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Abstract. Fine Dispersion Structures (FDS) in energetic
particle spectra in outer magnetosphere were discovered in
DOK-2 experiments onboard of Interball-1 and -2 space-
crafts (1995–2000). First results of these studies were pub-
lished in 2000–2005. It was shown that FDS can be a re-
sult of a gradient-curvature drift of ions and electrons around
the Earth after their pulse injection from the geotail plasma
sheet to some point in the night side of the outer magneto-
sphere. Since that time hundreds of such events have been
examined additionally. They proved to be a rather common
phenomenon in the outer Earth’s magnetosphere. We present
here statistics of FDS observations and properties which con-
firms our interpretation and clarifies the role of magnetotail
plasma sheet and FDS particles in dynamics and replenish-
ment of the outer radiation belt population.

Keywords. Magnetospheric physics (Auroral phenomena;
Energetic particles, trapped; Magnetospheric configuration
and dynamics)

1 Introduction

The discovery of Fine Dispersion Structures (FDS) was pos-
sible due to high energy and time resolutions of the DOK-2
instruments onboard of Interball-1 and -2 spacecrafts (1995–
2000) (see Lutsenko et al., 1998). The first results of
FDS study were published elsewhere (Lutsenko et al., 2000,
2002a, 2002b, 2005; Kudela et al., 2002). Two types of FDS
were observed: 1) short duration (<5 min) events and 2) long
duration (>5 min) events. Examples of spectrograms and
single spectra for the second type FDS events can be found
in Lutsenko et al. (2000, 2002a, 2005). Some more examples
of short and long dispersion events are given in Fig. 1. Dur-
ing the Interball mission about 1000 FDS of both types were
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observed. Earlier we have focused mainly on long duration
events and more than 600 of them were analyzed in detail.
Dependences of these FDS occurrence on spacecrafts posi-
tions (R, L, MLT, MLAT values), on magnetosphere and so-
lar wind parameters (Kp andDst indexes,PSW , VSW , BY and
BZ IMF values) so as the MLT dependence of FDS duration
anddE/dtat fixed proton and electron energies were studied.
For a part of FDS events trajectories of particles were found
using a simulation of their motion in model magnetic fields
(Lutsenko et al., 2005). We give here a statistical survey of
FDS events properties which allows making conclusions on
their nature and their role in the outer magnetosphere dynam-
ics.

2 Two types of FDS events and their analysis method

We used a simple but very effective method of FDS analysis
based on high energy and time resolutions of DOK-2 instru-
ment. Two types of dispersion were considered:

1. Time-of-flight type dispersion. After a pulse parti-
cles generation att=t0, at the distances from the ob-
server he we will observe at some momentt particles
with the velocityv and the energyE. Herev=

s
(t−t0)

and E=
mv2

2 =
ms2

2·(t−t0)2 , wherem is a mass (for non-
relativistic ions).

We should observe a linear time dependence ofv−1:

1

v
=

1

s
· (t − t0). (1)

The time dependence ofE−1 will be nonlinear here:

1

E
=

2

m · s2
(t − t0)2. (2)
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Fig. 1. Example of two types of FDS events. Left spectrograms (Interball-1): many short FDS events in the night auroral region on 13
July 2000 atR=4–9RE . Right spectrograms (Interball-2): several long FDS in the day side auroral region on 10 March 1998. Two upper
spectrograms correspond to 1p and 2p ion telescopes, the bottom ones to 1e (left) and 2e (right) electron telescopes.

At any moment we will observe protons with energy
Ep andα-particles with the same velocity and energy
Eα=4·Ep.

2. Gradient drift type dispersion . After a pulse injection
into a small volume of outer magnetosphere (a closed
magnetic field line region atL=6–16RE) particles start
a gradient-curvature drift around the Earth. As the tra-
jectory shape here is very complicated and the bounce
period is rather short (∼1 s for electrons and∼20 s for
proton withE=300 keV atL=6) it is more convenient
to examine an azimuthal positionϕ or a magnetic lo-
cal time MLTF of a field line foot corresponding to the
particle position.

