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Abstract. A new and simple dispersion law for extra-low-
frequency electron whistler waves in a multi-ion plasma is
derived. It is valid in a plasma with finite ratioωc/ωpe of
electron gyro-to-plasma frequency and is suitable for wave
frequencies much less thanωpe but well above the gyrofre-
quencies of most heavy ions. The resultant contribution
of the ions to the dispersion law is expressed by means of
the lower hybrid resonance frequency, the highest ion cut-
off frequency and the relative content of the lightest ion. In
a frequency domain well above the ions’ gyrofrequencies,
this new dispersion law merges with the “modified electron
whistler dispersion law” determined in previous works by the
authors. It is shown that it fits well to the total cold plasma
electron whistler dispersion law, for different orientations of
the wave vectors and different ion constituents, including
negative ions or negatively charged dust grains.

Keywords. Ionosphere (Wave propagation) – Radio Science
(Waves in plasma) – Space Plasma Physics (Waves and insta-
bilities)

1 Introduction

One of the typical problems inherent to the application of
the Geometrical Optics (GO) or the ray approximation ap-
proach consists in the fact that the expression for the lo-
cal dispersion equation of plane waves of the magnetoac-
tive plasma modes under consideration should be known; ac-
tually, one should provide the data about the plasma con-
stituents contributing to the local dielectric permittivity ten-
sor along the rays’ paths. This problem is very real in
the near-Earth’s plasma surroundings, where the waves typ-
ically used in a global passive or active sounding belong
to the electron whistler frequency range. Conventionally,
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they cover the so-called very-low-frequency (VLF, 3 kHz–
30 kHz) and extremely-low-frequency (ELF, 300 Hz–3 kHz)
domains; however, in recent active space investigations, their
frequency range was extended up to 3 MHz (Helliwell, 1965,
1993; Kimura, 1985; Reinish, 2000). In an inhomogeneous
magnetospheric plasma, the sources of whistler emissions
can be located far from the region where the wave emis-
sions effectively reveal their properties and are registered by
remote receivers. Then the GO approach is conventionally
used to solve the problem of the spectral characteristics’ evo-
lution of the emissions during their distant propagation from
their sources; it was also used effectively in the recent active
radio sounding projects similar to that one realized on board
the IMAGE satellite (Burch, 2000; Reinish, 2000; Sonwalkar
et al., 2004; Carpenter, 2004). Moreover, the GO technique
was also applied to fit the parameters of space density model
distributions using the Direction Finding Data of ground-
based transmitter signals registered on board the “Ikebono”
satellite (Sawada et al., 1993).

An adjacent problem typical of the ray approximation ap-
proach consists of simplifying a general plasma dispersion
law in order to reduce, if possible, the amount of the physi-
cal parameters governing explicitly the wave propagation of
a selected plasma mode. To solve this problem, instead of
the unknown space distributions of the different plasma con-
stituents, one can use several inherent plasma frequencies
which are often visible as peculiarities of the electromagnetic
spectra registered on board space vehicles (Benson et al.,
2003). In general, a relevant simplification of the total cold
plasma dispersion law is a very complicated analytical task,
as the magnetospheric plasma parameters can vary by two
orders of magnitude along a single ray path. For example,
the frequency of a wave belonging to the lower hybrid reso-
nance (LHR) domain, around 10 kHz (resp. to the proton gy-
rofrequency domain, around 500 Hz) near the Earth, can be-
come comparable with the electron gyrofrequencyωc (resp.
with the LHR frequencyωlhr ) at the equatorial top of the
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geomagnetic field line at the altitude of three Earth’s radii.
Fortunately, for electron whistler waves of sufficiently high
frequencies the problem was solved by Lundin and Krafft
(2001, 2002), who showed that the resultant contribution of
all the ions can be reduced to the value of the LHR fre-
quency only, if the whistler frequency essentially exceeds the
local gyrofrequency of the lightest ion. At the same time,
the limiting condition of overdense plasma (inherent to the
conventional whistler dispersion law, Shafranov, 1967) was
overcome and the modified electron whistler dispersion law
which was obtained is applicable for a finite ratioωpe/ωc,
whereωpe is the electron plasma frequency. This condition
is indispensable, particularly for the near-Earth plasma at al-
titudes where the transition occurs from the lightest ions’ to
the more heavy ions’ prevalence, i.e. typically at altitudes of
few thousands kilometers above the Earth (Sonwalkar et al.,
2004).

