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Abstract. Four different approaches for the calculation of
the well established decoupling coefficient� are compared
using measurements at three experimental sites (Tharandt –
spruce forest, Grillenburg and Melpitz – grass) and simu-
lations from the soil-vegetation boundary layer model HIR-
VAC. These investigations aimed to quantify differences be-
tween the calculation routines regarding their ability to de-
scribe the vegetation-atmosphere coupling of grass and forest
with and without water stress.

The model HIRVAC used is a vertically highly resolved
atmospheric boundary layer model, which includes vegeta-
tion. It is coupled with a single-leaf gas exchange model to
simulate physiologically based reactions of different vegeta-
tion types to changing atmospheric conditions. A multilayer
soil water module and a functional parameterisation are the
base in order to link the stomata reaction of the gas exchange
model to the change of soil water.

The omega factor was calculated for the basic formulation
according to McNaughton and Jarvis (1983) and three modi-
fications. To compare measurements and simulations for the
above mentioned spruce and grass sites, the summer period
2007 as well as a dry period in June 2000 were used. Ad-
ditionally a developing water stress situation for three forest
canopies (spruce, pine and beech) and for a grass site was
simulated. The results showed large differences between the
different omega approaches which depend on the vegetation
type and the soil moisture.

Between the omega values, which were calculated by the
used approach, the ranking was always the same not only
for the measurements but also for the adapted simulations.
The lowest values came from the first modification including
doubling factors and summands in all parts of omega equa-
tion in relation to the original approach. And the highest
values were calculated with the second modification missing
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one doubling factor in the denominator of the omega equa-
tion.

For example, the averages of omega ranged in the summer
period 2007 from 0.11 to 0.19 for the spruce site and moder-
ate soil wetness and from 0.42 to 0.58 for the grass site and
higher soil wetness. In the case of the simulated drying out
of four different canopies the forest stands showed a similar
change of omega from about 0.65 (moderate soil wetness) to
0.1 (low soil wetness). The absolute change of omega for
the grass canopy was smaller than for the forest canopies (on
average from 0.95 to 0.7). But the differences between the
used omega approaches increased.

Especially the results from the longer period in summer
2007 demonstrate that the various modifications of the de-
coupling coefficient lead to a change in the long-term quan-
tity of omega. This has, for example, consequences for the
description of the coupling of heterogeneous landscapes.

Keywords. Atmospheric composition and structure
(Biosphere-atmosphere interactions) – Hydrology (Evapo-
transpiration)

1 Introduction

Three-dimensional land surface-atmosphere models like
Large Eddy Simulation models (e.g. Shaw and Schumann,
1992; Watanabe, 2004) and meso-scale meteorological mod-
els (e.g. Steppeler et al., 2003) are more and more used to
simulate physically based the interaction between heteroge-
neous landscapes and the atmosphere. Yet, due to their ex-
pensive demand on CPU time it is difficult to use this group
of models for short-term case and sensitive studies. Hence,
simple measures of the energetic and aerodynamic coupling
between land surface and the atmosphere are used likewise to
describe different kinds of landscape “heterogeneity” (Pinty
et al., 1992).
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For more than 20 years the decoupling coefficient omega
(�) has been used as a basic measure to describe the par-
tition between equilibrium and imposed evapotranspiration
of a land surface (McNaughton and Jarvis, 1983) as well
as to quantify the degree of the aerodynamic coupling be-
tween a vegetated surface and the atmospheric boundary
layer (Jacobs and deBruin, 1992; Pinty et al., 1992; Gold-
berg and Bernhofer, 2001). After the fundamental work of
McNaughton and Jarvis in 1983 various authors used the
original omega approach for different applications (Meinzer
and Grantz, 1989; Kelliher et al., 1990; Köstner et al.,
1992; Herbst, 1995; Magnani et al., 1998; Mielke et al.,
1999; Daamen and McNaughton, 2000; White et al., 2000;
Wullschleger et al., 2000, 2002; Kumagai et al., 2004;
Pereira, 2004; Motzer et al., 2005; Bladon et al., 2006).
At the same time several modifications of the original equa-
tion were introduced using doubling factors and summands
(Meinzer et al., 1993, 1997; Smith et al., 1998; Daudet et
al., 1999; Martin et al., 2001) or including radiation feedback
(Martin, 1989; McNaughton and Jarvis, 1991; Meinzer et al.,
1993, 1997; Morris et al., 1998; Tausend et al., 2000), which
is optionally combined with a structured vegetation (Pinty et
al., 1992).

This results in a different aerodynamic coupling degree be-
tween the vegetation and the atmosphere, and the evaluation
of the degree of transpiration control by the stomata (Martin,
1989). Not only the omega factor has a general importance
to describe land surface characteristics, but also the majority
of the authors could not clarify perfectly down which omega
approach is the best for a special purpose. Due to these facts
it remains necessary to estimate the significance of the devia-
tions between the different calculation routines of the decou-
pling coefficient under extreme atmospheric and soil condi-
tions.

In addition, most of the above mentioned authors found
large differences of omega between rough (like forest) and
smooth (like grass) land use types. Therefore, a standardised
calculation of the coupling degree could be important for a
simple classification of landscape “heterogeneity”.

The present study aims to quantify the differences in the
various modifications of the original approach of omega re-
garding their ability to describe the vegetation-atmosphere
coupling of grass and forest sites with contrasting soil mois-
ture conditions.

Measurements of a summer season, a comparison of mea-
surements and simulations of a short-term summer period as
well as the simulation of a dry period are analysed to sum-
marise typical and extreme deviations between the different
omega modifications. The results of this analysis are used to
show the relevance of a pre-selected omega approach for the
description of local and regional surface-atmosphere interac-
tions.

