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Abstract. Two long runs of EISCAT Svalbard Radar (ESR),
in February 2001 and October 2002, have been analysed
with respect to variability in the F2 region peak density and
altitude. The diurnal variation in the F2 peak density ex-
hibits one maximum around 12:00 MLT and another around
23:00 MLT, consistent with solar wind controlled transport of
EUV ionized plasma across the polar cap from day to night.
High density plasma patch material is drawn in through the
cusp inflow region independent of IMFBY . There is no
apparent IMFBY asymmetry on the intake of high density
plasma, but the trajectory of its motion is stronglyBY de-
pendent. Comparison with the international reference iono-
sphere model (IRI2001) clearly demonstrates that the model
does not take account of the cross-polar transport of F2-
region plasma, and hence has limited applicability in polar
cap regions.

Keywords. Ionosphere (Plasma convection; Polar iono-
sphere) – Magnetospheric physics (Polar cap phenomena)

1 Introduction

Within the polar cap there are two different regimes of
plasma; the low density background plasma and the high
density solar EUV ionized plasma, which convects into the
polar cap from sub-auroral latitudes, through the cusp inflow
region. Knudsen (1974) suggested that F region plasma con-
vected through the cusp to flow across the polar cap from
midday towards night side auroral latitudes, would lead to
a tongue of enhanced ionization across the polar cap (TOI).
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Sojka et al. (1994) refined this concept with model studies of
segmenting the TOI into commonly observed patches. Fos-
ter (1984) mapped the average diurnal pattern of convection
and F-region density around the auroral oval and showed en-
hanced plasma density contours to follow the observed con-
vection contours towards the cusp and polar cap, from lower
latitudes in the post noon sector. Foster (1993) showed dur-
ing magnetic disturbances, in the rest frame of the Earth, post
noon plasma can corotate, then stagnate, and then enter re-
turn flow towards the cusp inflow region, thereby accumulat-
ing large ionization build-up due to unusually long exposure
to solar EUV production (storm enhanced density, or SED).
Foster (2005) presented observations of complete simultane-
ous mapping of the plasma density and convection patterns
during a major magnetic storm, extending from the SED low
latitude dusk source region, clear across the polar cap and
into the nightside auroral F region. While these rare storm
events dramatically exhibit the transpolar TOI, we still have
limited knowledge about a typical average day.

In this paper we will discuss the diurnal variations in the
F2-peak electron density (NmF2) and the altitude of the F2
peak density (hmF2) obtained from two long duration ob-
servational runs of field-aligned observations by the EIS-
CAT Svalbard Radar (ESR), in February 2001 and October
2002. We show that the variability in the F2 region plasma
density at the magnetic latitude of the ESR is dominated
by transport rather than local production. The use of two
long continuous data sets, each close to one month in du-
ration, provides a new opportunity to test the IMFBY in-
fluence on the intake of subauroral plasma into the polar
TOI region. We demonstrate that the overall intake of patch
material is not sensitive to IMFBY . Finally we compare
our observations of (NmF2, hmF2) with predictions from the
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Figure 1

Fig. 1. (a–b)Averaged F2 region peak electron density versus time UT for long duration runs by EISCAT Svalbard Radar in February 2001
and October 2002. Magnetic noon (∼09:00 MLT) and magnetic midnight (∼21:00 MLT) are indicated by arrows on the time axis. The curves
represent 30 min averaged data over each month, and the bars represent one standard deviation in theNmF2 data. (c–d) The percentage of
extreme densities (NmF2>10−12m−3) observed in the two data set versus time.(e–f) 30 min averages of altitude of the F2 region peak
corresponding to panels (a) and (b). The bars represent one standard deviation spread inhmF2.

International Reference Ionosphere (IRI2001) model (Bil-
itza, 2001), which is a widely-used empirical model of
the global ionosphere. As earlier demonstrated by Lei et
al. (2006) and Zhang et al. (2007) there are large discrep-
ancies between the IRI-model and the ESR measurements,
but they did not discuss any reason for it. These differences
arise because the IRI model does not account for the trans-
port of solar EUV ionized plasma across the polar cap from
day to night, which is a well established phenomenon. The
underlying philosophy is to avoid risk of inadequate theory
or modelling by building empirically on observational data
bases.

