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Abstract. Multi-satellite missions like Cluster allow to study spacecraft array. In the context of the Cluster mission, sev-
the full spatio-temporal variability of plasma processes ineral approaches to the problem have been presebdtedop
near-Earth space, and both the frequency and the wave vectet al.(1988 andNeubauer and Glassmei@990 introduced
dependence of dispersion relations can be reconstructed. Exhe termwave telescopor a method based on a linear filter
isting wave analysis methods include high-resolution beam-bank approach, and quantified the spatial aliasing condition
formers like the wave telescope kffiltering technique, and in terms of the reciprocal lattice of the spacecraft tetrahe-
the phase differencing approach that combines the correladron. Thek-filtering techniqueconstructed by Pincon and
tions measured at pairs of sensors of the spacecraft array. lco-workers (e.gPincon and Lefeuvrel991 1992 Pincon
this paper, we make use of the eigendecomposition of theand Motschmann1998 by means of a minimization prin-
cross spectral density matrix to construct a direct wave iden<iple is based on an estimator for the spatio-temporal power
tification method that we choose to call the wave surveyorspectrumP (w, k). Sensor weights are chosen such that the
technigue. The analysis scheme extracts only the dominantontribution of plane waves with wave vectdrsoutside a
wave mode but is much faster to apply than existing tech-small spectral window arounklito the resulting spectral en-
niques, hence it is expected to ease survey-type detection afrgy density estimator is minimum. Such techniques were
waves in large data sets. The wave surveyor technique isriginally developed for seismic arrays (e@apon et al.
demonstrated by means of synthetic data, and is also applieti967 Capon 1969 Cox, 1973, and are commonly referred
to Cluster magnetometer measurements. to as Capon estimators, minimum variance estimators, high
Jesolution beamformers or simply beamformers. Minimum
variance estimators have been used to identify MHD waves
in the magnetosheath and the foreshock reg@®lagsmeier
et al, 2002, Narita et al, 2003 Narita and Glassmeig2005
and to study turbulences@hraoui et al.2003 2006 Narita
1 Introduction et al, 2006. FurthermoreConstantinescu et a2007) con-
structed a wave detection scheme based on spherical waves

Near-Earth space is a dynamic plasma environment that crdnStead of plane waves to identify not only wave vectors but

ates and supports wave activity on a broad range of tem?@!SO the location of the wave source.

poral and spatial scales. The inherent ambiguity of single- The termphase differencing approadiefers to a class of
spacecraft data makes it difficult to identify waves as, e.g.wave analysis techniques where projections of the wave vec-
Doppler shifts may significantly affect the frequency deter-tor k onto the spacecraft separation vectors are estimated
mination. Multi-satellite missions can overcome this prob- from phase differences of the signal measured between the
lem. corresponding pairs of sensors. If four or more point mea-
Estimation of wave vectork from such multipoint mea- Surements are available, the full wave vector can be recon-

surements, however, is not as straightforward as a Fourieptructed from the projections. In the case of three sensors

transformation because of the small number of sensors in th@" |€ss, physical constraints such @sB=0 can be taken
into account to partially make up for the missing informa-
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the observed signals. In the preparation phase of the Clustet Notation and key variables

mission, the phase differencing approach was presented by

Balikhin and Gedalif1993. Dudok de Wit et al(1999 in- In this paper vectors, b, c, . . . are always understood as col-
troduced a technique based on the Morlet wavelet transformiimn vectors. Unit vectors are indicated hyor example 4
and used AMPTE-UKS and AMPTE-IRM data to demon- or b. Superscripts, %, T denote transpose, complex conju-
strate that several waves at the same frequency can be idegate, and hermitian adjoint, respectively. Accordinghand
tified. Matsui et al(2007) applied a phase differencing tech- a' are row vectors, the dot product afandb is a-b=a'b,
nique to Cluster observations to study broadband ULF wavesind the hermitian product ie's. Matrices are typeset in
near the dayside polar cap boundary. For a detailed compasans serif font. The symb@ is used to denote identity ma-
ison of the phase differencing approach with #héltering trices (of various dimensions). - -) stands for mathematical
technique using Cluster STAFF and EFW measurements, thexpectation which in practice is approximated through an av-
reader is referred tavalker et al.(2004. For a review of the  eraging procedure.

wave distribution determination problem, se®rey(1999.

