the to-
tal computer time). That is why we need to solve Eq. (10) as
seldom as possible, in other words, with the maximum time
step allowed by the Courant-Friedrichs-Lewy (CFL) condi-
tion. The CFL condition for electrons imposes a much harder
restriction than that for ions due to a much larger electron
mobility. Trying to solve Eq. (10) as seldom as possible, we
will use the maximum time step. Because redistribution of
electrons induces changes in the electric field, at each modi-
fied time step we also need to solve Eq. (13).

4 Results of simulations

We have modeled the evolution of the 2-D FB instability us-
ing various sets of parameters. Emphasize that we have per-
formed our simulations using the real electron mass, actual
ionospheric parameters, and realistic values of the perpen-
dicular DC electric field. Here we show the results of several
runs characterized by different sets of parameters shown in
the corresponding tables. In each run we have reached the
nonlinear saturation of the FB instability. We verified this
fact by monitoring the temporal behavior of the root-mean-
square (rms) values of the turbulent electric fields and density
irregularities.

4.1 Run 1

In this run, the DC electric field was more than twice the
FB instability threshold field, Eq. (A4). Table1 shows major
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Fig. 1. Electron density for 3000, 6000, 9000, and 20000 time steps for Run 1 (see Table 1).

28

Fig. 1. Electron density for 3000, 6000, 9000, and 20000 time steps for Run 1 (see Table1).

parameters. Figure1 shows the evolution of the electron den-
sity during the development of the FB instability. In this and
similar 2-D diagrams, the vertical axis is along the direction
of E0, while the horizontal axis is along theE0×B0-drift
direction.

A heuristically expected characteristic evolution time
of the FB instability, τ=ν−1

in ≈2.66×10−4s, in this run
equals roughly 500 time steps. Simulations (especially
run 5) show, however, that the time of nonlinear saturation
of the FB instability proves to be up to two orders of
magnitude longer thanτ . A characteristic wavelength,
determined roughly byλchar=2π/kchar=2πCsν

−1
in with the

ion acoustic speedCs'400 m/s, isλchar'0.7 m, i.e., about
thirty times less than the box size. We note, however, that
these characteristic scales are only for crude estimates,
the actual preferred turbulent wavelengths may differ by a
factor of order unity or more. We should also bear in mind
that the limited sizes of the simulation box, along with the
periodic boundary conditions, impose discrete-spectrum

restrictions on the wavelengths: the allowed wavelengths in
each direction can only equal the corresponding box size
divided by an integer number,λx,y≡2π/|kx,y |=Lx,y/Nx,y ,
where Nx,y=0,1,2,3.... This limits possible flow an-
gles for tilted waves in turbulence,θ≡ arctan(ky/kx),
to only discrete values, θ=± arctan(Ny/Nx), e.g.
θ=0, ± arctan(1/3), ± arctan(7/26) and the like.

The linear (exponential) growth of the instability occurs
at a rather short time∼6τ . Figure1 shows after that during
severalτ the instability continues growing slowly, although
not in a linear way. During this time, typical density fluctua-
tions are less than 5%. They represent quasi-monochromatic
waves with the preferred wavevector oriented practically par-
allel to the E0×B0-drift direction. The preferred wave-
length, λ=Lx/6, whereLx is the box size inx and y, is
about 1.5 timesλchar.

In the course of instability development, density fluctu-
ations become deeper, and their structure becomes much
more turbulent. This is a direct manifestation of nonlinear
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Fig. 2. Electron density (from left to right, top to bottom) for 15000, 30000, 100000 and 200000 time steps for

Run 2 (see Table 2).

29

Fig. 2. Electron density (from left to right, top to bottom) for 15 000, 30 000, 100 000 and 200 000 time steps for Run 2 (see Table2).

mode coupling. Although in this stage there is no clearly
seen quasi-monochromatic waves, one can see that the typ-
ical wavelengths of the most pronounced waves become
longer. The right panels of Fig.1 show that the characteristic
wavevector starts deviating from theE0×B0-drift direction.
The effect of wave-front tilting has been observed in previ-
ous simulations with PIC ions (e.g.Janhunen, 1994; Oppen-
heim and Dimant, 2004; Oppenheim et al., 2008). Dimant
and Oppenheim(2004) attributed this effect to the additional
instability driving mechanism of the ion-thermal nature. Due
to the periodic boundary conditions and finite box sizes,
the allowed discrete values of the tilt angle,θtilt , are con-
strained byθtilt= arctan(Ny/Nx) with integerNx,y , as dis-
cussed above. The most pronounced values of these integers
vary fromNx=6 andNy=0 in the leftmost panel toNx=2,
Ny=1 in the rightmost panel. This corresponds to a discrete-
step transition fromθtilt=0◦ to θtilt≈27◦. To the 6000 time
step, the amplitude of density fluctuations increased to (15–

25)% and then decreased slightly to a saturated level of (10–
20)%. Note that this level of fluctuations is higher than it
would be expected heuristically (Dimant and Milikh, 2003),
δne/n0∼�/νin'4%. A similar effect has been observed in
previous 2-D fully-PIC or hybrid simulations (Oppenheim
et al., 1996; Oppenheim and Dimant, 2004). A possible ex-
planation is that the constraint to the two dimensions does not
allow the turbulent energy to leak out in the parallel toB0 di-
rection where the instability is highly damped. Another im-
portant factor is that the turbulent energy cannot also spread
over long wavelengths due to the finite box sizes. As a result,
the instability is saturated at a higher level.