2 Instrumentation

The EISCAT Svalbard Radar (ESR) is located at Longyear-
byen (78.15◦ N, 16.03◦ E), corresponding to 75.1◦ MLAT.
The ESR consists of two parabolic dish antennas, a 32-m
fully steerable dish and a 42-m dish fixed along the magnetic

field line. ESR provides altitude profiles of the four primary
parameters: electron density, electron temperature, ion tem-
perature and ion velocity (Ne, Te, Ti andvi). For this study
we use 2 min electron density profiles from the 42 m antenna,
downloaded from the EISCAT data archive at the Rutherford
Appleton Laboratory, for two long runs from February 2001
and October 2002. The typical spatial resolution of these data
is 3 km between 90 and 150 km altitude, 6 km from 150 to
220 km, 12 km from 220 to 350 km and 36 km above 350 km.
In October 2002, the radar was operated continuously for 28
days except for a few brief interruptions. The February 2001
data set comprised 19 days of near-continuous operation.

The Interplanetary magnetic field (IMF) and plasma pa-
rameters of the solar wind were obtained from the ACE
spacecraft (Chiu et al., 1998) located near the L1 point. In
this paper we have used data from the magnetic field ex-
periment (MAG; Smith et al., 1998) and solar wind veloc-
ity data from the Solar Wind Electron Proton Alpha Monitor
(SWEPAM; McComas, 1998) to estimate the time delay be-
tween ACE and the magnetopause.
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Fig. 2. Panels(a), (c), (d) and(e) represent IMFBY /BZ scatter plots for the occurrence of extreme values ofNmF2. There is a clear IMF
BY asymmetry in prenoon (10:00–11:00 MLT) and postnoon (13:00–14:00 MLT) that can be explained by transport of high density plasma
away from noon as schematically illustrated in panels(b) and(f).

3 Analysis method and results

The main objective is to study the diurnal variations in
the F2 region electron density. Electron density values
>5×1012 m−3 are considered unphysical and were removed.
These appeared mostly as single data points and mainly cor-
responded to artefacts due to echoes from hard targets and/or
poor fits in the data analysis. The peak F-region density
NmF2 and the peak heighthmF2 were identified for every
altitude profile. In order to characterize the diurnal variation
in NmF2, the data set for each month was sorted into 48 half
hour bins, such that for the month of October 2002, with 28
days of operation, each half-hour bin contains a maximum
of 420 values for both magnitude and altitude (28 times 15
data points per 30 min). The full curve in the upper two pan-
els of Fig. 1 (a and b) shows the median values ofNmF2 for
each half hour bin plotted as function of universal time (UT)
for February 2001 and October 2002, respectively. Please
note different scales on the vertical axes. The histograms in
Fig. 1c and d present the percentage of data dumps within the
30-min time intervals whenNmF2 exceeded 1×1012 m−3,
later referred to as extreme values. The curves in the bot-
tom two panels (Fig. 1e and f) represent the averagehmF2
values corresponding toNmF2 in panels (a) and (b), respec-
tively. The bars superimposed on each curve represent one
standard deviation spread within each 30 min data bin.

The NmF2 curves in Fig. 1a and b both exhibit a dou-
ble peak, a daytime peak around 09:00 UT and a nighttime
peak between 19:30–20:00 UT. Magnetic noon at Longyear-
byen occurs around 08:50 UT, so the daytime peak is very
close to 12:00 MLT, while the nighttime peak corresponds
to ∼23:00 MLT. Figure 1e and f shows a pronounced min-
imum in hmF2 between 11:00 and 12:00 UT. Local geo-
graphic noon in Longyearbyen is∼11:00 UT.

From Fig. 1c and d it is seen that extreme densities were
recorded in 50% and 17 % of the 2-min data dumps around
the noon peaks of February 2001 and October 2002, respec-
tively. This high density plasma represents transport of solar
EUV ionisation into the polar cap. It is therefore interesting
to check whether the dusk cell is more responsible for the in-
take of high density plasma than the dawn cell. Figure 2 dis-
plays scatter diagrams ofBY vs.BZ for the occurrence of the
NmF2 extreme values. The IMF value attributed to each ex-
treme density represents a 20-min average backward in time
from when the event was sampled. This allows some time
for plasma to convect from the high-density source region to
the radar under solar wind control. IMFBY positive (nega-
tive) imposes a postnoon (prenoon) shift of the cusp inflow
region (Ruohoniemi and Greenwald, 2005), and eventual in-
take of high density plasma there will be swept westward
into prenoon sector (eastward into postnoon) as illustrated in
Fig. 2b (Fig. 2f). With a zonal speed of 0.5–1 kms−1 it will
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take from 7.5–15 min to travel 1 h in MLT at 75 MLAT. We
tried 10, 20 and 30 min delay time and the IMFBY asymme-
try features did not change. As indicated on the top of each
diagram, the observations from 10:00–14:00 MLT (07:00–
11:00 UT) are binned in 1 h intervals. The occurrences of
extreme densities in the 10:00–11:00 MLT sector were pre-
dominantly for IMFBY positive, while the extreme densities
in the 13:00–14:00 MLT sector occur predominantly for IMF
BY negative.