Akey analysis step in the application of the minimum vari- 2-1 Data representation and cross spectral density matrix
ance estimators mentioned above is a peak search in three- _ . . .
dimensionalk space for each wave that may be present atWe consider vector time serieBo () W'th J _compo-

a given frequency. Phase differencing schemes require pedR€nts B (1), j=1,.... J, measured a points in space
finding in spectral cross correlation measures between varfo, 9=1, ..., S. If we consider CLUSTER magnetometer
ious pairs of sensors in the array. Such search procedureddta, then/=3 andS=4. Letb, (w) denote the respective
can be quite time-consuming and also ambiguous in Som,!founer transforms which for continuous functions are de-
cases. In this paper we propose a wave detection method thifed through

we choose to call the “wave surveyor technique”. It allows .

to compute the wave vector and the polarization vector as & () = CO”Stf bo (w) € do . 1)
function of frequency directly from the data. At a given fre- ] ]
quency, the method works only for the dominant wave mode'ln the more relevgqt case of observgtlons taken aF discrete
whereas minimum variance estimators and phase differendimes and over a finite measurement interval, we write

ing techniques can in principle identify a number of different B, (1) = constz by (w) €' )
modes. As the name suggests, the wave surveyor should be =

a useful tool for survey-type screening of large data sets foR/vhere the constant depends on the chosen implementation of
waves and wave parameters. the Fourier transform (for details s&giksson 1998. Com-

The wave surveyor technique makes use of the eigende- . '
composition of thecross spectral density (CSD)atrix that plex data vectors witiL.=J-S components can be formed
also plays a key role in the so-called multiple signal classiﬁ—through
cation (MUSIC) schemeSchmidt 1979 1981). For a con- bj=11(w)
cise introduction to the subject of array signal processing, b?iz (@)
the reader is referred tillai (1989 where minimum vari- o=1
ance estimators as well as the MUSIC scheme and several :
other approaches are discussed. In the space physics contei{w) = bf:{(w) :
methods based on the eigendecomposition of the CSD matrix bj:]'(a)) by—s(w)
have been widely used by Samson and co-workers $aug.- "Z? 7=
son and Olsen198Q Samson1983 Samson et a1.1990, :
e.g. to evaluate the significance of analysis results, and to bf::,S(w)
yield general polarization measureSantolk et al. (2003
carried out singular value decompositions (SVDs) of mag-
netic and electromagnetic spectral matrices to identify andc — <bb*> (4)
analyze plasma waves in the auroral region, and provided a
more physical interpretation of the eigenstructure of the CSDcomprises all possible covariances of the Fourier transforms,
matrix. and is at the heart of the wave analysis techniques consid-

This paper is organized as follows. The terminology, key ered here. For brevity, we refer ©© as theFSC (Fourier
variables and identities are introduced in S@ctln Sect.3, Space Covariancahatrix. The matrix is hermitian and can
the wave surveyor technique is constructed, and demonbe diagonalized. The eigenvalugg ¢=1, ..., L are real
strated by means of synthetic signals in Sdct.The new and non-negative, and the (normalized) eigenvectorgare
technique is applied to Cluster magnetometer data in Sect. Just as the FSC matrix, its eigenvalues and eigenvectors de-
Advantages and limitations are discussed in S&dtVe con-  pend onw but not onk. The eigenvalues are assumed to be
clude in Sect7. in descending order. Of particular importance are the largest

bs—1(w)

®)

The matrix
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eigenvaluey; and the associated eigenvectgr Since they The FSC matrix of this model is given by
appear in many formulas below, we will most often drop the
subscript and write for y1 as well as? for ¢é1. Clw) = <bbT> =Haa™H" + <8b SbT>

The FSC matridC differes from the cross spectral density

_ T _ T 2
matrix M only by a constant scalar factéfo: = (Ha) (Ha)" + N = (Ha) (Ha)" +n°E (11)

whereN=n2E for isotropic noise.
Ha=H (k)a(w) is a (non-normalized) eigenvector to the

; 2,2
which implies that both matrices share the same eigenvec?'genv‘r"lue*Ha| +i” because

tors, and the eigenvalugs of M are related to the eigenval- cH, — (Ha) (Ha)T (Ha) + an (Ha)

ues ofC throughuy=Myy,. The constant factavly depends ) )

on the implementation of the Fourier transform. For nota- = (|H“| +n ) (Ha) (12)
tional convenience, we choose to develop the wave surveyor

formalism on the basis of the FSC matrix, and express theSince all other eigenvalues are simpjy and thus smaller,
results also in terms of the eigenvalyesof the CSD matrix  the first eigenvectoé;=¢ is proportional toHa, or, more
when required. precisely,

M = M0<bbT> — MoC (5)

2.2 The FSC matrix of the plane wave model Ha = |Ha|é = /vy — n?¢, (13)

We intend to construct a direct technigue to detect a planeand the other eigenvectors are orthogonad to
wave in multi-spacecraft data, and to estimate the wave pa-

rameters such as the wave vedtaand the polarization vec- 2.3 Scalar data and projection operators
tor a as functions of (angular) frequeney. k=k(w), and

thus als (o, k)=a(w, k(w))=a(w). The individual components of vector time series are scalar
In general, an individual Fourier component gives rises toliMe Series. In Secs, the wave surveyor technique is con-

a model signal that varies in timeand space as structed first for the scalar case, and then formulated for the

general case of vector-valued time series. The correspon-

a exp(ifwt —k -r]) (6) dence of the scalar and the vector technique can be conve-