A run with the same basic parameters but twice as large
box sizes shows that the major qualitative and quantitative
characteristics of developed turbulence remain roughly the
same. At the same time, there is a tendency to the develop-
ment of longer wavelengths in the saturated stage, up to the
simulation box sizes. The simulation box in this run was not
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Table 1. Simulation parameters.

Parameter Value

Grid sizes inx andy 200
Grid sizesVx andVy 31
Grid spacings inlx andly 0.0767 m
Box sizes inx andy 10lx
Box sizes inVx andVy (−6vT i ) – (6vT i )
Temperature 300 K
E0 0.05 V/m
B0 5×104 nT
ψ⊥ 0.1
20 0.01347
Plasma density 1011m−3

Time step 5.336×10−7 s

big enough to allow longer wavelengths to develop. In the
following run, we use increased box sizes.

4.2 Run 2

In this run, the box size in each direction is four times as
large as the box size in Run 1. The major parameters for this
run are listed in Table2. Notice that in this run the time step
is twice as short as that in Run 1. We also reduced in this run
the plasma density by an order of magnitude for numerical
purposes.

Figure 2 shows the evolution of the density turbulence.
We see that the development of instability in this run
is quite similar to that in Run 1. For a sufficiently
long time, as seen in the first three panels, a dominant
wave is the quasi-monochromatic wave with the wavelength
λ=Lx/10≈0.28 m, which is directed along theE0×B0 drift.
After the 50 000 time step,t≈0.013 s≈50ν−1

in , the character
of density fluctuations changes dramatically. These fluctua-
tions become turbulent with no clearly seen preferred wave.
The effect of the angular offset from theE0×B0-drift direc-
tion, however, is still clearly seen. The wave tilting angle
is about the same as in Run 1, with the similar, or slightly
smaller, fluctuation level (about 20%).

Figures3 and4 show the corresponding spectrum of the
turbulent electric field which is always coupled to density
fluctuations and behavior of the root-mean-square values of
the turbulent electric field.

To find dominant values of the phase velocity a total spec-
tral energy graph was constructed by analogy with Fig. 7
from Oppenheim et al.(2008). The idea is as follows. The
dominant phase velocities correspond to the points of max-
ima in the Fourier spectral energy plot of the electron or
ion density functions. Due to small charge separation and
quasineutrality conditions, both densities are close to each
other so that one can use any of them. After 3-D Fourier

Table 2. Simulation parameters.

Parameter Value

Grid sizes inx andy 400
Grid sizesVx andVy 31
Grid spacings inlx andly 0.0767 m
Box sizes inx andy 40lx
Box sizes inVx andVy (−6vT i ) – (6vT i )
Temperature 300 K
E0 0.05 V/m
B0 5×104 nT
ψ⊥ 0.1
20 0.01347
Plasma density 1010m−3

Time step 2.668×10−7 s

transformation of the density in space and time one obtains
a functionn(kx, ky, ω) which can be interpreted in terms of
n(|k|, φ, ω) after transition to spherical coordinates. Then
the values ofn(|k|, φ, ω) can be averaged overφ and as a
result two dimensional functionn(|k|, ω) arises. The last
step is similar to the averaging of radar data because radars
measure waves with fixed wavelength but from different di-
rections. The phase velocity by definition isvph=ω/|k|
so each value ofn(|k|, ω) corresponds to the determined
vph and the dominant phase velocities are in line with the
points of maxima ofn(|k|, ω). The resulting plot of the
total spectral energy for run 2 is presented in Fig.5. The
upper bound of the dominant phase velocities is approxi-
mately vmax

ph '700 m/s. It was computed as the maximum
absolute value for the phase velocities corresponding to the
70 maximal values of spectrum ofn(|k|, ω) (the difference
in spectral values at this points is up to two orders of magni-
tude). The computed quantity is higher than the ion acous-
tic speedCs=[(Te+Ti)/mi]

1/2
'406 m/s for isothermal elec-

trons and ions, but below the velocity predicted by linear the-
ory,V0/(1+ψ)'908 m/s.

4.3 Run 3

This run was intended for comparison of simulations with
real electron mass and increased electron mass. For this pur-
pose we chose parameters the same as for fully PIC simula-
tions performed byOppenheim and Dimant(2004), but left
the plasma density and the driving field as in Run 2. The
electron mass in Run 3 was artificially increased by a fac-
tor of 44 which affects the parameter20, Eq. (6), and grid
spacings, see Table3. The main advantage of using the in-
creased electron mass in our simulations is that this allows
modeling the instability in a larger simulation box keeping
the same number of points. However, this requires changing
the physical parameters.
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Fig. 3. Spectra of E2 corresponding to Fig. 2 for 15000, 30000, 100000 and 200000 time steps (from left to

right, top to bottom).The maximum values of spectral modes are shown for each time step.