2 Methods

2.1 Modifications for calculation of the decoupling coeffi-
cient�

For the investigations in this study the following approaches
for omega were used:

Original equation after McNaughton and Jarvis (1983):
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(5)

and σ – Stefan-Boltzmann constant (W m−2 K−4), cp –
specific heat of dry air (J kg−1 K−1), ga – aerodynamic
conductance for sensible heat flux (ms−1), gb – aerody-
namic boundary layer conductance of the canopy (ms−1),
gc – canopy conductance (ms−1), gr – longwave ra-
diation transfer conductance of the canopy (ms−1), 3

– leaf area index (m2 m−2), p – air pressure (Pa),R
– gas constant of dry air (287 J kg−1 K−1), ra – aero-
dynamic resistance for sensible heat flux (sm−1), rc –
canopy resistance (sm−1), T – air temperature (K),γ
= pcp/(LMv/Mair) – psychrometric constant (Pa K−1),
L=2 501 000(T−273.15)−2370(T−273.15) J kg−1 – heat of
vaporisation,Mv/Mair=18.01 gmol−1/28.96 gmol−1=0.622 –
relation between the molecular weights of water vapour and
dry air, s – slope of the saturation vapour pressure versus
temperature (Pa K−1) and ε=s/γ – dimensionless coeffi-
cient.

The first two modifications (Eqs. 2 and 3) differ from the
original omega approach only in factors and summands of
2. These variations of the omega equation refer specifically
to hypostomatous leaves, which have only stomata on their
underside (as, e.g. most of trees (Smith and Jarvis, 1998))
whereas the original approach (Eq. 1) relates to amphistoma-
tous leaves, having stomata on both sides of the leaf (as, e.g.,
grass (McNaughton and Jarvis, 1991)).

The third modification after Martin (1989) is a physically
based extension of the basic approach after McNaughton and
Jarvis (1983) including the effect of radiation cooling.
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2.2 Soil vegetation boundary layer model HIRVAC

HIRVAC (HIgh Resolution Vegetation Atmosphere Coupler)
is a 1.5-dimensional boundary layer model (120 layers be-
tween 0 and 2 km) including a highly resolved canopy (60
layers between 0 and 30 m, Mix et al., 1994, Fig. 1). Veg-
etation is considered through additional terms in the model
equations for momentum, temperature and humidity which
are parameterised by the output (leaf boundary layer and
stomata resistance) of a mechanistic photosynthesis module
for C3 plants (PSN6, Falge et al., 1996, 2000; Goldberg and
Bernhofer, 2001). Precipitation, interception, and soil mois-
ture distribution are calculated by multi-layer models for in-
terception and groundwater (Baums et al., 2005; Fischer et
al., 2008).

The basic equations for momentum (Eqs. 6 and 7), tem-
perature (Eq. 8), and humidity (Eq. 9) are already described
in Goldberg and Bernhofer (2001):
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with z – vertical coordinate (m),vx , vy – components of
horizontal wind speed (ms−1), vgx , vgy – components of
geostrophic wind speed (ms−1), 2 – potential temperature
(K), K,KT , andKq – turbulent transfer coefficients for mo-
mentum, heat and moisture (m2 s−1), f – coriolis parame-
ter (s−1), Blw – longwave atmospheric radiation (W m−2),
nw=0...1 – crown cover,cd=0.1...0.3 – drag coefficient, LAD
– leaf area density (m2 m−2), rb, rs – boundary layer and
stomata resistance (sm−1), TW , T – temperature of the veg-
etation surface and the ambient air (K),qw – specific satura-
tion humidity atTW (kg kg−1), q – specific humidity of the
ambient air (kg kg−1), andj=1 inside,j=0 above the canopy.

This HIRVAC version was already applied and tested for
experimental sites with different land uses and compared
with several SVAT models (Falge et al., 2005).

In the new HIRVAC version the submodel PSN6 was mod-
ified by scaling several parameters with a power function of
soil moisture (matrix potentialψ). This modification leads
to a stomata reaction to a change in soil water content (Falge
et al., 1997; Goldberg et al., 2005):

gfac = gfac,c101.2949−9FC (10)

fvc = fvc,c101.294(9−9FC ) (11)

c = cc101.294(9−9FC ) (12)

with 9 – actual matrix potential (MPa),9FC – matrix po-
tential in the effective root zone at field capacity (MPa),gfac
– linear factor of the empirical model to describe stomata
conductance in PSN6,fvc – carboxylase capacity,c – elec-
tron transport capacity during photosynthesis process (Falge
et al., 1996). The additional index “c” refers to the constant
input parameters before modification.

The negative sign of the matrix potential leads to a reduc-
tion of gfac, fvc andc in Eqs. (10) to (12) and, approached
in the model PSN6, to a decrease of the stomata conduc-
tance (increase of stomata resistance, respectively). There-
fore the effect of the additional humidity source term in
Eq. (9) of HIRVAC is reduced. As a result the humidity pro-
files (q=q(z)) in the canopy air, the latent heat flux, and the
energy balance of each canopy layer are modified.

2.3 Calculation of omega using measured and simulated
data

The omega factor of this study was calculated using mea-
sured and simulated data for a complete canopy. Generally
there are two different methods to determine the decoupling
coefficient on canopy scale. The majority of the above men-
tioned authors used chamber measurements at leaf surface
and scaled up afterwards to derive the omega factor for a
stand (e.g. Daudet et al., 1999). During this scaling process
leaf boundary layergb and stomata conductancegs (Eqs. 2
to 4) are transferred to the aerodynamic and canopy conduc-
tancega andgc, respectively.