4 Discussion

TheNmF2 curves in Fig. 1a and b, with one maximum near
magnetic noon and one maximum near magnetic midnight,
are consistent with systematic intake of solar EUV ionized
plasma in the cusp inflow region, and subsequent transport
across the central polar cap into the midnight sector. Figure 3
illustrates how Svalbard was situated under the twin cell po-
lar cap circulation pattern near noon and near midnight on 22
October 2002. The SuperDARN convection map in Fig. 3a
was taken at 10:00 UT and represents a situation dominated
by IMF BY negative. The large morning cell swept high den-
sity plasma duskward over the radar located∼13:00 MLT.
Figure 3b illustrates exit flow over Svalbard. There is a no-
table shift in the exit region towards pre midnight.

Although Svalbard is located under the statistical auroral
oval at daytime, the cusp location may vary within the range
∼70–79 MLAT (Sandholt et al., 1998). A significant fraction
of the daytime F-region electron density profiles has certainly
been augmented by magnetosheath electrons in the 100 eV
range (Newell and Meng, 1988). However modelling studies
suggest this would only modestly enhance midday plasma
densities and little impacthmF2 (Millward et al., 1999). Fur-
ther, it is very unlikely that extreme densities larger than
1×1012 m−3 (Fig. 1c and d) could have been produced lo-
cally. Millward et al. (1999) estimated a maximum elec-
tron density near 300 km of almost 1×1012 m−3 for an as-
sumed convection path that resulted in longer exposure of
the flux tube to the electron and ion precipitation than gen-
erally attributed to reconnection events. The density value
obtained is therefore likely to be an overestimate for the ob-
servedNmF2 peak value, although density enhancements of
∼6×1011 m−3 are entirely possible. We therefore conclude
that theNmF2 peak around magnetic noon represents solar-
EUV ionized plasma being transported into the polar cap.

The 3–4 h wide region of high-density plasma intake
around noon (Fig. 1a–d) is consistent with the width of the
cusp intake region (e.g. Foster et al., 1984). During IMFBZ

north conditions, the ESR may be situated inside or outside
the polar cap. If the radar is situated inside the polar cap dur-
ing IMF BZ north, lobe reconnection may stir around high
density plasma that has previously been taken into the po-
lar cap. If the radar is situated on the equatorward side of a

contracted polar cap, the radar may probe solar EUV ionized
plasma at sub-auroral latitudes.

At night ESR is usually situated well inside the polar
cap most of the time, except during the substorm expan-
sion phase when the poleward auroral boundary sometimes
leaps across the radar site in Longyearbyen (Lorentzen et al.,
2004). The night time peak inNmF2 in Fig. 1a–b is cen-
tred on 20:00 UT=23:00 MLT. The night peak around 20 UT
was observed by an ionosonde in Longyearbyen in 1957 (cf.
Fig. 1 in King et al., 1968). King et al. (1968) attributed it to
pressure gradient driven flow at F-region altitudes, from the
highest pressure region near Equator at 14:00 LT along all
great-circle paths including those over the geographic pole,
towards the lowest pressure region near equator at 02:00 LT
(cf. Fig. 2 in King et al., 1968). According to this neutral
wind pattern, at 21:00 LT at 78◦ geographic latitude, there
will be a component of southward flow and a lift of iono-
spheric plasma along the magnetic field line correspond-
ing to that. However, based on systematic observations by
low-altitude polar orbiting satellites the IMF control of po-
lar cap convection became established a couple of decades
later (Heelis et al., 1982; Heelis, 1984; Heppner and May-
nard, 1987), and the climatology of polar cap convection
has recently been mapped out in greater detail by Super-
DARN (Ruohoniemi and Greenwald, 2005). In a statisti-
cal study of 630.0 nm airglow patches from Svalbard, Moen
et al. (2007) documented a similar pre-midnight shift in the
630.0 nm patch occurrence rate as for theNmF2 peak pre-
sented here. 60% of the optical patches were observed to exit
the polar cap between 22:00 and 01:00 MLT. They found the
pre-midnight shift to be consistent with a statistical plasma
flow pattern representative of the averaged IMF conditions
yielding their data set (Ruohoniemi and Greenwald, 2005).
It is noticed from Fig. 1c–d that a major fraction of extreme
densities was sampled between 19:00–22:00 UT, which cor-
responds to the same period,∼22:00–01:00 MLT.

There is a remarkably large spread inNmF2 andhmF2, as
demonstrated by the standard deviation bars in Fig. 1. The
error bar on any individualNe measurement is only a few
percent. Therefore, the variability inNmF2 represents real
fluctuations reminding us that the plasma is highly structured
and/or that the flow path of high density plasma within the
polar cap is highly variable.