Fig. 4. Rms turbulent electric field for Run 2. Numbers form 1 to 4 correspond to the density plots at Figure 3

for 15000, 30000, 100000 and 200000 time steps, respectively. Green line corresponds to the E0 value.

30

Fig. 3. Spectra ofE2 corresponding to Fig.2 for 15 000, 30 000, 100 000 and 200 000 time steps (from left to right, top to bottom).The
maximum values of spectral modes are shown for each time step.

Despite the changes in parameters, Fig.6 shows that the
instability evolution stages are qualitatively the same as in
the previous runs. The initial quasi-monochromatic waves
with the wavevectors parallel toE0×B0 gradually transform
to turbulent waves with the tilted wave fronts. In this simu-
lation, the preferred wavelength of the quasi-monochromatic
waves isλ=Lx/18≈0.44 m, when the characteristic wave-
length isλchar≈1.4 m. This wavelength is twice larger than
in the run 2. The effect of wave-front tilting exists and can
be seen in the density plots or spectrum graphs (Fig.7). The
density fluctuations are fairly high,∼30−40 %. It should be
noted that simulations with real electron mass give us density
fluctuations lower than 25%.

Figure8 shows that after instability saturation the rms tur-
bulent electric field is about twice the driving electric field
E0, what is a little bit lower than in the run 2 and can be at-
tributed to the larger box size. This figure also shows that the
saturated turbulent field is much more stable than that in the
simulations with the real electron (see, for example, Fig.4).

Table 3. Simulation parameters.

Parameter Value

Grid sizes inx andy 250
Grid sizesVx andVy 31
Grid spacings inlx andly 0.16 m
Box sizes inx andy 50lx
Box sizes inVx andVy (−6vT i ) – (6vT i )
Temperature 300 K
E0 0.05 V/m
B0 5×104 nT
ψ⊥ 0.1575
20 0.03528
Plasma density 1010m−3

Time step 5.56×10−7 s
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Fig. 3. Spectra of E2 corresponding to Fig. 2 for 15000, 30000, 100000 and 200000 time steps (from left to

right, top to bottom).The maximum values of spectral modes are shown for each time step.

Fig. 4. Rms turbulent electric field for Run 2. Numbers form 1 to 4 correspond to the density plots at Figure 3

for 15000, 30000, 100000 and 200000 time steps, respectively. Green line corresponds to the E0 value.

30

Fig. 4. Rms turbulent electric field for Run 2. Numbers form 1 to 4
correspond to the density plots at Fig.3 for 15 000, 30 000, 100 000
and 200 000 time steps, respectively. Green line corresponds to the
E0 value.

Fig. 5. Total energy spectrum n(|k|, ω). The algorithm of construction is described in the text.

Fig. 6. Electron density (from left to right, top to bottom) for 12000, 26000, 40000, 100000 time steps for

Run 3 (see Table 3).

31

Fig. 5. Total energy spectrumn(|k|, ω). The algorithm of construc-
tion is described in the text.

4.4 Run 4

This run was also intended to directly compare our simula-
tion with full PIC simulation fromOppenheim and Dimant
(2004). Table4 shows the main simulation parameters that
coincide with those ofOppenheim and Dimant(2004). The
difference with Run 3 is in the plasma density, driving field
and box size. Note that we were able to perform simulations
with the twice as large time step compared to that ofOppen-
heim and Dimant(2004).

Density and spectrum graphs (Figs.9 and10) are in agree-
ment with the simulation byOppenheim and Dimant(2004).
It is possible to see the same wave tilting and formation of
large waves after saturation with the angle about 30◦.

Table 4. Simulation parameters.

Parameter Value

Grid sizes inx andy 512
Grid sizesVx andVy 31
Grid spacings inlx andly 0.16 m
Box sizes inx andy 102lx
Box sizes inVx andVy (−5vT i ) – (5vT i )
Temperature 300 K
E0 0.1 V/m
B0 5×104 nT
ψ⊥ 0.1575
20 0.03528
Plasma density 109 m−3

Time step 5.56×10−7 s

The rms of the turbulent electric filed (Fig.11) is in
rough agreement with the results byOppenheim and Dimant
(2004). The average values are approximately the same, but
there is a difference in the growth time of instability. Our
growth time is about 12 ms while inOppenheim and Dimant
(2004) it was about 35–40 ms. This difference can be at-
tributed to the electron thermal effects absent in our simula-
tions but included in the PIC code and also to the different
initial conditions.

Thus we see that our simulations without electron ther-
mal effects give results reasonably close to those of PIC sim-
ulations. Preliminary results of simulations with the elec-
tron thermal effects included show no significant difference
but show somewhat smaller rms turbulent electric field, den-
sity fluctuations, and noticeably longer time of the instability
growth and saturation.