To determine the decoupling coefficient from micrometeo-
rological measurements and simulations,ga andgc were cal-
culated by an inversion of bulk approaches for sensible and
latent heat flux, respectively:

ga =
H

ρcp(T0 − Tr)
= 1/ra (13)

gc =
1

ρL(qs (T0)−q)
LE −

ρcp(T0−Tr )

H

= 1/rc = 1/(rv − ra) (14)

with H, LE – sensible heat flux, latent heat flux between the
active surface inside and a reference layer above the canopy
(W m−2), ρ – air density (kg m−3), cp, L – specific heat ca-
pacity of dry air, heat of vaporisation (J kg−1 K−1), T0 – tem-
perature of the active surface (K),qs(T0) – specific saturation
humidity of the active surface (kg kg−1), Tr – temperature
of the corresponding reference layer above the canopy (K),
q – specific humidity of the corresponding reference layer
above the canopy (kg kg−1), rv – resistance of evapotranspi-
ration, rc – canopy resistance, andra – aerodynamic resis-
tance (sm−1).

The long wave radiation transfer conductance of the
canopy is calculated by Eq. (5).

To have comparable results the LE in this study was
calculated using results of the gas exchange model PSN6
(transpiration, scaled up to canopy level). The sensible heat
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Fig. 1. Scheme of the HIgh Resolution Vegetation Atmosphere Coupler (HIRVAC).

Table 1. List of sensors and instruments used for the relevant measurements at the different sites.

Quantity Site Name of the instrument Type of the sensor/instrument Company

Temperature/Humidity
Tharandt, Melpitz HMP35

Thermistor/Capacitive sensor VaisalaGrillenburg HMP45A/C

Short wave radiation
Melpitz CM7 Pyranometer

Kipp & ZonenTharandt CM7 Pyranometer
Grillenburg CM3 (CNR1) Pyranometer

Long wave radiation
Tharandt, Melpitz PIR Pyrgeometer Eppley
Grillenburg CG3 (CNR1) Pyrgeometer Kipp & Zonen

Net radiation
Tharandt, Melpitz CM7, PIR Combination of short wave Kipp & Zonen, Eppley
Grillenburg CNR1 and long wave radiation sensors Kipp & Zonen

Soil moisture
Tharandt T6 Tensiometer UMS/IMKO
Grillenburg Trime-IT TDR IMKO

flux (H) was generally calculated by flux-gradient relation-
ship.

Measured data (half-hourly means) of the temperature and
humidity gradients as well as of turbulent heat fluxes were
used from three different sites – the Anchor Stations Tha-
randt, Grillenburg and Melpitz. The first site is a 113-year-
old spruce stand (Picea abies) in the forestTharandter Wald,
20 km southwest of Dresden (Saxony, Germany). The mean
vegetation height rises to 28 m, the projected leaf area index
reaches 6, and the crown cover is 75%. Measurements of
temperature, radiation, and humidity above the stand (refer-
ence level) are situated at a height of 40 m and for the tur-
bulent heat fluxes at 42 m. The second and the third site are
farmed grass sites at Grillenburg, 3 km southwest of the first
site, and Melpitz, 50 km northeast of Leipzig (Saxony, Ger-
many) which is managed by the Institute for Tropospheric
Research in Leipzig. These sites are flat and show a fairly
good fetch. The mean grass height is about 0.15 m, and the
common height for all relevant measurements is 2 m.

Table 1 gives an overview of the sensors and devices used
for continuous measurements of temperature, humidity, radi-
ation and soil moisture at the different sites.

During the field campaign at the Melpitz site no con-
tinuous measurements of soil moisture were carried out.
Episodic TDR measurements were used to derive matrix po-
tential to initialise the HIRVAC model.

3 Results and discussion

3.1 Comparison of omega approaches for different land
uses and soil moisture regimes using long-term mea-
surements in summer 2007

To compare the different omega approaches for a longer pe-
riod, measurements (half-hour means) of the Anchor Stations
Tharandt (spruce) and Grillenburg (grass) between April and
September 2007 were used. Because the incoming radiation
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Table 2. Mean values and standard deviation of the omega ap-
proaches according to Eqs. (1) to (4) and derived from measure-
ments (half hour means) at the Anchor Station Grillenburg (grass)
and Tharandt (spruce) during the summer season 2007. The data
was filtered for solar radiation>400 W m−2, high wind speed (fric-
tion velocityu∗>0.4 ms−1 for grass andu∗>0.8 ms−1 for spruce)
as well as for moderate (soil water content SWC<30% for grass
and SWC<10% for spruce) and wet soil conditions (SWC>40%
for grass and SWC>20% for spruce).

� (Mean +/− standard deviation)

Omega

Type of canopy

approach
Spruce Grass

Soil moisture condition
moderate wet moderate wet

1 0.15±0.10 0.22±0.10 0.40±0.10 0.50±0.14
2 0.11±0.08 0.16±0.09 0.32±0.09 0.42±0.13
3 0.19±0.11 0.27±0.12 0.47±0.11 0.58±0.12
4 0.14±0.09 0.20±0.10 0.35±0.09 0.46±0.13

and the wind speed acted as driving forces of the decou-
pling coefficient, their typical large variability led to a big
“noise” of calculated omega values. To show the differences
between the used omega approaches more clearly the pri-
mary meteorological data was filtered for high solar radi-
ation (>400 W m−2) and high wind speed (friction veloc-
ity u∗>0.4 ms−1 for grass andu∗>0.8 ms−1 for spruce).
Additionally the data was separated as well by moderate
soil wetness (soil water content SWC<30% for grass and
SWC<10% for spruce) as for high soil wetness (SWC>40%
for grass and SWC>20% for spruce).