_ _ . niently quantified using the operatdis : C/— C5 (projec-
which means that the Fourier transform of the model signak;q, ote thatL=J-S) andl/ : CS—CL (injection) defined

with respect to time only can be written as

below.
b(w, r) = a(w) exp(—ik - r) @) Scalar time serigs measured &t poin.ts in space
ro,o=1,..., S are written af3, (t). The Fourier transforms
The signal is measured in spacergato=1, ..., S to give by (w) can be assembled into a complex data vector With
components:
by (w) = b(w,15) + 8bs(w)
= a(w) exp(—ik - ro) + 8b, (w) . (8) bo=1(®)
by—2(w)
The second term on the right-hand side is the mismatch of(®) = : : (14)
the model and the data, and is modeled as isotropic and ho- )
mogeneous noise of variangé. Forming the complex data bo—s(®)
vectorb as described in the previous Seztl yields As before, the FSC matrix is defined through
=H(k )
b(w) = H(k)a(w) + 8b(w) ®  _ <bb’r> 7 (15)

where the wave vectat=k(w) is understood as a unique _ _
function of the (angular) frequency as explained above, @and differs from the cross spectral density maiionly by
henceb can be written as a function af only. The (L x J) a constant factoMy also in the scalar case. The complex

matrix vector function
Eexp(—ik - r1) exp(—ik - ry)
Eexp(—ik - r2) exp(—ik - rp)

H(k) = . (10) (k) = : (16)
E exp(—ik - rg) exp(—ik - rs)

encodes the array geometry, @ik the(J x J) identity ma- ~ encodes the geometry of the array. Normalization yields
trix. h(k)=h(k)//S.

www.ann-geophys.net/26/1699/2008/ Ann. Geophys., 26, 16093-2008
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The projection operatdi/ is defined through

bo—1(0) b)_1(@)
) bo—2(w) b _(w
| =2 [ 17)
bo—_s(w) bé _s()
i.e. in matrix notation,
etotot... o
. ot e/tot... O
I = (18)

OO ot

HereO andé/ are the zero vector and thieth unit base vector
in C/, respectively.
The injection operatol’ is the transpose dil/, i.e.

. N AT
1= (n/) = (nf) (19)
It is easy to verify that for albeCL we have
J . .
b=> lVll/b. (20)

j=1

Hence) 7_; I/ TV=Y"7_, T/TII/ is the identityE on CL.
Furthermore,

VTH = /H = he/T (21)
and thus
J . .
HY¢, = HTES, =Y R/ g,
j=1
=Y (WH)'Ié, =) &/h'ie, (22)
j=1 j=1

for all eigenvectors,.

3 The wave surveyor technique

In this section we derive the wave surveyor technique. As ex-

J. Vogt et al.: Wave surveyor technique

3.1 The wave surveyor technique for scalar data

The construction of the wave surveyor technique is guided
by the properties of the single plane wave model presented
in Sect.2.2 In the case of scalar datéd=1, H=h, and the
FSC matrix reads

C = |a|?hh" + n°E (23)

wherea=a(w) andh=h(k). The largest eigenvalue of the
FSC matrix isy=S |a(w)|?+n?, and the first eigenvector is
given byé:ﬁ(k)zh(k)/ﬁ. Hence the signal amplitude|
can be determined from

2

2_Vv—n
lal” = — (24)
where the noise parametgf can be estimated from the re-
maining eigenvalueg,, £>2. Alternatively, if the eigenval-
ues of the CSD matrik are to be used, the signal amplitude
can be expressed as

2
jaf? = BT (25)
MoS

where u=p1=Mpy is the largest eigenvalue dfl, and
n,zszor;z is estimated from the smaller eigenvalues
He, =>2.

Since the eigenvectéris proportional to the vectadk (k)
evaluated at the actual wave vectorof the signal, and
k is part of the arguments of the complex exponentials
in h, we expect that the wave vector can be estimated
from the phase$,=0,(w) of the eigenvector components
C1.0=I|C10| €XPi6,). A component-wise comparison of the
eigenvectors and the vecthtk) suggests that the phasgs
should deviate from the expressidas, by a constant phase
delay¢ only, and thus should minimize the cost function

S
Qk,¢) =Y [0 —k-ro —¢1° (26)
o=1

with respect tdk ande.
In the Appendix it is shown that the solution flbrcan be
written as follows:

-1
k= (Z rgrg) X:GC,r[r .
g o

Here the positions,, are relative to the center of the sensor
array which implies thap . r,=0.
If S=4 as is the case for the Cluster mission, the solu-