Figure 12 shows contours of the ion distribution func-
tion averaged over the entire box during the instability sat-
uration. This figure shows significant anisotropic and non-
Maxwellian modifications of the ion distribution function
due to the predominantly Pedersen ion response to the to-
tal electric field. The reason for the anisotropic response
is that ions whose mass nearly equals that for the colliding
neutral particles have comparable rates of ion-neutral col-
lisional changes for both momentum and energy. As a re-
sult, unlike light electrons, for heavy ions collisional angu-
lar scattering in the velocity space does not lead to an ef-
fective isotropization of the ion distribution function. Fur-
thermore, we see that the largest distortions of the ion distri-
bution function take place at suprathermal energies. This is
partially due to the kinetic effect of Landau damping which
causes waves to yield their energy to resonantly interacting
ions. We should bear in mind, however, that highly colli-
sional waves excited by the low-frequency Farley-Buneman
instability undergo strongest Landau damping in the transient
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Fig. 5. Total energy spectrum n(|k|, ω). The algorithm of construction is described in the text.

Fig. 6. Electron density (from left to right, top to bottom) for 12000, 26000, 40000, 100000 time steps for

Run 3 (see Table 3).

31

Fig. 6. Electron density (from left to right, top to bottom) for 12 000, 26 000, 40 000, 100 000 time steps for Run 3 (see Table3).

range where the wavelengths are comparable to the ion-
neutral mean free path (Dimant and Oppenheim, 2004). This
makes ion Landau damping for such waves less pronounced
than that for plasma waves in the high-frequency, weakly col-
lisional regime.

4.5 Run 5

Basic parameters of this run are the same as for Run 2, except
for the difference in the grid sizes and, more importantly, in
the value of the driving electric field,E0. As can be seen
from Table5, the value ofE0 is the half that in Run 2, thus
being closer to the threshold value. Note that PIC simulations
with the driving electric field close to the instability thresh-
old are hardly achievable due to numerical noise comparable
with density fluctuations.

According to Eq. (A4) in Appendix, forψ⊥=0.1 and other
parameters listed in our Table5, the FB instability thresh-
old field for the high latitude electrojet,B0'5×104 nT, is

Table 5. Simulation parameters.

Parameter Value

Grid sizes inx andy 400
Grid sizesVx andVy 31
Grid spacings inlx andly 0.0767 m
Box sizes inx andy 80lx
Box sizes inVx andVy (−6vT i ) – (6vT i )
Temperature 300 K
E0 0.029 V/m
B0 5×104 nT
ψ⊥ 0.1
20 0.01347
Plasma density 1010m−3

Time step 2.668×10−6 s
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Fig. 7. Spectra of E2 corresponding to Fig. 6 for 12000, 26000, 40000, 100000 time steps (from left to right,

top to bottom). The maximum values of spectral modes are shown for each time step.

Fig. 8. Rms turbulent electric field for Run 3. Numbers form 1 to 4 correspond to the density plots at Figure 6

for 12000, 26000, 40000, 100000 time steps, respectively. Green line corresponds to the E0 value.

32

Fig. 7. Spectra ofE2 corresponding to Fig.6 for 12 000, 26 000, 40 000, 100 000 time steps (from left to right, top to bottom). The maximum
values of spectral modes are shown for each time step.

Fig. 7. Spectra of E2 corresponding to Fig. 6 for 12000, 26000, 40000, 100000 time steps (from left to right,

top to bottom). The maximum values of spectral modes are shown for each time step.

Fig. 8. Rms turbulent electric field for Run 3. Numbers form 1 to 4 correspond to the density plots at Figure 6

for 12000, 26000, 40000, 100000 time steps, respectively. Green line corresponds to the E0 value.
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Fig. 8. Rms turbulent electric field for Run 3. Numbers from 1 to 4
correspond to the density plots at Fig.6 for 12 000, 26 000, 40 000,
100 000 time steps, respectively. Green line corresponds to theE0
value.

Emin
Thr '0.022 V/m. In this run (E0=0.029V/m), we have

(E0−E
min
Thr )/E0'0.31, so that the excess above the mini-

mum threshold field is not significant. In principle, this hy-
brid model with the fully continuous equations allows set-
ting the driving field as close to the threshold field as possi-
ble. However, the closer the driving field is to the instability
threshold, the smaller is the instability growth rate and the
longer time is required to reach the instability saturation. It
is important, nevertheless, that this approach allows to ex-
plore the near-threshold case without “plunging” into inher-
ent noises caused by the finite number of PIC particles in the
corresponding codes. We are planning to carefully study the
FB instability dynamics near the instability threshold after
we incorporate into the electron fluid module the additional
energy balance equation that includes temperature perturba-
tions (Dimant and Sudan, 1995a; Dimant and Sudan, 1997;
Kagan and St.-Maurice, 2004; Kissack et al., 2008a).

Instability development stages in this run are qualitatively
the same as those in the previous simulations. Initially,
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Fig. 9. Electron density (from left to right, top to bottom) for 2000 and 40600 time steps for Run 4 (see Table 4).

Fig. 10. Spectra ofE2 corresponding to Fig. 9 for 2000 and 40600 time steps (from left to right, top to bottom).

The maximum values of spectral modes are shown are shown for each time step.