Figures 2 to 4 show the variability of turbulent heat fluxes,
conductance and omega factor at the spruce and grass site
using box plots. Figure 2 (top panel) illustrates the struc-
ture of this graph type used for all following in this chap-
ter: Min=minimum, Max=maximum, SD=standard devia-
tion and 50%=median of the analysed data set.

The different land uses show distinct differences for sensi-
ble (H) and latent heat flux (LE) (Fig. 2), aerodynamic (ga)

and canopy conductance (gc, Fig. 3a and b), and notably for
the decoupling coefficient (Fig. 4). Due to the small temper-
ature and LAI differences between the two sites, the devia-
tions of long wave heat transfer conductancegr (see Eq. 5)
are marginal. The mean values ofgr range between 8 and
11 mms−1 (Fig. 3c) which is comparable to the results de-
rived by Martin (1989).

The strongest reaction to a change in soil moisture shows
the spruce canopy for H (decrease in case of wet soil, Fig. 2
above). At the grass site the change of both turbulent heat
fluxes which depends on soil moisture is small (Fig. 2 be-
low). This is exactly the same for LE at the spruce site.
Caused by similar mean LE between the contrasting vegeta-
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Fig. 2. Measurements (box plots of half hour means) of sensible
(H) and latent heat fluxes (LE) at the Anchor Stations Tharandt
(spruce, panel above) and Grillenburg (grass, panel below) dur-
ing the summer season 2007. The data was filtered for solar ra-
diation>400 W/m2, high wind speed (friction velocityu∗>0.4 m/s
for grass andu∗>0.8 m/s for spruce), as well as for moderate (soil
water content SWC<30% for grass and SWC<10% for spruce)
and wet soil conditions (SWC>40% for grass and SWC>20% for
spruce).

tion types,gc of the spruce site is just slightly higher (mean
gc=7 mms−1 for moderate and 8 mms−1 for high soil wet-
ness, Fig. 3a) thangc of the grass site. Yet, since the cou-
pling with the atmosphere is better,ga is much greater for
the forest site (about 80 mms−1, in contrast to 20 mms−1 for
the grass site, Fig. 3b). Bothgc andga show much higher
variation for the spruce site.

Figure 4 illustrates the differences between the four omega
calculations for the two contrasting land uses. The results
demonstrate that the ranking between the modifications is
always the same. With the second modification (Eq. 3) in
Sect. 2.1 the highest omega values are calculated. And the
lowest values are determined with the first modification from
the original approach (Eq. 2). For wet soil conditions the de-
coupling coefficient is in general higher – its average ranges
between 0.58 and 0.42 for grass and between 0.27 and 0.16
for spruce. In the case of moderate soil conditions the values
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Fig. 3. Canopy(a), aerodynamic(b) and long wave radiation trans-
fer conductance(c) derived from measurements (half hour means)
at the Anchor Station Grillenburg (grass, left side) and Tharandt
(spruce, right side) during the summer season 2007 (for further in-
formation see caption of Fig. 2).

are between 0.47 and 0.32 for grass as well as between 0.19
and 0.11 for spruce (see also Table 2). The absolute dif-
ference of omega between the two soil moisture regimes is
higher for the grass canopy (about 0.1, for spruce: 0.08 to
0.05) but the relative change is higher for the spruce canopy
(about 30 %, for grass: 10 to 24%).

In most extreme cases the omega differences (half-hour
means) between the modifications are about 0.16 for the
spruce site and about 0.18 for the grass site.
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Fig. 4. Decoupling coefficient derived from measurements (half
hour means) at the Anchor Station Grillenburg (grass, panel above)
and Tharandt (spruce, panel below) during the summer season 2007
(for further information see caption of Fig. 2).

3.2 Comparison of Omega approaches for different land
uses and soil moisture regimes using short-term mea-
surements and simulations in June 2000

To compare measurements and HIRVAC simulations omega
was calculated for the different modifications at the spruce
site Tharandt and at the grass site Melpitz in the period from
18 to 21 June 2000. This sunny period (Fig. 5) was excep-
tionally warm with maximum temperatures up to 33 degrees
Celsius at the Tharandt site (Fig. 6 above) as well as 35 de-
grees (air temperature at 2 m height) and 40 degrees (tem-
perature of the grass surface) at the Melpitz site (Fig. 6 be-
low). This high temperature level was combined with advec-
tion of a dry air mass which resulted in a continuous increase
of vapour pressure deficit (vpd) up to a maximum of about
40 hPa (Tharandt) and 48 hPa (Melpitz) on the last day of the
observation period. The high insolation on the partially open
soil surface at the Melpitz site led to a fast dehydration of the
grassland (episodic measurements of SWC with TDR probe
showed values below 9% which is comparable with a matrix
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Fig. 5. Solar and Net Radiation at the Anchor Station Tharandt
(Spruce, minor water limitation, panel above) and at the Melpitz ex-
perimental site (Short Grass, strong water limitation, panel below)
used for model input in HIRVAC during the investigation period 18
to 21 June 2000.

potential between−200 and−300 kPa for sandy loam) and a
low latent heat flux (Fig. 7, bottom panel). At the same time,
the spruce stand at the Tharandt site did not show remark-
able water problems (high LE, Fig. 7, top panel) because of
the sufficient soil water content in the root zone (matrix po-
tential about−90 kPa).