(27)

plained already, the wave surveyor is a direct wave identifi-tion can be explicitly given in terms of the reciprocal vectors
cation and dispersion analysis technique in the sense that thte- Of the spacecraft tetrahedron (for details of the reciprocal
wave vector is computed directly as a function of the angu-vector concept see, e Ghanteur1998. As demonstrated in

lar frequency, i.ek=k(w), and a peak search in discretized the Appendix, the wave vector can be expressed in terms of
three-dimensional wave vector space is not required. We firsthe eigenvector phases and the reciprocal vectors as follows:

to vector-valued time series.

look at the case of scalar data, and then generalize the |deq€s(w) _ Z 0, () Ky

Ann. Geophys., 26, 1699710 2008
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Since thed, are determined directly from the FSC matrix Since the CSD matrixM has the same eigenvectors as
C(w), and the reciprocal vectar, are functions of the array the FSC matrix, and the eigenvalues are related through
geometry only, Eq.48) can be directly evaluated to yield the w,=Mpyy,, the amplitude vector may also be expressed as
wave vector in survey-type wave analyses of large scalar data

NI s

sets.
(35)

a=———"H
S/ Mo
where u=p1=Mpy is the largest eigenvalue dfl, and
In the case of vector data, the FSC matrix of the single plane@:Mon2 is estimated from the smaller eigenvalues
wave model presented in Se2t2is given by e, £>2.
C = (Ha) (Ha)" + n%E . (29) Equations 82), (34)_, an_d G5 allow to compute the_wave
) o vectork and the polarization vectardirectly from the eigen-
Note that now, both, the amplitude (polarization) veator gecomposition of the FSC or the CSD matrix. If measure-

3.2 The wave surveyor technique for vector data

and the wave vectar enter the eigenvectéroc H(k)a. ~ ments from more than four sensors are available, &) qan
We apply the projection operatorH/ (J:ntrodgced N pe used instead of Eq32). The wave surveyor techniques
Sect.2.3) to Eq. (L3) and note thall’H=he’' to write does not require a peak search in the three-dimensional wave
- 1 , 1 N vector space.
Mé=——_T'Ha=——hé'la P
Vy —n? vy —n?
1 ) S R 4 Demonstration of the wave surveyor technique
= ———héa= |k (30)
vV =1 y=n We now demonstrate the wave surveyor technique by means

As in the scalar case, the vecth(k) (i.e. evaluated at the of a synthetic model signal composed of two plane waves
actual wave vector) can be written in terms of the first eigen-and isotropic noise:
vector. In fact, we now have a total df such relationships 2
that Ie_ad ta/ scalar cost functions, and we can combine thempg . ;) — ZAHWTM (t—t,) +VN(r,1). (36)
to estimate the wave vectérfrom the phases of the compo- o}
nents of the first eigenvector. The weights of the partial cos
functions are chosen to be proportional|#d|?, i.e. to the
square of thg-th component of the amplitude vecorand ¢, =1,(r) = u, - r, (37)
this component is proportional /¢ as can be seen from the termn ts whit . ith d unit
the relationship given above. Hence the (total) cost function € lermiy represents white noise with zero mean and uni

. variance, and the coherent part of the signal consists of two
can be written as . . S .

harmonic (cosine) wave trains in a Gaussian envelope:

J S
Qk,¢) = &/ Y [0) —k-ry — ¢/ G wr.) = e WD’ cog2nt/T). (38)
j=1 o=1

Note that the amplitude spectrum of the coherent part is de-
termined completely by the amplitudets, and the model

t'I'he time lag, is a function of position,

wherea{ denotes the phase of thecomponent of the pro-

Wi -~ D~ o o _ -
jection /¢, anda’=[I17¢|%/|¢|°, hence)_; aj=1. Min-  gjgnalsw;. . (1), and does not depend on the position
imizing the cost function works as for scalar data, and for "1he model parameters are the peri@gf the two plane
the special case of the Cluster tetrahedron and FGM datg,qyes the slowness vectats, the amplitude vectord,,
($=4, J=3) we finally obtain the wave surveyor estimate of {he widthsz, of the Gaussian envelope function, and the
the wave vector as noise amplitude. The wave parameter values used here are
k = Zaj Z@({KU (32) summarized in Tabld. The noise amplitude is set to the

J I valuev=0.2.

wherex, are the reciprocal vectors of the tetrahedron as be- '€ Synthetic signal is assumed to be sampled in space at
fore. For the general case §fsensors, we can write four locations, namely, at the origin of the cartesian coordi-

. nate system, and at three points on the coordinate axes, each
. : one at a distance of 200 km from the origin. The upper panel
_ t , . _ . A
k= (Z r"’d) Z“/ Zeér“ : (33) of Fig. 1 shows the generated signal at the sampling point in
7 / 7 the origin. In the lower panel the amplitude spectrum of the
Equation (3) also allows to construct an estimator for the coherent (noise-free) part of the model signal is displayed.
polarization vector. We apply the operatdid to Eq. (13) As noted above, this amplitude spectrum does not depend on

and note thaH TH=SE to obtain r, and is thus identical at all sensor locations. The two co-
1 [y =2 .. herent contributions to the model signal are located in two
a=~Ea= EHTHa = HTé . (34)  frequency bands that are well separated from each other.