The scatter diagrams in Fig. 2a (10:00–11:00 MLT) and
Fig. 2e (13:00–14:00 MLT) demonstrate a clear IMFBY con-
trol on the dawn-dusk asymmetry in the MLT occurrence
of extreme densities with their occurrence in the 10:00–
11:00 MLT sector being biased toward IMFBY positive, and
that in the 13:00–14:00 MLT sector being biased toward IMF
BY negative. The chance for magnetopause reconnection and
new intake of high density plasma, possibly leading to patch
formation, increases for IMFBZ negative. Hence, for IMF
BZ<0 this asymmetry can be explained as an IMFBY con-
trol of the east-west movement of newly open flux over the
radar in the prenoon sector for IMFBY positive and in the
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Figure 3

Fig. 3. Illustration of Svalbard’s location under,(a) the intake of Solar EUV ionized plasma near noon, and(b) plasma streaming out of the
polar cap near midnight.
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Fig. 4. (a) A comparison between averagedNmF2 data derived
from ESR (full line) and the corresponding values from the IRI2001
model (full line with dots), for the month of February 2001.(b) ESR
and IRI model curves ofhmF2 corresponding to theNmF2 density
curves in panel (a).(c–d)Similar to (a–b) but for October 2002.

postnoon for IMFBY negative, as illustrated in the schemat-
ics in Fig. 2b and f. No such asymmetry is seen for the two
hours around magnetic noon (Fig. 2c–d; 11:00–13:00 MLT),
where it appears that the intake of high density plasma/patch
material has no clear dependence on IMFBY polarity. Re-
cently Moen et al. (2007) presented a statistical distribution
of 630.0 nm airglow patches at night from which they con-
cluded that high-density plasma populates the morning cell
as well as the evening convection cell.

Figure 4 demonstrates the comparison between theNmF2
and hmF2 values derived from the ESR data and the IRI
model ionosphere. We used the IRI-2001 model available on
SPDF Modelweb. It was operated in default mode with the
STORM model on for the geographic position of the ESR
site. The modelNmF2 curves with dots in panels (a) and
(c) peak around local geographic noon, while the observed
NmF2 peaks at magnetic noon and one hour pre midnight.
Modelled and observedhmF2 in panels (b) and (c) both dis-
play a minimum near geographic noon, i.e. when the observ-
ing site is closest to the source of solar EUV ionization. This
comparison illustrates clearly that the IRI values represent an
extrapolation of data from latitudes where transport of F2 re-
gion plasma is less important and hence the model fails to
represent cross-polar transport of plasma, which is a well es-
tablished physical phenomenon controlled by IMF. The mod-
elled log NmF2 peaks at 11.8 for both February 2001 and
October 2002, while the measured noon values are 12 and
11.85, respectively, i.e. a discrepancy of measured relative to
model peak density of 90% in February 2001 while 7% in
October 2002. An explanation for the large discrepancy in
February 2001 has yet to be found, but it may well be related
to F-region dynamics and transport effects as well.

5 Summary and concluding remarks

Two separate months of continuous operation of the EISCAT
Svalbard Radar (ESR) observing along the magnetic field
line have been analysed with respect to the variability in the
F2 region peak. The major results are as follows:

1. The diurnal variation in the F2 region peak den-
sity displays one maximum located almost exactly at
12:00 MLT and one around 23:00 MLT, consistent with
cross-polar transport of solar EUV ionized plasma.

2. High density plasma patch material is drawn into the po-
lar cap independent of IMFBY , although its trajectory
is strongly dependent on IMFBY .

3. The IRI model does not account for the cross-polar
transport of F2 region plasma, which is the dominating
factor in polar cap plasma dynamics.

In order to parameterize the intake region of Solar EUV ion-
ized plasma and transport across the polar cap, we recom-
mend that future ionosphere models make use of the same
ordering parameters that Ruohoniemi and Greenwald (2005)
introduced for the classification of convection patterns; i.e.
IMF, seasonal and universal time factors. The data resulting
from the continuous operation of the ESR during the IPY will
provide a unique resource for such an effort. To put a scale
on the improvement that could be realized in the IRI model
by such an approach, midnight values ofNmF2 peak would
be replaced by values comparable to noon values, and Oc-
tober values (but not February) ofhmF2 would be increased
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40–60 km in height for over half the diurnal cycle (the local
darkness period when transport is most important). In Febru-
ary 2001 the measured noonNmF2 peak was 90% larger than
IRI2001 model value for yet an unknown reason.
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