An angular drift velocity vϕ=dϕ/dt∼E/q (see e.g.
Roederer, 1970) and does not depend on the particle
mass. So in this caseE/q=k·1ϕ/(t−t0) and we will
have a linear time dependence ofE−1:

q

E
=

(t − t0)

k · 1ϕ
. (3)

Herek is a constant which depends on the location of
the drift shell,1ϕ=ϕ−ϕ0 – the azimuthal distance be-

tween injection and observation points. For relativistic
electrons we must use the quantityE∗ instead ofE:

E∗
= E ·

(E + 2 · m0c
2)

2 · (E + m0c2)
. (4)

Forv−1 the time dependence is nonlinear now:

v−1
=

√
m

2q · k · 1ϕ
·

√
(t − t0). (5)

By the gradient drift the angular drift velocityvϕ is pro-
portional toE/q and as at any moment we will observe
ions with the same velocityvϕ alpha-particles will have
the energyEα=2·Ep.

We observed both types of dispersion in DOK-2 experiment.
Examples of 1/E and 1/v analysis for protons in several short
and long FDS events are given in Fig. 2. For each particu-
lar spectrum we measure an energyE corresponding to the
FDS line maximum and a timet of the spectrum accumu-
lation interval middle. Points on these plots give the time
dependence of quantities proportional to 1/E and 1/v. Then
we make least square fittings of points in both Y-scales. Ex-
perimental points that lay better on a straight line in1/E
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Fig. 2. Examples of 1/E (blue) and 1/v (red) analysis for protons in several FDS events of both types.

Y-scale correspond to gradient drift type of dispersion, if
it is fulfilled for 1/v scale – correspond to “time-of-flight”
type. In the first case points in 1/v Y-scale were best fitted
by Y=A1·

√
(T −T 0) function. In the second case points in

1/E-scale occurred best fitted byY=A2·(T −T 0)2 function.
HereA1 andA2 are constants. In both cases precise values of
T 0 can be obtained from the straight line fitting expression.

Therefore least square fits of experimental points by a
straight line allows to:

– find the dispersion type,

– find the timeT 0 of the drift motion start (injection
time),

– estimate the distance to the source position from the
slope of the line,

– identify ion species (protons and alpha-particles, see
Fig. 3), and

www.ann-geophys.net/26/2097/2008/ Ann. Geophys., 26, 2097–2110, 2008
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Fig. 3. Example of the analysis for multiple injection event on 14 September 1996. Three ion and one electron FDS(a) correspond to 2
injections for ions and 1 for electrons(b). The right plot(c) shows the calculated injection positions and the Interball-2 position change
during FDS event (black point – at the FDS start).

– find FDS events corresponding to particles which have
made one and more full turns around the Earth (two or
more FDS for particles of the same sort have the same
T 0 value). In this case we can determine the drift pe-
riod as a function of the particle energy (Lutsenko et al.,
2005).

The source position (injection point)ϕ0 can be determined
by backtracing the particle motion in some magnetic and
electric field models from the observation positionϕ1 and
time T 1 to the timeT 0. Usually we have used a combina-
tion T96+IGRF for the magnetic field and a Volland (Vol-
land, 1978) for the electric field models. Figure 3 illustrates
results of such analysis for one multiple injection event (Lut-
senko et al., 2002b) on 14 September 1996 with three FDS
for ions and one for electrons (Fig. 3a). The 1/E analysis
(Fig. 3b) reveals 3 particle injections withT 01=18:44:03 UT,
T 02=19:07:09 UT (ions) andT 03=19:04:00 UT (electrons).
The analysis allowed to identify ion species (protons andα-
particles). The spacecraft and calculated source positions are
shown in Fig. 3c.

Interball data show that the average occurrence frequency
of short, “time-of-flight” type FDS events in the night side
magnetosphere and in the near plasma sheet is 8–10 per hour
by observation at one point. The total frequency of such
events in the whole night side must be much greater. It is
natural to assume that short FDS are produced by the direct
arrival of particles from the geotail plasma sheet and their re-
flection back from the outer magnetosphere. This conjecture
was confirmed by simulation of proton motion from obser-
vation points for several such events. Here and further under
the outer magnetosphere we have in a view a close field line
region with L-parameters 6–16RE .