www.ann-geophys.net/26/1699/2008/ Ann. Geophys., 26, 16093-2008
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Table 1. Wave parameter values for the synthetic signal consisting
of two planes waves in an isotropic noise background, see3Bj. (
Model parameters are the wave peri@gsthe slowness vectors,,

the amplitude vectord,;, and the widths,, of the Gaussian enve-
lope function. The wave frequencigs=1/T,, and the wavelengths
rn=Ty,/|uy| are added for convenience.

n=1 n=2
T, [s] 20 8
7 [8] 60 40
A, [arb. units] (1,1,0) (1,0,0)
uy [s/km] (0,0,0.01) (0,0.040.01)
fa [MHz] 50 125
An [km] 2000 566

Signal sampled at one sensor (origin)

Simulated data [arb. units]

0 100
Time [sec]

-100 200

Amplitude spectrum of coherent part

0.030F

0.025
0.020
0.015

0.010

Fourier amplitude

0.005

0.000E ‘ ‘

100 150
Frequency f [mHz]

50 200 250

Fig. 1. Demonstration of the wave surveyor technique. Upper
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Log eigenvalues of CSD matrix

Log power in eigenmodes

—2.0 L

100 150 200
Frequency [mHz]

50 250
Fig. 2. Demonstration of the wave surveyor technique. Eigenvalues
and trace of the CSD matrix as functions of frequenfeyw/2x.

First eigenvalue: solid line. Remaining eigenvalues: dotted lines.
Trace of the CSD matrix: dashed line.

sufficient power to support waves. Since

<|b|2> = <trace(bbT)> = trace(bbT> = traceC , (39)

this approach is equivalent to using the trace of the FSC ma-
trix for inspecting the frequency domain. In the case of the
CSD matrixM =MqC, its trace gives the total power spectral
density.

In its principal axes system, the eigenvalues=j(w)
of the CSD matrix reside on the diagonal, hence
traceM=3", u,. As explained in Sec®.2 by means of the
plane wave model, the wave signature shows up in the first
mode, whereas the noisy part contributes equally to all eigen-
values. Therefore, the eigenvalues of the CSD matrix effec-
tively decompose the signal power into a number of modes
of decreasing significance.

For the synthetic signal considered here, the eigenvalues
and the trace of the CSD matrix are shown as functions of
the frequencyf=w/27 in Fig. 2. The peaks associated with
the waves can be seen in both the trace of the CSD matrix
and in its first eigenvalue (the remaining eigenvalues collect
the contribution of the noisy part of the signal), however,
the peaks in the first eigenvalue stand above the noise back-
ground much more clearly than the peaks in the trace. In this

panel: Synthetic time series sampled at one of the four points inS€NSE, eigenstrgcture based methods like the wave surveyor
space. Lower panel: Amplitude spectrum of the coherent part oftechnique can yield a better separation of the Fourier modes

the model signal as a function of frequentyw/2r.

The square modulus of the Fourier amplitude (i) |?)

and the noise background in the frequency domain.

After peaks in the frequency domain are identified, ex-
isting multi-spacecraft wave analysis techniques have to
discretize the three-dimensionalspace, compute a power
spectrum estimatoP (w, k) on the resulting grid of wave
vectors at least for the frequenciesof interest, and then

in our case, is a measure of the total signal power in the frecarry out a peak search kxspace. The wave surveyor tech-

guency domain. In minimum variance estimators like the
wave telescope or thefiltering method, such a power spec-
trum estimate is used to identify the frequency bands with

Ann. Geophys., 26, 1699710 2008

nigue allows to work out the wave parameters in a much
more direct way by means of the explicit formul&2) and
(34): the slowness vectar, the wave vectok=wu, and the

www.ann-geophys.net/26/1699/2008/
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amplitude (polarization) vectat are computed directly as Slowness x—comp.
functions of frequency. 0.02E ‘ ‘ ‘ E

For the synthetic signal considered here, the componentsg o.01 3 . o =
of the estimated slowness vector as functions of frequency < . ’ ’ g
f=w/27 are shown in Fig. 3. At each frequency, the areaof  °%F BE.92 o000 : 3

[t}

the diamond represents the power contained in the respectivex _ o £ . . 3
dominant mode as given by the largest eigenvalue. The sizes E E

. L g —0.02 . . . . 3
of the symbols are meant_ to serve as S|gn|f|9ance measures o 50 00 150 200 50
of the slowness vector estimates in the following way. In the Frequency f [mHz]
frequency range outside the two bands sgpported by thg plane Slowness y—comp.
waves where only the noise term contributes to the signal, 0.02F ‘ ‘
there is relatively little power in the dominant modes, and 001§ 0o E
the wave vector estimates cannot be considered meaningfuI.E N . . E