Fig. 11. Rms turbulent electric field for Run 4. Numbers 1,2 correspond to the density plots at Figure 9 for

2000 and 40600 time steps, respectively. Green line corresponds to the E0 value.

33

Fig. 9. Electron density (from left to right, top to bottom) for 2000 and 40 600 time steps for Run 4 (see Table4).

Fig. 9. Electron density (from left to right, top to bottom) for 2000 and 40600 time steps for Run 4 (see Table 4).

Fig. 10. Spectra ofE2 corresponding to Fig. 9 for 2000 and 40600 time steps (from left to right, top to bottom).

The maximum values of spectral modes are shown are shown for each time step.

Fig. 11. Rms turbulent electric field for Run 4. Numbers 1,2 correspond to the density plots at Figure 9 for

2000 and 40600 time steps, respectively. Green line corresponds to the E0 value.

33

Fig. 10. Spectra ofE2 corresponding to Fig.9 for 2000 and 40 600 time steps (from left to right, top to bottom). The maximum values of
spectral modes are shown are shown for each time step.

quasi-monochromatic waves develop. Their length is twice
as that in Run 2 and is half the heuristically expected value.
During the saturation stage, the wavelengths increase, but
due to restrictions on the box size their growth is limited
(Fig. 13).

There are some differences in the process of instability
growth. First, the total instability growth time decreases due
to proximity to the instability threshold. This time is ap-
proximately 0.15 s (Fig.14) as compared to 0.03 s in Run 2
(Fig.4). Second, the rms turbulent electric field is on average
lower than the driving electric field after saturation, while in
the simulations with large enough driving field the rms of
turbulent electric field was noticeably larger than the driving
field. This field, however, remains larger than that expected

heuristically (Dimant and Milikh, 2003). Third, the density
fluctuations in the simulation are less than 10% and are closer
to the heuristically expected values'4%. In future simula-
tions, we are planning to explore a near-threshold case with
the driving field much closer to the FB instability threshold
field. In accord with an aforementioned remark, this may
require a much longer simulation time, so that we will use
highly-parallelized supercomputers.

5 Discussion

This paper presents first results of novel 2-D hybrid simula-
tions which are based on continuous equations, rather than
on those using discrete particles. The major objective of this
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Fig. 9. Electron density (from left to right, top to bottom) for 2000 and 40600 time steps for Run 4 (see Table 4).

Fig. 10. Spectra ofE2 corresponding to Fig. 9 for 2000 and 40600 time steps (from left to right, top to bottom).

The maximum values of spectral modes are shown are shown for each time step.

Fig. 11. Rms turbulent electric field for Run 4. Numbers 1,2 correspond to the density plots at Figure 9 for

2000 and 40600 time steps, respectively. Green line corresponds to the E0 value.

33

Fig. 11. Rms turbulent electric field for Run 4. Numbers 1,2 corre-
spond to the density plots at Fig.9 for 2000 and 40 600 time steps,
respectively. Green line corresponds to theE0 value.

paper is to demonstrate feasibility and relevance of the new
simulation approach. To this end, we have compared our
results with results of previous PIC simulations. The com-
parison have shown reasonable qualitative and quantitative
agreement.

This agreement has an important implication for linear
and nonlinear theories of the FB and other E-region insta-
bilities. In this paper, we have modeled ions by a kinetic
equation with the simplified BGK collision term, Eq. (8).
Such model have been used for analytical treatment of the
FB instability since the pioneer paper byFarley(1963) and
other earlier papers (Lee et al., 1971; Ossakow et al., 1975).
The BGK collision model with small modifications (Morse,
1964) provides accurate transfer of the momentum and en-
ergy between the colliding particles, but this model does
not follow from the rigorous kinetic theory and its applica-
tions are limited (Stubbe, 1987, 1989). As we mention in
Sect.2.3, the BGK model is hardly applicable for electron-
neutral collisions (Dimant and Sudan, 1995a,c), but it may
reasonably approximate ion-neutral collisions in the E-region
ionosphere where the colliding particles have approximately
equal masses. This assertion has never been verified by com-
puter simulations, bur our results support it. In addition, in all
our simulations the nonlinearly saturated stage clearly shows
dominant waves with the wavevectors tilted with respect to
theE0×B0-direction. Because our simulations employ the
isothermal model for electrons, see Sect.2.2, this tilting can
only be attributed to the ion thermal-driving mechanism (Di-
mant and Oppenheim, 2004). This suggests that the sim-
plified BGK ion kinetic model employed here includes this
mechanism automatically and hence can be successfully used
in future theoretical efforts for modeling of not only the FB
instability, but the ion-thermal instability (Kagan and Kelley,
2000; Dimant and Oppenheim, 2004) as well.

Fig. 12. Contours of the ions distribution function in velocity space averaged over all (x,y) space at the end of

Run 4 (blue). Dashed green curves show the isotropic Maxwellian function. The values of the ion distribution

function at the adjacent contours (from the center to periphery) decrease by a factor of 1.7.

Fig. 13. Electron density (from left to right, top to bottom) for 46000, 200000 time steps for Run 5 (see Table 5).