Thus, in a very wide frequency domain localized well
above the gyrofrequency of the lightest ion, the dispersion
of the electron whistler waves is governed by the frequen-
ciesωlhr , ωc andωpe. For the extra-low-frequency domain,
which is closer to the lightest ion gyrofrequency near the
Earth, a reliable and simple dispersion relation has not been
found up to now. However, we will show that if additional
data are available, namely the highest ion cutoff frequency
and the relative content of the lightest ions, then the prob-
lem can be solved with a relevant accuracy (see also Smith
and Brice, 1964; Brice and Smith, 1965; Gurnett and Burns,
1968; Muzzio, 1968; Muzzio and Angerami, 1972; Santolic
and Parrot, 1998, and references therein).

It is well known that the peculiarities of the wave disper-
sion laws in the low frequency range are essentially different
for a single ion plasma or a multi-ion species plasma (Hines,
1957; Buchsbaum, 1960; Yakimenko, 1962; Gintzburg,
1963; Smith and Brice, 1964; Gurnett and Burns, 1968; Das
and Uberoi, 1972; Mamun et al., 2004, 2005, and references
therein). In the latter case, the main feature for plane waves
is the appearance of cutoff frequencies in the domains of
the ions’ gyrofrequencies and of resonance frequencies, de-
pending on their polarization sense. The possible influence
of plasma rotation, accompanied by additional force-terms
in the equations of plasma motion (Kashyapi et al., 1993,
and references therein), was also discussed in the applica-
tion to the wave dispersion features. In a paper of Ganguli
and Rudakov (2004) the physical nature of the cutoff phe-
nomena in the ions’ gyrofrequencies’ domains was clarified,
for the first time, in a plasma with heavy negatively charged
particles; it corresponds to the first order mobile ion fluid
rotation with a cutoff frequency in a plasma where the elec-
tron density is not equal to the density of the mobile posi-
tive ions (in the presence of immobile negative dust grains;
see also Pandey and Vranjes, 2006). The peculiarities of
the nonlinear processes occurring in the low frequency do-
main of a dense multi-ion plasma have been considered in
many papers (e.g. see Faria et al., 1998; Irie and Ohsawa,

2003; Hertzberg et al., 2004, and references therein), mainly
in application to the different types of Alfvén waves with
frequencies lower than the proton gyrofrequency (for higher
frequency domains, e.g. see Yu et al., 1974; Stenzel, 1999,
and references therein). A general dispersion law in a frame-
work of Hall-magnetohydrodynamic plasmas with pressure
terms was presented by Shukla et al., 2005, where the contri-
butions of electrons, one type of ion and immobile charged
dust particulates have been taken into account. However, the
omitted displacement current components orthogonal to the
background magnetic field restrict its application for the elec-
tron whistler waves only to the case of overdense plasmas.
To the best of our knowledge, an expression for the electron
whistler dispersion law which is reliable in the ions’ cutoff
frequencies’ domain (and substantially above it), particularly
in the presence of some significative amount of negative ions,
has not been reported yet in the literature.

In this paper we derive an electron whistler dispersion law
which is suitable for the lower frequency range till the high-
est ion cutoff frequency. It is demonstrated that it fits well
with the total cold plasma dispersion law in an extra wide
frequency domain extending over three orders of frequency
values, so that in the high frequency domain the new dis-
persion law merges with the modified electron whistler dis-
persion law, which was determined recently by the authors
(Lundin and Krafft, 2001, 2002) and which is applicable till
the domain of the electron gyrofrequency. It is shown that, in
a plasma with sufficiently separated values of the ions’ gy-
rofrequencies, the new dispersion equation for the whistler
range can be reduced to a biquadratic equation in frequency.
In this case it is sufficient to provide two additional external
parameters only, namely the values of the highest ion cut-
off frequency and of the relative content of the lightest ion,
hydrogen, for example. The possibility to increase signif-
icantly the value of the cutoff frequency above the lightest
ion gyrofrequency in the presence of negative ions (or dust
grains) is discussed in an application to the problem of elec-
tron whistler wave propagation and reflection in the upper
ionosphere.