In the two frequency bands with significant wave power, the B 000; 6<><><>° S ob B . *

symbol sizes are larger, there is little scatter, and the resultsf

compare nicely with the parameters of the synthetic signals. ~ -t 3 E
—0.02 & . . . . 3
0 50 100 150 200 250
Frequency f [mHz]

5 Application to Cluster FGM observations of fore- Slowness z—comp.
shock waves 0.02 ‘ ‘ ‘ ‘ E
- o ToouE oG, -
In this section we show results of an application of the wave < .
surveyor technique to magnetic field fluctuations recorded by § 290 & Tt e e o
the fluxgate magnetometer on board the four Cluster space-g o0l 3 . . JON oo . E
craft Balogh et al.200]). These observations were analysed E

—0.02 &

already byNarita et al.(2007) using the well-established o = : o . 00 220
and thoroughly tested wave telescope analysis method (e.g. Frequency f [mHz]

Neubauer and Glassmeidr99Q Motschmann et a1.1996

Glassmeier et gl2001 Narita et al, 2003 to study the dis-

persion of foreshock waves. We may thus validate the waverig. 3. Demonstration of the wave surveyor technique. The com-

surveyor approach by comparing our results with the findingsponents of the slowness vecterare given as functions of the fre-
of Narita et al (2007). quency f=w/2r. For each frequency, the area occupied by the

glotting symbol is a measure of the signal power given by the largest

) eigenvalue. Only the frequency bands associated with the coherent
field component, namely, th&, (northward) component part of the model signal yield significant power. The smaller dia-

in the GSE coordinate system. We thus follow the pro-,,nqs that show much scatter are associated with the contribution
cedure outlined in SecB.1 for scalar data, see EQq2§). of the noise term to the model signal.

The time interval of interest is 16 February 2002, 07:00—
07:45UT, and it comprises Cluster observations of a rep-
resentative case of foreshock wavellarita et al.(2007) locity. This transformation is carried out using the Doppler
identified the whistler wave dispersion branch and demon-elation:
strated how it becomes Aleén wave dispersionu=kVy)
at small wave numbers. Background plasma and magneti¢e = “s¢— k-v, (40)
field values were as follows: the mean magnetic field waswhere v=(v,, Vy, V.)! denotes the plasma bulk velocity
pointing away from the sunB,=-5.6nT, B,=—14nT, given above.
B,=—1.4nT in the GSE coordinate system), the plasma Figure 4 displays the dispersion relatiobe=wre(|k|),
bulk velocity was almost 300kps (Vi=—3007km/s,  and the propagation angle with respect to the mean magnetic
Vy=24.3km/s, V.=2.8kmy/s), and the ion density had the field direction,fy,, derived by the wave surveyor technique.
valuen=5.9cm3. The plasma velocity and density were The dispersion relation exhibits a phase speed close to the
provided by the ion measurements of the Cluster CIS-HIAAlfv én speed, d,.~kV,) for wave numbers smaller than
instrument Réme et al.2001). the ion inertial wave numberki,=;/V4=0.011ragkm

The determination of the wave vectors further allows to (here 2;=0.64rad's is the ion cyclotron frequency and
transform the wave frequencies from the spacecraft frame/4=59.7 km/s is the Alf\en speed). However, for larger
(wse) into the plasma rest frame (hereafter, the rest framewave numbers it starts to deviate from the A&fv wave
wre), @ frame which is co-moving with the plasma bulk ve- branch toward higher frequencies{>kV4). This is

The analysis example makes use only of one magneti
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Fig. 5. Eigenvalues of the CSD matrix for the analysis example
presented in Sech. The first eigenvalue is clearly much larger than
the other eigenvalues throughout the whole frequency range which
L | confirms that we are dealing with a single dominant mode in this
oL .. . ..., Lo case.

Oro [deg]
©
o

used to check the validity of the model assumptions. The
Fig. 4. Experimental dispersion relation of the foreshock waves single (dominant) plane wave model is expected to provide
(top) and propagation angles from the mean magnetic field direcan appropriate characterization of the measured signal if the
tion identified by the wave surveyor technique using Cluster mag-first eigenvalue proves to be much larger than the remaining
netic field data. The frequencies are represented in the plasma regheg.
frame. The ion inertial scale and the ion cyclotron frequency are The distribution of eigenvalues with frequency for the
kin=0.011 ragkm and;=0.64rag's, respectively. foreshock wave analysis event of Ségts shown in Fig. 5.