Fig. 14. Rms turbulent electric field for Run 5. Numbers 1, 2 correspond to the density plots at Figure 13 for

46000, 200000 time steps, respectively. Green line corresponds to the E0 value.
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Fig. 12. Contours of the ions distribution function in velocity space
averaged over all (x,y) space at the end of Run 4 (blue). Dashed
green curves show the isotropic Maxwellian function. The values
of the ion distribution function at the adjacent contours (from the
center to periphery) decrease by a factor of 1.7.

In these simulations, we have modeled the FB instability
at a high-latitude electrojet corresponding toB0=5×104 nT.
These results allow a simple scaling to other locations, e.g.
to the the equatorial electrojet with the twice as small mag-
netic field. The difference in the geomagnetic field re-
sults in the proportional change of the instability thresh-
old field, see Eq. (A4). The latter also depends upon
the altitude via the major altitude-dependent parameter
ψ⊥≡�e�i/(νenνin)∝B

2
0. Relative intensities of density and

electric field fluctuations depend upon the ratioE0/EThr.
Typical turbulence temporal and spatial scales are deter-
mined by the same ratio and should remain invariant if ex-
pressed in terms of the characteristic parametersν−1

e,i and
Cs/νi , whereνi=�i

√
ψ⊥/20, while νe=�e20

√
ψ⊥. The

gyrofrequencies depend only upon the latitude and are prac-
tically altitude-independent within the lower ionosphere,
while the parameter20, Eq. (6), is essentially invariant
throughout the entire E-region ionosphere due to approxi-
mate constancy ofνen/νin'10 (Kelley, 1989).

Our results might also be applied to modeling of the FB in-
stability at midlatitude sporadic-E layers (Schlegel and Hal-
doupis, 1994; Haldoupis et al., 1996; Haldoupis et al., 1997),
but our current simulations do not include spatial gradients
of the undisturbed ionosphere and fields. Gradients of the
electric field and plasma density can play an important role
in sporadic-E layers. Modeling effects of spatial gradients of
the background plasma requires significant modifications of
the initial and boundary conditions and, hence, of the general
approach to numerical solution. This will be done in future.
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Fig. 12. Contours of the ions distribution function in velocity space averaged over all (x,y) space at the end of

Run 4 (blue). Dashed green curves show the isotropic Maxwellian function. The values of the ion distribution

function at the adjacent contours (from the center to periphery) decrease by a factor of 1.7.

Fig. 13. Electron density (from left to right, top to bottom) for 46000, 200000 time steps for Run 5 (see Table 5).

Fig. 14. Rms turbulent electric field for Run 5. Numbers 1, 2 correspond to the density plots at Figure 13 for

46000, 200000 time steps, respectively. Green line corresponds to the E0 value.

34

Fig. 13. Electron density (from left to right, top to bottom) for 46 000, 200 000 time steps for Run 5 (see Table5).

6 Conclusions

We present first results of a novel hybrid approach for 2-D
simulations of the Farley-Buneman instability in the E-region
ionosphere. Unlike the previous hybrid approach based on
PIC technique for ions, this technique is based fully on con-
tinuous equations: fluid equations for electron density and a
kinetic equation for ions with the BGK collision term. The
advantage of this kinetic equation is that it includes the cru-
cial effect of ion Landau damping while avoiding noises as-
sociated with the finite number of randomly moving particles
in PIC methods. Fluid description of electrons allows model-
ing the real electron mass. The novel hybrid technique can be
more suitable than PIC for modeling the FB instability near
its threshold.

The 2-D mathematical model includes a nonlinear
convection-diffusion equation for electron density, the BGK
ion kinetic equation, and Poisson’s equation for electrostatic
potential. Our simulator can perform numerical computa-
tions of the FB instability for different ionospheric condi-
tions. For reasonably chosen parameters, it can be imple-
mented on a PC. However, the developed simulator is opti-
mized for runs on computers with multiprocessor architec-
ture. The first numerical simulations of the FB instability
have shown the following major effects: nonlinear saturation
of the instability, increasing wavelength in the quasi-steady
saturation state, and deviation of the dominating wave vec-
tor from the direction of theE0×B0-drift velocity of elec-
trons. These results are in good qualitative and quantitative
agreement with previous results of fully PIC or hybrid, fluid
and PIC, simulations. These first results demonstrate that
the new simulation method can be successfully employed in
spite of its current deficiencies (simplifying assumptions of
the underlying models, as well as relatively small spatial box

Fig. 12. Contours of the ions distribution function in velocity space averaged over all (x,y) space at the end of

Run 4 (blue). Dashed green curves show the isotropic Maxwellian function. The values of the ion distribution

function at the adjacent contours (from the center to periphery) decrease by a factor of 1.7.

Fig. 13. Electron density (from left to right, top to bottom) for 46000, 200000 time steps for Run 5 (see Table 5).