Figure 4 shows results of 150 keV proton motion simu-
lations for two FDS events in the night side auroral region

on 4 September 1997 starting at 19:26 UT and 20:29 UT
(Interball-2). The first (No 5) was of “time-of-flight” type,
while the second one (No 6) – of gradient drift type. For
the No 5 event a backtracing simulation from the observa-
tion position leads to a distant plasma sheet acceleration po-
sition. The forward simulation shows that the protons arriv-
ing from the plasma sheet were reflected shortly after passing
the spacecraft and returned back to the plasma sheet. For the
event No 6 we have a normal gradient-curvature drift around
the Earth. Two more examples of proton tracing for short
FDS (also withE=150 keV) are given in Fig. 5. Here po-
sitions of Interball-2 are marked by black points and proton
motion directions are shown by arrows. As for No 5 event in
Fig. 4 the protons were coming from a distant plasma sheet
and then reflected back from the magnetosphere. Certainly
the T96+IGRF combination of magnetic field models used
here can hardly be applicable to such a distant and unstable
plasma sheet region (XSM<−20RE) and we can find only
very rough estimates of particle acceleration positions.

The FDS particle acceleration can occur in the magnetotail
neutral sheet by pulses of an inductive electric field caused
by spontaneous current filaments disruptions followed by a
local magnetic field reconnection and impulsive increase of
BZ magnetic field component (see details in Sect. 9).

The frequency of longer, drift type events is much lower.
From August 1995 to October 2000 311 electron and 299
ion distinct FDS events of this type were observed in the
auroral zones during 4811 h of observations by DOK-2 on
Interball-1 and -2 spacecrafts. It gives an average frequency
0.13 per hour, which is at least 70 times lower than for “time-
of-flight” type.
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3 Statistics of FDS observation positions

Under a single FDS event we will imply 1 or 2 (protons and
alpha-particles) distinct fine dispersion structures in spec-

trograms having uniqueT 0 value. In distributions below
we used all data on gradient drift FDS events for both In-
terball spacecrafts excluding events with a few spectra and
those which were observed only after one full turn around

www.ann-geophys.net/26/2097/2008/ Ann. Geophys., 26, 2097–2110, 2008
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Fig. 6. TheRSC (left) and MLTSC (right) dependence of the FDS events numbers.

the Earth. We studied dependence of electron and ion
FDS events numbers on spacecrafts position:RSC , MLTSC

(Fig. 6) and on magnetic field line foot latitude MLATF and
McIlwain parameterL (Fig. 7). All distributions of FDS
events numbers (black histograms) are accompanied by dis-
tributions of 5-min measurements intervals numbers in auro-
ral zones (white histograms). We present two separate his-
tograms instead of one for FDS events numbers per unit of
measurement time. This kind of normalization allows to es-
timate easily the statistical accuracy of the results for black
histograms and relative measurements duration for different
parameter values.

It can be seen that maximum number of FDS events were
observed nearRSC=3.5–4RE . The distribution in MLTSC is
rather broad: 0–16 h for electrons and 6–20 h for ions. This
difference may be due to the difference in drift directions and
in drift start positions (see Sect. 6). The histograms in Fig. 7
give drift shells distribution of FDS events numbers. FDS
structures for both types of particles were observed atL=6–
16 with maximum atL=10. Therefore FDS events can hardly
be observed from spacecrafts on geostationary orbits.

4 Dependence of FDS numbers on magnetosphere and
solar wind states

While the period of Interball work was characterized by
rather quiet magnetosphere and solar wind states we checked
the dependence of FDS events numbers onDst andKp in-
dexes (magnetosphere),PSW , VSW (solar wind) andBY and
BZ (interplanetary magnetic field). Figures 8–10 do not
show any preference of disturbed states. So the FDS particles
generation occurs essentially at quiet magnetosphere and so-
lar wind states and most likely have no relations to magnetic
storms, substorms and other great scale disturbances. Values
of statistical parameters for FDS event numbers distributions
shown in Figs. 6–10 are given in the Table 1. They are in
agreement with conclusions made above after visual figures
inspection.

5 Dependence of the FDS duration anddE/dt at a fixed
energy on the spacecraft MLTF

It follows from the low width of the FDS lines in spectra that
the duration of an injection process and the longitude dimen-
sion of an injection region must be small (see Sect. 9 and
Lutsenko et al., 2005). The simplest estimate of the distance
from the observation position to the drift start place can be
made from the dispersion structure duration: the smaller is

Ann. Geophys., 26, 2097–2110, 2008 www.ann-geophys.net/26/2097/2008/
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Fig. 7. The MLATF (left) andL (right) dependence of the FDS events numbers.

Table 1. Statistical parameters of FDS event numbers distributions forRSC , MLTSC , MLATF , L, Dst , Kp, PSW , VSW , BY , BZ .