The large differences in measured LE are combined with
divergent canopy conductance and decoupling coefficients.
In Fig. 8 the omega factors based on half-hour means be-
tween 09:00 and 16:00 local time (LT) are compared for
the original approach after McNaughton and Jarvis (1983,
Eq. 1) and the three modifications (Eqs. 2 to 4), whereas
the numeric index at the omega symbols in the graphic leg-
end refers to the used equations. The results illustrate ex-
pected differences in omega between the aerodynamically
rough forest site at the Anchor Station Tharandt without wa-
ter stress and the smooth grass surface at the Melpitz site
with beginning water stress. The first mentioned site demon-
strates the good ability of forests to control the transpiration
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Fig. 6. Air and canopy temperature and saturation deficit (vpd) at
the Anchor Station Tharandt (spruce, minor water limitation, panel
above) and at the Melpitz experimental site (short grass, strong wa-
ter limitation, panel below) used for calculation of omega during
the investigation period 18 to 21 June 2000.

at leaf surface level by opening and closing the stomata com-
bined with low values of the decoupling coefficient. Accord-
ingly, the second site shows the stronger dependence of sur-
face evapotranspiration of a grass site on available energy
combined with relatively high mean values of omega. This
results in distinctly higher omega values for the grass site in
Melpitz during the complete investigated period.

The various modifications of omega lead to different devi-
ations from the origin approach. In Fig. 9 the omega values
of the three modifications (referring to Eqs. 2 to 4 and Fig. 8)
are plotted versus the original omega approach (Eq. 1). The
results show that the absolute differences between these ap-
proaches increase continuously with increasing omega rang-
ing from 0 to 0.35 and remain constant for higher values of
omega. At the forest site the increasing differences of omega
are possibly caused by a more random link between canopy
(gc) and aerodynamic conductance (ga) due to a reducedgc
for higher values ofga (Fig. 10 above). This fact shows
the ability of forests to control transpiration (Martin, 1989)
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Fig. 7. Three-hours running mean of sensible (H) and latent heat
flux (LE) at the Anchor Station Tharandt (spruce, minor water lim-
itation, panel above) and at the Melpitz experimental site (short
grass, strong water limitation, panel below) during the investigation
period 18 to 21 June 2000. (Note: grass measurements are based on
raw eddy covariance without spectral correction.)

and to avoid high transpiration losses caused by higher wind
speed in the tree crowns (Bladon et al., 2006). For higher val-
ues ofga combined with lowgc the differences in the omega
approaches become increasingly insignificant.

The more synchronous change ofga andgc at the grass
site (Fig. 10 below) leads to a more constant relation between
ga andgc in Eqs. (1) to (4) and therefore to relatively stable
differences between the calculated omega values for the same
meteorological conditions.

To compare the different omega approaches for the for-
est and the grass site combined with different soil moisture
regimes, several simulations with the vegetation boundary
layer model HIRVAC were realised.

Figure 11 shows the dependence of omega on the used cal-
culation for a spruce canopy (adapted to the conditions at
the Tharandt site) and a grass site (adapted to the Melpitz
field site). The index number in the graphic legend corre-
sponds to the number of equation used for the calculation of
omega. Furthermore the legend “simulation” describes the
calculation of transpiration (and, hence, of canopy conduc-
tance) based on the output of the gas exchange model PSN6.
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Fig. 8. Comparison of omega calculations according to Eqs. (1) to
(4) and based on measurements at the Anchor Station Tharandt and
at the Melpitz experimental site for the investigation period 18 to 21
June 2000 (half-hour means from 09:00 to 16:00 LT).

Table 3. Mean values (based on half-hour means between 09:00
and 16:00 LT) and standard deviation of the omega approaches ac-
cording to Eqs. (1) to (4). Comparison between measurements and
simulation in the period from 18 to 21 June 2000.

� (Mean +/− standard deviation)
Type of data set – Type of canopy
Omega approach Spruce Grass

Simulation – 1 0.07±0.02 0.56±0.10
Simulation – 2 0.05±0.01 0.46±0.09
Simulation – 3 0.09±0.02 0.62±0.09
Simulation – 4 0.07±0.01 0.53±0.10

Measurement – 1 0.11±0.05 0.59±0.09
Measurement – 2 0.07±0.03 0.48±0.09
Measurement – 3 0.13±0.06 0.63±0.08
Measurement – 4 0.09±0.04 0.51±0.09

During the investigation period the radiation input for the
model simulations was adapted to the measurements. For the
purpose of comparison an ensemble mean of omega values
based on measurements (half-hour means) of the investiga-
tion period (18–21 June 2000) was used.

The results of these measurements clearly show the de-
pendence of omega on the used approach and on the type of
land use (Fig. 11). For the grass canopy the mean size of
omega ranges between 0.63 and 0.48 (Fig. 11a) and for the
spruce site (Fig. 11b) between 0.13 and 0.07 (see also Ta-
ble 3). This indicates that the application of a specific calcu-
lation routine for omega determines distinctly the quantified
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Fig. 9. Comparison of omega calculations for the Anchor Station
Tharandt (panel above) and the Melpitz experimental site (panel
below) for the investigation period 18 to 21 June 2000 (half-hour
means from 09:00 to 16:00 LT).

degree of coupling between the investigated spruce or grass
stand and the atmosphere. In the most extreme cases the mea-
sured omega values of the two contrasting land uses differ
dependent on the used calculation and the time of day be-
tween 0.72 in the afternoon (�min for spruce: 0.04 derived
from measurements-2 and�max for grass: 0.76 derived from
measurements-3) and 0.07 in the morning (�max for spruce:
0.26 derived from measurements-3 and�min for grass: 0.33
derived from measurements-2).