Fig. 14. Rms turbulent electric field for Run 5. Numbers 1, 2 correspond to the density plots at Figure 13 for

46000, 200000 time steps, respectively. Green line corresponds to the E0 value.
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Fig. 14. Rms turbulent electric field for Run 5. Numbers 1, 2
correspond to the density plots at Fig.13 for 46 000, 200 000 time
steps, respectively. Green line corresponds to theE0 value.

sizes and a limited 3-D domain of ion velocities). For a more
realistic and accurate description of the FB instability, we
are planning to extend the new simulation technique to non-
isothermal electrons, arbitrarily magnetized ions, and fully
3-D turbulence with bigger and denser simulation grids. In
order to successfully implement such improvements, we will
employ highly parallelized supercomputers.

www.ann-geophys.net/26/2853/2008/ Ann. Geophys., 26, 2853–2870, 2008
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Appendix A

Two-fluid linear theory

The FB instability can only be generated if the ambient DC
electric field exceeds the minimum threshold field obtained
from the two-fluid linear theory. In this Appendix we outline
relevant results of this theory.

Standard linear theory implies small density and
electrostatic-potential perturbations∝ exp[i(k·r−ω̃(k)t)].
Here k is the wavevector and̃ω(k)≡ω(k)+iγ (k), where
realω(k) is the linear wave frequency andγ (k) is the lin-
ear growth (γ>0) or damping (γ<0) rate. In the two-fluid
model (e.g.Dimant and Oppenheim, 2004, Eq. 1) with ion
inertia but no electron inertia, to the zero-order accuracy den-
sity and potential perturbations are coupled by

∂η

∂t
≈

e

miνin
∇

2
⊥
δ8 . (A1)

The fluid expressions are usually valid for sufficiently long-
wavelength waves,kCs�νin, whereCs=[(Te+Ti)/mi]

1/2 is
the ion-acoustic speed for isothermal electrons and ions, so
that |γ |�ω. Neglecting temperature perturbations and the
ion Pedersen velocity but taking into account charge separa-
tion between electrons and ions, Eq. (13), one obtains

ω(k) =
k · V 0

1 + ψ⊥

, (A2)

and

γ (k) =
ψ⊥

(1 + ψ⊥)νin

[
ω2

(
1 −

ν2
in

ω2
pi

)
− k2C2

s

]
, (A3)

whereV 0 is theE0×B0 drift velocity of strongly magne-
tized electrons.

The minimum threshold electric field,Emin
Thr , is determined

by equatingγ to zero and choosing the optimum wave direc-
tion, k‖V 0=E0×b̂/B0. As a result, one obtains

Emin
Thr = (1 + ψ⊥)B0

[(
Ti + Te

mi

)/(
1 −

ν2
in

ω2
pi

)]1/2

= 20
mV

m

[
(1 + ψ⊥)B0

5 × 104nT

][
Ti + Te

600K

/(
1 −

ν2
in

ω2
pi

)]1/2

. (A4)

For ν2
in�ω2

pi , the altitude dependence of the FB threshold
electric field is shown inDimant and Oppenheim(2004,
Fig. 5). The additional, stabilizing, term∝ ν2

in/ω
2
pi in

Eqs. (A3) and (A4) is non-conventional. It arises due to small
charge separation (Rosenberg and Chow, 1998), as explained
below. For the E region whereνen'10νin, we can express
this term via the major altitude-dependent parameterψ⊥ as

ν2
in

ω2
pi

'
ε0B

2
0ψ⊥

10nime
≈ 0.24ψ⊥

(
B0

5 × 104nT

)2
(

1010m−3

ni

)
.

(A5)

If νin<ωpi then the additional term increases the FB thresh-
old field, whereas ifνin≥ωpi then it precludes generation
of the FB instability for any driving electric field. The term
−ν2

in/ω
2
pi becomes important in the nighttime ionosphere be-

low 100 km whereni.109 m−3, while ψ.0.1 at high lat-
itudes andψ.0.4 at the magnetic equator (seeDimant and
Oppenheim, 2004, Fig. 2). At daytime, this term is negligible
for the entire E region. The effect of small charge separation
on the FB threshold described by Eq. (A4) should always
be taken into account when choosing plasma parameters for
numerical simulations. This is the major effect of plasma
density on the FB instability.

The physical origin of the additional stabilizing term can
be outlined as follows. The small relative charge separa-
tion, δn/n0∼(kλD)

2, becomes even smaller as the wave-
length grows (i.e. ask decreases). According to Eqs. (A3)
and (A4), however, its stabilizing effect is equally significant
for all wavelengths. The reason for this is as follows. The
two-fluid expressions are usually valid for sufficiently long-
wavelength waves,kCs�νin, when the terms that describe
FB driving and wave dissipation in the linear dispersion re-
lation are second-order small terms,∝ω2

∝k2, Eq. (A3), as
compared to the first-order terms,∝ω∝k, that determine the
phase-velocity relation, Eq. (A2) (see the corresponding dis-
cussion inDimant and Oppenheim, 2004). Unlike strongly
magnetized electrons moving with theE×B0 drift velocity,
weakly magnetized ions are essentially attached to neutrals.
The FB driving caused by small ion inertia is described by the
first term∝ω2 in the RHS of Eq. (A3), while the wave dissi-
pation caused by ambipolar diffusion is described by the last
term k2C2

s . To better understand these and other terms it is
convenient to pass to the frame of reference moving with the
wave phase velocity,V ph=ωk̂/k (Dimant and Sudan, 1995c;
Dimant and Sudan, 1997). In this frame, ion velocity nearly
equals−V ph with additional wave perturbations that even-
tually result in the FB driving term. Small charge separation
between electrons and ions results in a slightly excessive flux
of ions whose divergence is∝k2Vph, whereVph≡|V ph|∼V0.
The contribution of this excessive divergence to the wave
excitation/dissipation balance has the samek-dependence as
the FB driving term, but the opposite sign. The ratio of the
two terms proves to be−ν2

in/ω
2
pi , as it appears in Eq. (A3).