Throughout the entire frequency range, the first eigenvalue is

about three orders of magnitude larger than the other ones.

characteristic to the low frequency part of the whistler modeHence itis indeed quite safe to assume that the event is well
dispersion. The propagation direction is almost anti-parallelcharacterized by the single (dominant) plane wave model.

to the mean magnetic field, therefore the waves propagatd he practical significance of the eigenvalue ratios for the ro-
intrinsically away from the bow shock. bustness of the parameter estimation is shown also in Fig. 3

In conclusion, the results obtained through the wave surfor the case of synthetic data: the frequency ranges where
veyor technique are fully consistent with the findings of the first eigenvalues are large (corresponding to large plotting

Narita et al.(2007) using the wave telescope analysis. symbols) yield stable parameter estimates whereas the fre-
guency ranges where noise dominates (small plotting sym-

bols) exhibit a lot of scatter.
6 Discussion A different kind of quality indicator for the wave surveyor

parameter estimation is suggested by the construction princi-
The wave surveyor technique is a direct method to estimatéles discussed in Sects.1and3.2 The single plane wave
the parameters of a dominant plane wave in multipoint meamodel presented in Se@.2implies that the (estimated) vec-
surements. Isotropic white noise has no influence on thaor k(k) coincides with the (observed) first eigenvectdn
eigenvectors of the CSD matrix and hence does not changthe scalar case, or with properly normalized versions of the
the estimated wave vectors or amplitude vectors. The presvectorsIl/¢, j=1, ..., J in the case of vector data. In fact,
ence of other waves at the same frequency, however, mathe cost functions6) and @1) are quadratic measures of the
limit the applicability of the analysis method. Since their angular mismatch between these sets of vectors, corrected
contributions to the total variance affect the eigenvalue dis-for a possible constant phase offgetand may thus serve as
tribution of the CSD matrix, the eigenvalue ratios may be quality indicators for wave parameter estimates. Since this
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paper was meant to introduce the wave surveyor technigughich means that thé,, ¢=1, ..., L, are eigenvectors also
and to provide a proof of concept, we did not try to quantify of the inverse matri 1, and the corresponding eigenvalues
threshold values neither for the angular mismatch quality in-areygl. Therefore, we can write
dicator, nor for the eigenvalue ratios discussed above, and
leave this issue for future studies. _1 Lo

Wave analysis techniques based on the cross spectral deft- = Doty
sity matrix implicitly concentrate on second order moments. =1
In order to address more complex associations in multipoint~or brevity, we consider the scalar case only. HeheeSs,
measurements, the wave surveyor technique could be gef~— o, and the minimum variance estimator for the power
eralized by means of a singular value decomposition (SVD)spectral density estimate is given B=k'C~1n)"1 (e.g.
applied to thel. x N data matrixo(w) to yield Motschmann et al1995. The eigenstructure representation
b= U diag(y/70) VT (41) of C~1 allows to rewriteP=P(w, k) as follows:

-1
Here N is the number of ensembles (subintervals in time), p—(nt i vl &t
diag(,/y¢) denotes the diagonal matrix with elemefs,, = o Tove
and the columns o) are identical with the eigenvectors of s _1
the FSC matrix. The matri¥, however, provides new infor- “1pta A
P = (Z Yy lthgc:;hT> ,
=1

(45)

L B 4
mation: it allows to address the variability in time and to test (46)

for stationarity.

We conclude this section with a few comments on howtherefore,
the eigenstructure decomposition of the FSC matrix can help s 1
to address selected aspects of the two main classes of wav 1 " 2
identification methods discussed in the introduction. Pro-ﬁ(w’k) - <2:1V" lhT(k)c"(w” ) ' (47)
vided that we are dealing with a signal that can be described 7=
by the single (dominant) plane wave model, the linear partsFor the single plane wave mod#kk)=+/S ¢, which implies
of the sensor pair correlations that constitute the basis of théhat h(k) L é, for o1, or, equivalently™(k)é, =0 for
phase differencing approach are implicitly encoded in thethe remaining eigenvecto&,, c=2, ..., S. Furthermore,
phases of the first eigenvector. This follows from the rela- y1—1=(5|a|2+,72)*1, and the result is thus
tionsh(k)xcy for the scalar case (see Se&&tl), k(k)xIT/ ¢y
for the case of vector data (see S&#), and the definiton P (w, k) = |al® + 1?/S . (48)
of the vector functiorh (k). As demonstrated blpudok de ] ) o ]

Wit et al. (1999 for the case of two-point measurements, 1S has to be compared with the minimum value’ah the

the phase differencing approach is suited to identify severaf@Se Wheri (k') lies in the noise subspace, i.e. the subspace
waves at the same frequency whereas the wave surveyor tecRPanned b% the eigenvectdis, 0=2,..., S. Here we find
nique extracts the dominant wave only. Using four sensors” (@ k)=n°/S and thus
instead of two allows to improve the effective signal-to-noise S|al?

ratio, and in this case the inversion of the position tensor— =1+ ——.