For both canopies HIRVAC results match quite well with
the measurements. The best agreement between the de-
coupling coefficients is reached for spruce in the afternoon
(Fig. 11b) and for grass at noon. For the soil moisture
(Fig. 11c, continuous measurements were only available for
spruce) and the saturation deficit (Fig. 11d) results from
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Fig. 10.Course of aerodynamic and canopy conductance at the An-
chor Station Tharandt (panel above) and at the Melpitz experimental
site (panel below) for the investigation period 18 to 21 June 2000
(ensemble mean and error bars from 09:00 to 16:00 LT).

simulations and measurements match also sufficiently. The
highest simulated differences of� for the two contrast-
ing land uses occur with 0.67 in the afternoon (�min for
spruce: 0.04 from simulation-2 and�max for grass: 0.71
from simulation-3). During the morning hours there is even
a change of ranking between the extreme omega values for
the grass (�min=0.23 from simulation-2) and the spruce site
(�max=0.26 from simulation-3).

Finally, Table 3 summarizes the mean values and standard
deviations of the simulated and measured data sets of omega
discussed in Fig. 11.

3.3 Comparison of omega approaches for different land
uses for a simulated dry period

The change of the decoupling coefficient and its driving
factors (turbulent heat fluxes and conductance) was inves-
tigated for a synthetic summery dry period and different
vegetation types using HIRVAC simulations. The forest
stands were parameterised with LAI=5, height=30 m and
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Fig. 11.Daily course of the decoupling coefficient(a, b) for the four
different omega equations, as well as soil matrix potential(c) and
saturation deficit(d): HIRVAC simulations for dry soil conditions
compared with measurements (period 18 to 21 June 2000) from the
spruce site in Tharandt and the grass field site in Melpitz.

crown cover=70%, the parameters of the grass canopy were:
LAI=4, height=0.15 m and fraction of vegetation=70%.

Figure 12 shows the course of sensible heat flux H
(Fig. 12a) and evapotranspiration ET (Fig. 12b) for three for-
est canopies (spruce, pine and beech) and a grass site during
this simulated dry period. The results clearly illustrate the
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Fig. 12. Daily sum of sensible heat flux(a) and evapotranspiration
(b) during a summery dry period. HIRVAC simulations for spruce,
pine and beech with the stand parameters: height=30 m, LAI=5,
crown cover=70%, as well as for grass with height=0.15 m, LAI=4,
fraction of vegetation=70%.

different reaction of these vegetation types to the increasing
drying out of the soil and the atmosphere. For the forest sites
the ET values decrease from about 1.5 mm day−1 to 0.25 mm
at the ninth simulation day. At the same simulation period ET
falls at the grass site from 3 mm day−1 to 0.7 mm, and the
sensible heat flux H increases from about 3 mm (forest) and
0.8 mm (grass) to about 6 mm (forest) and 1.3 mm per day
(grass). Among the forest canopies the spruce stand shows
the strongest reaction to the change of soil moisture. This
is probably due to the parameterisation of the gas exchange
model PSN6.

The interaction with decreasing soil moisture and canopy
conductance (gc) during this simulation period is shown very
well in Fig. 13a. On the first simulation day the soil mois-
ture is high which leads to a highgc of all canopies (grass:
81.6 mms−1, spruce: 61.2 mms−1, pine: 47.9 mms−1 and
beech: 40.0 mms−1). The sharp decrease of ET during the
drying out of the soil yields a rapid decrease ofgc. Under
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dry soil conditions (from the sixth to the ninth simulation
day, Fig. 13a) the canopy conductance of the forest sites (5.5
to 1.9 mms−1) is distinctly lower as for the grass site (12.5
to 8.9 mms−1). This demonstrates the different strategies of
these vegetation types to manage the water budget under dry
soil and atmospheric conditions. As already mentioned for
the heat fluxes the spruce stand shows the strongest change
of gc among the tree types described.

Except for a short reaction during the first three simulation
days the aerodynamic conductancega is relatively constant
and shows the expected differences between the forest and
the grass canopies (Fig. 13b). During the dry period (simula-
tion day 6–9)ga ranges between 94 (beech) and 102 mms−1

(pine) for the trees and around 13.5 mms−1 for grass.
Finally, Fig. 14 shows the change of the decoupling

coefficient (based on half-hour means between 10:00 and
15:00 LT) for the four variants of omega (Eqs. 1 to 4), which
are applied to the different land uses as mentioned above.
The course of omega during the simulation period is simi-
lar for the tree types with the same ranking for the differ-
ent calculations of the decoupling coefficient: the highest
value is related to the second modification of the original ap-
proach (the third calculation in the graph key), and the lowest
value results from the first modification (second calculation).
Omega starts with a value between 0.73 (spruce, third vari-
ant of omega calculation, Fig. 14a) and 0.47 (beech, second
variant, Fig. 14b). This result is a hint to a moderate coupling
between the vegetation and the atmosphere under a sufficient
water supply. During the continuous drying out of the soil
the decoupling coefficients decrease sharply and converge.
At the end of the HIRVAC simulation they range between
0.13 (spruce, third variant of omega calculation, Fig. 14a)
and 0.05 (beech, second variant, Fig. 14b).

The simulated decoupling coefficients differ strongly be-
tween the grass site and the forest stands. At the grass canopy
omega changes during the simulation from about 0.95 to val-
ues between 0.64 and 0.82. The ranking between the calcu-
lation variants is the same as for the investigated tree types
but the difference between the modifications increases dur-
ing the simulation. A possible reason could be the higher
sensitivity of omega to changes in additive elements of the
original equation caused by the significantly smaller aerody-
namic conductance in relation to the trees.