Variable Ions/Electrons Events Numb. Min val. Max val. Mean Median Stand. deviation Stand. error

RSC , RE ions 179 2.35 12.73 5.011 3.98 2.177 0.163
RSC , RE electrons 223 2.44 11.02 4.521 3.99 1.390 0.093
MLTSC , h ions 179 0.02 23.95 12.163 12.0 0.300 4.015
MLTSC , h electrons 223 0.29 22.77 8.146 7.52 4.108 0.275
MLAT F , deg ions 174 60.24 81.29 70.794 71.18 3.858 0.292
MLAT F , deg electrons 221 61.8 80.3 71.238 71.17 3.698 0.249
L, RE ions 128 5.94 20.12 10.267 10.095 2.203 0.195
L, RE electrons 181 6.44 20.12 10.797 10.47 2.11 0.157
Dst , nT ions 179 −51 14 −14.1 −13 12.2 0.911
Dst , nT electrons 223 −56 14 −13 −12 13.4 0.900
Kp ions 179 3 53 18.7 17 11.4 0.853
Kp electrons 223 0 57 16.4 13 11.5 0.770
PSW , nP ions 169 0.6 6.7 2.07 1.8 1.11 0.085
PSW , nP electrons 192 0.6 11.4 2.09 1.9 1.455 0.105
VSW , km/s ions 169 282 616 398 393 70.26 5.405
VSW , km/s electrons 192 289 622 389.6 286.5 68.08 4.913
BY , nT ions 110 −7.4 5.4 0.01 −0.3 2.67 0.254
BY , nT electrons 108 −9.5 17 0.479 0.75 5.28 0.508
BZ , nT ions 110 −7.1 3.2 −0.771 −0.45 1.95 0.186
BZ , nT electrons 108 −8.3 11.1 −0.239 0.0 2.966 0.285

www.ann-geophys.net/26/2097/2008/ Ann. Geophys., 26, 2097–2110, 2008
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coordinates for magnetic field line foot.

this distance, the shorter is FDS. The difficulty here is the
uncertainty of the start and the end of the FDS line which
can be out of measurements time interval, can be masked
by other lines or by a background spectrum. This can in-
crease the point spread in corresponding graph. The other
possibility is to measure velocity of a peak energy change
dE/dt at any fixedE value. It follows from the Eq. (3) that
dE
dt

=−
E2

q·k·1ϕ
must smoothly decrease with the increase of

the distance from the injection position1ϕ. We used both
these methods (see Fig. 11).

These distributions confirm on a large statistical base our
conclusions made previously after several events analysis:

1. the FDS particles start the drift somewhere in the night
side of the outer magnetosphere,

2. ions propagate clockwise, while electrons – anticlock-
wise (looking from the north), just what we can expect
for the gradient drift. The points spread is explained by
the spread in drift start positions (see next section).

6 Injection positions distribution

In Lutsenko et al. (2005) we found the injection position for
several FDS events. It was done using a backward in time
simulation of particle motion from the observation time and
position to the start timeT 0 which can be found by the anal-
ysis described above. Figure 12 shows these positions for
some more events (22 for ion and 6 for electrons) in magnetic
field line foot coordinates MLATF -MLTF . We used IGRF

and Tsyganenko-96 models for internal and external mag-
netic fields. While the position distribution has significant
spread it is seen that ions were injected mainly at MLTF =16–
21 h, while electrons – at MLTF =0–6 h. The difference can
be explained by gradient drift of particles during their propa-
gation in the plasma sheet from the distant acceleration point
to the injection position (see e.g. Sarafopoulos et al., 2001).
This difference is in agreement with dependences of FDS du-
ration anddE/dton MLTF shown in Fig. 11.

7 How long can FDS particles stay in outer magneto-
sphere after their injection?

Our simulations of FDS particle motion using the T96+IGRF
magnetic field model showed that even in a stable magneto-
sphere state part of the particles can come out of the magne-
topause or precipitate to the ionosphere. For any given en-
ergy and start position it depends on initial pitch angle. For
an 24 April 1997 event (Interball-2) we changed this angle
in the range of ion telescope angular aperture (12.5◦) with a
step of 0.5–0.8◦ and found that: 62% of 95 protons (Ep=230,
275 and 394 keV) make one full turn, 33% escape the mag-
netosphere and 5% precipitate into the ionosphere.

In DOK-2 data we found 10 events (6 for electrons and
4 for ions) for which the observation time in a given drift
shell was sufficiently long and we observed particles making
1–3 full turns around the Earth (see e.g. Fig. 4 in Lutsenko
et al., 2005). So being injected to the outer magnetosphere
FDS particles can drift here during a rather long time at least
30–60 min depending on the energy and the particle type.