and thus the wave vector estimation in the wave surveyoer'n "
technique can be carried out directly (see the Appendix) antHence the resolving power of the scalar minimum variance
with little effort. In the case of four-point phase differencing estimator measured by this analytical expression increases
method, the improved signal-to-noise ratio goes along with(quadratically) with the signal-to-noise ratio (as expected).
a more involved reconstruction scheme (Matsui et al.  In practice, however, the numerical inversion of the CSD
2007). matrix C may cause problems { is near singular which

To gain additional insight into the performance of min- happens, e.g. in the case of a very large signal-to-noise ratio
imum variance estimators, it is instructive to rewrite them (|¢|2»,2/5) in the single plane wave model. In such a case
using the eigendecomposition of the FSC matrix: one might be tempted to perform an inversion in the singular

max

(49)

. ~ At value sense and disregard the contributions of the smallest

C= Zg: veeeey - (42)  gigenvalues to obtain

Since c ! 2yl (50)

A ~1ra -1 A —1a A ;

¢ =CCé =C yér = yuC ¢y, (43)  andPsy=y1|hTé1|2. However, this would make the method

we obtain completely useless. AlthougRsy(w, k) gives the correct
(and finite) result ifk is the actual wave vector of the single

c ¢ = y[lég (44) plane wave model and thiigk)=Sc¢1, the valuesPsy(w, k)
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would diverge towards infinity ifz(k") was in the noise sub- and

space because thérik’) L ¢1. This shows that and why 19 ) . .
minimum variance estimators require careful regularization0 = 5= D =KD rerh =) e, . (A3)
schemes especially when the signal-to-noise ratio is very o o o
large. This yields
-1
_ t
7 Summary and conclusions k= (; r"r"> XG:Q"r" : (A4)

The wave surveyor technique introduced in this paper is deThis result is still general with respect to the number of sen-
signed to be a fast alternative to the existing wave analysi§orss$ in the array as long as the position ten3oy, r, 7,
methods such as the wave telescope oritHatering ap- is regular. In the singular or near-singular case, the exact
proach. The new technique was validated using a syntheti#verse of this tensor may be replaced by the pseudo-inverse.
Signa| and also by means Of C|uster magnetometer measure- ESA's Cluster mission consists of four Spacecraft, hence
ments. The model signal considered in Séetas processed S=4, and the inverse of the position tensor can be expressed
within a few seconds on a standard PC, and the completéhrough the reciprocal vectoxs, of the Cluster tetrahedron
dispersion curve in Seck.was generated in about a minute. as follows:
The wave surveyor technique is most appropriate when the -
{x-)
o

1
wavefield at each frequency contains a single dominant wav = Z Kokt (A5)
mode. T

We concentrated on the case of four spacecraft where thﬁ‘or a proof se€Chanteur and Harveyt998. For a thorough
wave vector can be expressed explicitly as a linear combinagiscyssion of the reciprocal vector concept in the context of
tion of the reciprocal vectors of the tetrahedron. The wavey,e cjuster mission. the reader is referre@tmnteu(1998.

surveyor approach, however, is not restricted to four sen-the reciprocal vector of spacecraft 1, for example, is given
sors, and the more general case can be treated by meagg

of Eq. 33). Applications of the generalized wave surveyor

technigue to missions with more than four spacecraft (likex, = _rsxra (AB)
THEMIS), or even only three sensors (like several of the in- r21° (ra3 x raa)

struments on the Cluster satellites) are planned to be topicehere r;; denotes the position vector pointing from the
of our future work. spacecraftj to i, i.e.r;;=r;—r;. The other three recipro-

cal vectorsgo, k3, andk s, are obtained in the same fashion
by shifting the indices1, 2, 3, 4) cyclically into (2, 3, 4, 1),
Appendix A (3,4, 1,2),and(4, 1, 2, 3), respectively.
Inserting Eqg. A5) into Eq. (A4) allows to express the wave
Estimating the slowness vector from eigenvector phases  vectork of the plane wave in terms of the eigenvector phases
6, =0+ (w), the spacecraft positions. relative to their mean
We first note that the cost function in Se8tl can be written  location, and the reciprocal vectdrs as follows:

as
k = ZK'L'KE: Z@Urg = Zegkrktﬂ'a . (A7)
T o o, T

2
k, O — k'ro — , ,
o ( o KTo ¢) Sincexlr,=8;,—1/4 (Eq. 15.1 inChanteur and Harvey

1998 and)_ x,=0 (Eq. 14.10 inChanteur 1998, we fi-
((90)2 + (Kiry)? + ¢2 nally obtain
ou="k=Y Ok, (A8)

S
=2
o=1
>
o=1
20, ktry — 20,0 + 2ktrg¢> . (A1)
whereu=k /w is the slowness vector of the plane wave.
For notational convenience, and without loss of generality,
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