3.4 Comparison of HIRVAC simulations with results from
literature

The simulated values for omega are comparable with results
from literature. Bladon et al. (2006) found, for example,
omega values between 0.16 and 0.40 for different boreal tree
species (Picea glauca, Betula papyriferaand Populus bal-
samifera). Also Herbst (1995) observed for the decoupling
coefficient long-term averages of 0.20 for a beech stand (Fa-
gus sylvaticaL.), and Martin et al. (2001) determined mean
omega values for an old coniferous stand between 0 and 0.2
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Fig. 13. Canopy(a) and aerodynamic conductance(b) (Mean of
half hour averages between 10:00 and 15:00 LT) during a summery
dry period. HIRVAC simulations for spruce, pine, beech and grass
with the stand parameters as described in Fig. 12.

which is a comparable range to the simulations for the spruce
stand at the Anchor Station Tharandt. Furthermore, the au-
thors detected a short-term variability of omega due to a high
variability of aerodynamic conductance (that means of the
wind speed) above the trees. White et al. (2000) demon-
strated that the size of omega strongly depends on the used
approach for calculation of the canopy conductance (in layers
or integrated over the whole canopy) and found mean omega
values for anEucalyptusstand between 0.63 and 0.26, which
depends on the used approach. Wullschleger et al. (2000)
derived the decoupling coefficient for different seasons and
daytimes and showed that the size of omega mainly depends
on the interdiurnal differences in radiation input as well as
on the time of day. The calculated variability of omega for
one day ranged between 0 and 0.3 for the studied red maple
stand which is adequately comparable with the variability
of HIRVAC simulations for a forest canopy. A similar re-
sult of daytime variability of omega was found in measure-
ments forNothofagus fuscatrees by K̈ostner et al. (1992). Fi-
nally, some of the above mentioned authors stated the strong
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Fig. 14. Decoupling coefficients using four different approaches (Mean of 15 min values between 10:00 and 15:00 LT) during a summery
dry period. HIRVAC simulations for spruce(a), beech(b), pine(c) and grass(d) with the stand parameters as described in Fig. 12.

dependence of omega on the soil and air moisture conditions
and on the observed vegetation types which is in the same
range as the diurnal and seasonal variability of omega.

4 Conclusions

The simulated mean absolute values of omega agree fairly
well with results from literature and show the applicability
of the model HIRVAC to compare the different modifications
of omega calculation in this study. Also the comparison of
the different omega applications with measurements at the
spruce site in Tharandt and at the grass sites in Grillenburg
and Melpitz shows that the soil moisture is an important con-
trolling factor for the coupling mechanism between the veg-
etation and the atmosphere.

The simulations of omega using different deviations from
the origin approach after McNaughton and Jarvis lead to pro-
nounced differences, which depends as well on the consid-
ered vegetation species as on the soil and atmospheric con-
ditions. As an example the maximum differences range for
the sunny period in June 2000 at the spruce site in Tharandt

between 0.06 (morning hours) and 0.04 (afternoon). For the
grass site in Melpitz the differences are around 0.16 over the
day. Regarding the mean simulation values of omega for the
spruce (0.07) and for the grass site (0.54) the maximum rel-
ative differences between the modifications are between 85
and 57% for spruce and around 30% for the grass canopy.

The two regarded canopies react distinctly different to the
atmospheric and soil conditions throughout the simulated
nine day dry period (Fig. 14). Under moderate soil mois-
ture conditions at the beginning of simulation mean omega
values of the trees and grass are about 0.6 and 0.95. This is a
hint to a low coupling with the atmosphere. During the con-
tinuous drying out of the soil and the atmosphere the control
mechanism of trees to avoid water losses lead to a sharp in-
crease of omega difference between the grass and the forest
canopies (omega value at the end of simulation: about 0.08
for the trees and between 0.63 and 0.82 for grass).

Under extremely dry conditions the choice of a special
omega modification becomes more important if the decou-
pling coefficient is calculated at a grass site: The omega
differences between the modifications increases from about
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0.05 (6%) at the beginning to about 0.19 (26%) at the end of
the simulation.

In comparison to other causes of the omega variability
(plant type, soil and atmospheric conditions) the absolute
deviations of omega due to the used approach are mostly
smaller. But in contrast to the first mentioned reasons the ap-
plied calculation routine determines the change in the long-
term mean of omega. For the regarded summer season in
2007 the mean decoupling coefficients range for spruce and
moderate soil wetness between 0.11 and 0.19 and for wet soil
between 0.16 and 0.27. For grass the same quantities range
from 0.32 to 0.47 (moderate soil wetness) as well as from
0.42 to 0.58 (wet soil). That indicates a maximum relative
change of omega of about 70% for spruce and about 45% for
grass. At last, these differences could lead to another inter-
pretation of the coupling conditions, to a changed estimation
of water stress tolerance of the observed vegetation as well
as to a deviant determination of the degree of landscape het-
erogeneity.

This study does not aim to a general criticism of the dif-
ferent omega modifications, but we want to focus potential
applicants of the omega concept on this problem. Generally,
it is not always clear why the different authors used other ap-
proaches than the original one of McNaughton and Jarvis, so
that the results obtained with the different omega modifica-
tions cannot be compared quantitatively. Perhaps, the partic-
ular unclarity in the literature, about which equation should
be used, arises from the fact that it is not clarified in general
how the concept of differentiation between one- and double-
sided water vapour transfer of hypostomatous and amphis-
tomatous leaves should be treated at the canopy scale.