8 Contribution of FDS particles to a total energy den-
sity and a total energy flux of energetic ions and elec-
trons in the auroral regions

At high energies (E>100 keV) intensities in maxima of FDS
lines more than 10–30 times exceed that for the background
spectrum. But to estimate the contribution of these thin lines
to the total energetic particle population it is more correct
to find an average spectrum for the whole FDS event and to
compare it with the average spectrum before the event (the
background). The comparison of these spectra will help to
estimate the role of FDS particles in replenishment of the en-
ergetic particles population which experience steady losses
because of particles escape the outer magnetosphere and pre-
cipitation to the ionosphere. We have made such calculations
for two single FDS events: 28 June 1997 (for ions) and 7 July
1997 (for electrons). In both cases the background spectrum
was stable enough. Figure 13 gives ion and electron spectra
for these two events. AtE>100 keV intensities in average
spectra during these FDS events are 8–10 times greater than
those for background spectra, at lower energies the ratio de-
crease. As to the whole spectrum even a single FDS event
gives a significant (>50%) addition to the total energy flux
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Table 2. Contribution of FDS particles to a total energy density (ED) and a total energy flux (EF) of energetic ions and electrons in auroral
zones (see Fig. 13).

Average Spectrum EDI , keV/cm3 EFI , keV/cm2/s/sr EDE , keV/cm3 EFE , keV/cm2/s/sr

Before FDS event 1.3 3.107 2.9.10−3 2.9.106

During FDS event 2.0 5.107 4.4.10−3 4.8.106

Increase in % +54% +67% +52% +66%

(EF) and the total energy density (ED) of ambient particle
spectra (see Table 2).

9 FDS particles acceleration

In a single energy spectrum fine dispersion structures look as
one (electrons) or two (ions) narrow lines on the usual contin-
uous background (see a typical ion spectrum in Lutsenko et
al., 2005, Fig. 1). The full width at half maximum (FWHM)
is 13–15% of the line energy. Obviously apart from the de-
tector resolution the width must depend on the spectrum ac-
cumulation time1t , the particles injection duration1Tinj
and on the longitudinal dimension of the injection region1ϕ.
The analysis of all components of FWHM made in Lutsenko
et al. (2005) showed that upper limits for the last two quan-
tities are:1Tinj<95 s,1ϕ<1.9 h MLT. Taking into account
an unavoidable spread in trajectories by particles propagation
from a distant acceleration point in the plasma sheet to a drift
start position we can expect that the duration of the accel-
eration process and dimensions of the corresponding region
must be very small.

On 22 December 1996 the Interball-1 spacecraft moved
more than 6 h along the neutral sheet (13:20–19:20 UT). It
was at normal, quiet states of the magnetosphere and so-
lar wind: Kp=23÷27,Dst=−10÷−30 nT,PSW =1.1÷1.3 nP,
VSW =393÷417 km/s,Np=4.1÷5.1 cm−3, BYIMF =
0÷−4 nT,BZIMF=−2÷−5 nT (IMF). Figure 14 shows mag-
netic field and energetic particle fluxes during the first hour
of this interval. After 13:55 UT as the magnetic field as
particle spectra become highly variable. Three short sim-
ilar positive spikes in aBZ-component (#1, #2 and #3 in
Fig. 15, left) with amplitudes∼8 nT are caused obviously by
spontaneous current filament disruptions following by lobes
magnetic field “reconnection” at the spacecraft positions
(XGSM=−23.08RE , YGSM=12.05RE , ZGSM=−2.33RE). A
zoomed part near the spike #2 (see Fig. 14, right) shows that
duration of this disruption was only 21 s after which the cur-
rent filament was recovered. During the whole transition
through the neutral sheet on 22 December 1996 more then
40 such spikes were observed.

Figure 15a illustrates a situation near disrupted current fil-
ament. Before the disruption the current sheet magnetic field
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shown left.

separates two geotail lobes and prevents their magnetic field
shortening favorable from energetics considerations. After
the disruption two types of electric field arise at about the
same time:

1. a potential fieldEpot proportional to an electric circuit
emf (with a possible addition of short spike of self-
inductance field);

2. an inductive fieldEind proportional to dBZ/dt.