Acknowledgements.We thank M. Oppenheim for fruitful discus-
sions and contributions.

Topical Editor M. Pinnock thanks H. Bahcivan and C. Haldoupis
for their help in evaluating this paper.

References

Bahcivan, H. and Hysell, D. L.: A model of secondary Farley-
Buneman waves in the auroral electrojet, J. Geophys. Res., 111,
A01 304, doi:10.1029/2005JA011408, 2006.

Ann. Geophys., 26, 2853–2870, 2008 www.ann-geophys.net/26/2853/2008/



D. V. Kovalev et al.: Modeling of Farley-Buneman instability in E region 2869

Balsley, B. B. and Farley, D. T.: Radar studies of the equatorial
electrojet at three frequencies, J. Geophys. Res., 76, 8341–8351,
1971.

Bhatnagar, P. L., Gross, E. P., and Krook, M.: A model for collision
processes in gases, I, Small amplitude processes in charged and
Neutral one-component systems, Phys. Rev., 94, 511–525, 1954.

Buneman, O.: Excitation of field aligned sound waves by electron
streams, Phys. Rev. Lett., 10, 285–288, 1963.

Cohen, R. and Bowles, K. L.: Secondary irregularities in the equa-
torial electrojet, J. Geophys. Res., 72, 885–894, 1967.

Crochet, M., Hanuise, C., and Broche, P.: HF Radar studies of two-
stream instability during an equatorial counter electrojet, J. Geo-
phys. Res., 84, 5223–5233, 1979.

Dimant, Y. S. and Milikh, G. M.: Model of anomalous electron
heating in the E region: 1. Basic theory, J. Geophys. Res., 108,
1350, doi:10.1029/2002JA009524, 2003.

Dimant, Y. S. and Oppenheim, M. M.: Ion thermal effects on
E-region instabilities: linear theory, J. Atmos. Terr. Phys., 66,
1639–1654, 2004.

Dimant, Y. S. and Sudan, R. N.: Kinetic theory of low-frequency
cross-field instability in a weakly ionized plasma. I, Phys. Plas-
mas, 2, 1157–1168, 1995a.

Dimant, Y. S. and Sudan, R. N.: Kinetic theory of low-frequency
cross-field instability in a weakly ionized plasma. II, Phys. Plas-
mas, 2, 1169–1181, 1995b.

Dimant, Y. S. and Sudan, R. N.: Kinetic theory of the Farley-
Buneman instability in the E region of the ionosphere, J. Geo-
phys. Res., 100, 14 605–14 624, 1995c.

Dimant, Y. S. and Sudan, R. N.: Physical nature of a new cross-field
current-driven instability in the lower ionosphere, J. Geophys.
Res., 102, 2551–2564, 1997.

Drexler, J. and St. Maurice, J.-P.: A possible origin for large aspect
angle “HAIR” echoes seen by SuperDARN radars in the E re-
gion, Ann. Geophys., 23, 767–772, 2005,
http://www.ann-geophys.net/23/767/2005/.

Drexler, J., St.-Maurice, J.-P., Chen, D., and Moorcroft, D. R.: New
insights from a nonlocal generalization of the Farley-Buneman
instability problem at high latitudes, Ann. Geophys., 20, 2003–
2025, 2002,
http://www.ann-geophys.net/20/2003/2002/.

Dupree, T. H.: Nonlinear theory of low-frequency instabilities,
Phys. Fluids, 11, 2680–2694, 1968.

Dyrud, L., Krane, B., Oppenheim, M., Pécseli, H. L., Schlegel,
K., Trulsen, J., and Wernik, A. W.: Low-frequency electrostatic
waves in the ionospheric E-region: a comparison of rocket ob-
servations and numerical simulations, Ann. Geophys., 24, 2959–
2979, 2006,
http://www.ann-geophys.net/24/2959/2006/.

Farley, D. T.: A plasma instability resulting in field-aligned irreg-
ularities in the ionosphere, J. Geophys. Res., 68, 6083–6097,
1963.

Farley, D. T.: Theory of equatorial electrojet plasma waves: New
developments and current status, J. Atmos. Terr. Phys., 47, 729–
744, 1985.

Fejer, B. G. and Kelley, M. C.: Ionospheric irregularities, Rev. Geo-
phys., 18, 401–454, 1980.

Fejer, B. G., Providakes, J., and Farley, D. T.: Theory of plasma
waves in the auroralE region, J. Geophys. Res., 89, 7487–7494,
1984.
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