However, on the other hand, our results show that the well
known dependencies between the decoupling coefficient and
the controlling factors of the atmosphere and the soil are not
changed dramatically if another approach is used.

To avoid misinterpretations of results, potential applicants
of the omega concept should control carefully which equa-
tion of omega is used for their studies and which omega ap-
proach is applied in the literature used for comparison.

Because the majority of the authors use the original ap-
proach after McNaughton and Jarvis we also recommend the
application of this approach or optionally of the extended
equation after Martin (1989) which additionally includes the
radiation effect on aerodynamic coupling.

Appendix A

List of symbols and abbreviations

Abbreviations Definition unit

DOY Day of the Year
HIRVAC High Resolution Vege-

tation Atmosphere Cou-
pler

LT Local Time h
PSN6 single leaf gas exchange

model used in HIRVAC
TDR Time Domain Reflec-

tometer
SD Standard Deviation
SVAT Soil Vegetation Atmo-

sphere Transfer

Greek symbols

γ psychrometric constant Pa K−1

ε dimensionless coeffi-
cientε=s/γ

3 leaf area index m2 m−2

ρ air density kg m−3

σ Stefan-Boltzmann
constant

W m−2 K−4

2 potential temperature K
� decoupling coefficient
9 actual matrix potential MPa, kPa
9FC matrix potential in the ef-

fective root zone at field
capacity

MPa, kPa

Latin symbols

Blw longwave atmospheric
radiation

W m−2

c electron transport capac-
ity during photosynthesis
process

cd drag coefficient
cp specific heat capacity of

dry air
J kg−1 K−1

ET evapotranspiration mm day−1

f coriolis parameter ≈10−4 s−1

fvc carboxylase capacity
ga aerodynamic conduc-

tance for sensible heat
flux

ms−1

gb aerodynamic boundary
layer conductance of the
canopy

ms−1

gc canopy conductance ms−1
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Abbreviations Definition unit

Latin symbols

gfac linear factor of the em-
pirical model to de-
scribe stomata con-
ductance in PSN6

ms−1

gr long wave radiation
transfer conductance
of the canopy

ms−1

gs stomata conductance ms−1

H sensible heat flux be-
tween the active sur-
face inside and a ref-
erence layer above the
canopy

W m−2

or
mm day−1

j Index for inclusion the
plant-specific source
term in HIRVAC: j=1
inside andj=0 above
the canopy

K turbulent-transfer co-
efficient for momen-
tum

m2 s−1

KT turbulent-transfer co-
efficient heat

m2 s−1

Kq turbulent-transfer co-
efficient for moisture

m2 s−1

L heat of vaporisation J kg−1 K−1

LE latent heat flux be-
tween the active sur-
face inside and a ref-
erence layer above the
canopy

W m−2

LAD leaf area density m2 m−3

LAI leaf area index m2 m−2

Mair,Mv molecular weight of
dry air and water
vapour

g mol−1

nw crown cover
p air pressure Pa
q specific humidity of

the air
kg kg−1

qs(T0) specific saturation hu-
midity of the active
surface

kg kg−1

qw specific saturation hu-
midity atTW

kg kg−1

R gas constant of dry air 287 J kg−1 K−1

RG solar radiation W m−2

RN net radiation W m−2

ra aerodynamic resis-
tance for sensible heat
flux

sm−1

Abbreviations Definition unit

Latin symbols

rb boundary layer resis-
tance

sm−1

rc canopy resistance sm−1

rs stomata resistance sm−1

rv resistance of evapo-
transpiration

sm−1

s slope of the saturation
vapour pressure – tem-
perature curve

Pa K−1

SWC soil water content Vol. %
T air temperature K
T0 temperature of the ac-

tive surface
K

Tair,2m measured air temper-
ature above the grass
site in Melpitz

◦C, K

Tair,42m measured air tempera-
ture above the spruce
stand near Tharandt

◦C, K

Tcanopy measured surface tem-
perature of the vegeta-
tion at the field sites

◦C, K

Tr temperature of the
corresponding ref-
erence layer above
the canopy (bulk
approach)

K

TW temperature of the
vegetation surface

K

u∗ friction velocity ms−1

vgx x-component of
geostrophic wind
speed

ms−1

vgy y-component of
geostrophic wind
speed

ms−1

vpd vapour pressure or sat-
uration deficit

hPa

vpd2m measured saturation
deficit above the grass
site in Meplitz

hPa

vpd42m measured saturation
deficit above the
spruce stand near
Tharandt

hPa

vx x-component of hori-
zontal wind speed

ms−1

vy y-component of hori-
zontal wind speed

ms−1

z vertical coordinate in
HIRVAC

m
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search project “Atmospḧarische R̈uckkoppelung” (Atmospheric
feedback) of the Deutsche Forschungsgemeinschaft (grant number
BE 1721/2-1), as well as by the EU project CARBOEUROPE-IP.
The authors also thank PD Eva Falge from the Max Planck Insti-
tute in Mainz for the help during implementation of the PSN6 mod-
ifications in HIRVAC, Gerald Spindler from the Institute of Tro-
pospheric Research in Leipzig for assistance during the measuring
campaign at the Melpitz site, as well as two anonymous reviewers
for helpful comments.

Topical Editor F. D’Andrea thanks M. Herbst and another
anonymous referee for their help in evaluating this paper.

References

Baums, A.-B., Goldberg, V., and Bernhofer, C.: Upgrading the Cou-
pled Vegetation Boundary Layer Model HIRVAC by New Soil
Water and Interception Modules, Met. Z., 14(2), 211–218, 2005.
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