It is significant that the two types of electric fields occupy
close but different regions. The first one is localized in a
small disrupted part of the current filament, while the second
one in a greater space around the potential electric field re-
gion. TheEpot accelerate each plasma ions species to the en-
ergyE=Epot·d·q creating Almost Monoenergetic Ions (Lut-
senko, 2001). Hered is dimension of the disruption region
along theEpot andq is the ion charge. Our observations of
ion spectra in the neutral sheet showed that lines withE=50–
150 keV (FWHM∼30%) and 10–20 s duration permanently
arise and disappear here. Figure 15b shows an example of
such spectra having one almost monoenergetic ion line with

E=79.4 keV and FWHM=22.6 keV. In general case particles
in the acceleration region experience anEpot×B drift sweep-
ing them from the region. To obtain the same full energy
in the potential electric field all ions must reach the oppo-
site side of the region what will be possible if the region
width d along the electric field is lower then ions gyroradii
Rc at full energy. For 80 keV protons theRc=0.6RE by B

magnitude of 10 nT. So we find the upper estimate ford:
d<0.6RE=3800 km. Due to much smaller gyroradii elec-
trons will be swept by theEpot×B drift from the disruption
region without acceleration and it explains why we never ob-
served any lines in electron spectra here. It allows finding
a lowermost estimate for thed value. At E=80 keV and
B=10 nT the electron gyroradius is 100 km andd must be
greater then this value. So acceleration of particles by a po-
tential electric field allows making rough estimates for di-
mensions of corresponding region. It can be expected that di-
mensions of region where acceleration by the inductive elec-
tric field occurs must be several times greater (1–2RE) but
stay nevertheless much lower then characteristic dimensions
of the plasma sheet.
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In contrast to the potential electric field the inductive one
accelerates both ions and electrons and produce continuous
particles spectra. The specific shapes of these spectra (power
low for ions and exponential for electrons) were predicted
theoretically and completely confirmed by our measurements
of average spectra in the plasma sheet (Zelenyi et al., 1998;
Taktakishvili et al., 1998). So this permanently working
mechanism may be a main provider of energetic particles in
the plasma sheet. A small part of these particles after propa-
gation to the outer magnetosphere start drift around the Earth
and form FDS. Possibly short time variations of the mag-
netic field in the near plasma sheet region allow these par-
ticles to be captured on drift shells. As the duration of the
acceleration process is<20 s and dimensiond<1–2RE this
model explains small values of1Tinj and1ϕ followed from
FWHM of FDS lines analysis.

10 Conclusions

1. It was found that the FDS in energetic particle spec-
tra in the outer magnetosphere are very ordinary phe-
nomenon. They were not observed before Interball mis-
sion only because of insufficient energy and time resolu-
tions of instruments used. On average at a quiet magne-
tosphere state one distinct FDS event of drift type was
observed in 0.13 h. The frequency of “time-of- flight”
type FDS is much greater: 8–10 per hour (by observa-
tions in one point).

2. Statistical data and particle motion simulations con-
firm our hypothesis on the FDS nature as a result
of pulse injections of energetic particles to the night
side of the outer magnetosphere followed by gradient-
curvature drift around the Earth. As it was shown, only
a small part (�1.4%) of all energetic particles perma-
nently “bombarding” the outer magnetosphere from the
plasma sheet can penetrate inside and start the drift
around the Earth. This drift motion is rather stable and
some particles can make at least 1–3 full turn before
they escape. It takes from 0.5 to 2 h and in some cases
the process can be observed from one spacecraft loca-
tion.

3. Statistical analysis of FDS events observations showed
that the disturbed states of the magnetosphere and the
solar wind have no preferences in FDS particles gener-
ation.

4. Particles responsible for FDS have hard energy spectra.
At high energies (E>100 keV) intensities in FDS lines
exceed those for a background spectrum more than 10
times. It was shown that such integral parameters as
the total energy density and the total energy flux from
a single injection can exceed 50–60% of corresponding
values for average ambient energetic particle spectrum
in auroral regions. So FDS events particles can give
an essential addition to the energetic particle population
here to compensate for natural particle losses.
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5. The FDS particle acceleration can occur in the mag-
netotail plasma sheet (neutral sheet) by short pulses of
an inductive electric field caused by spontaneous cur-
rent filaments disruptions. The permanent acceleration
of particles in the neutral sheet can replenish energetic
particle population as in the plasma sheet itself as in the
outer magnetosphere via FDS particles.
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