2 Electron whistler dispersion law in the lightest ion’s
gyrofrequency domain

Let us derive a reliable expression for the electron whistler
wave dispersion law which is suitable for the frequency do-
main around the lightest ion’s gyrofrequency – i.e. the gy-
rofrequencyωH of hydrogen H+, for example. Actually, at
higher frequenciesω�ωH , such a dispersion law should be
close to the modified electron whistler dispersion law derived
for a plasma with finiteωpe/ωc (Lundin and Krafft, 2001,
2002), which, in turn, is applicable from the near LHR fre-
quency range till the high frequency domain, where one can
disregard the contribution of the ions. The best way to de-
rive a new dispersion law reliable for extra-low-frequency
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electron whistler waves in a multi-ion plasma is to use a cold
plasma dispersion law in the form where the term responsi-
ble for the ions’ cutoff frequencies visibly appears. Then, af-
ter suitable simplifications, the resultant extra-low-frequency
whistler dispersion lawω(k) can be obtained as the largest
root of a biquadratic equation.

The usual cold plasma dispersion equation (without any
simplifications) can be written in the following form

K

(
z

(ε − η)
(K + sin2 θ) + cos2 θR(1 + cos2 θ)

)
+ cos2 θR − cos2 θ = 0, (1)

with

z
(ε − η)

= cos2 θR +
χ

η
=

ε2
− g2

η(ε − η)
,

K = −η/N2, cos2 θR =
ε

ε − η
, (2)

whereN=ck/ω is the refractive index,c is the light velocity,
k is the wave vector modulus,ω is the frequency andθ is
the angle between the wave vectork and the constant back-
ground magnetic fieldB0, cosθ=k·B0/kB0. The so-called
cutoff points of the refractive index (N→0 or K→∞) can
be reached only at the cutoff frequencies wherez(ω)=0
(Stix, 1992). The expression for cos2 θR actually corre-
sponds to the formal definition of the resonance angleθR, i.e.
ε sin2 θR+η cos2 θR=0 (where, for cos2 θR<0 or cos2 θR>1,

the resonance cone does not exist for plane waves); the pa-
rameterχ (useful in the high frequency domain, where it
tends to unity) is

χ = ε −
g2

ε − η
. (3)

The componentsε, g andη of the dielectric permittivity ten-
sor in a cold plasma (Shafranov, 1967) are defined by

ε = 1 −

∑
j

ω2
pj

ω2 − ω2
cj

,

g = −

∑
j

ω2
pjωcj

ω(ω2 − ω2
cj )

,

η = 1 −

∑
j

ω2
pj

ω2
, (4)

whereωpj andωcj are the plasma and the gyro-frequencies
of the speciesj , respectively

ω2
pj = Z2

j

4πnj e
2

Mj

, ωj =
Zj eB0

Mj c
, Zj , e > 0,

ω2
pe =

4πnee
2

m
, ωc =

eB0

mc
, ω2

pH =
4πnH e2

M
. (5)

For electrons one uses the index “e” and the notations
ωc≡−ωce>0; for negative ions (index “β”), we note

ωcβ≡−ωβ<0, and for positive ions (index “α”), ωcα≡ωα>0.
Thusωα andωβ are both positive for any sign of the ions’
charge, whose value in electron charge units isZj>0; nj

andMj are the density and the mass of the ion speciesj ; for
electrons, we notem≡Me, and for protons,M≡MH .

For the case of a rather dense plasma, where the displace-
ment current component parallel to the background magnetic
field can be neglected in the frequency band under consider-
ation, we have

−
η

N2
= K = −

ω2

k2c2
+

ω2
pi

k2c2
+

ω2
pe

k2c2
'

ω2
p

k2c2

ne

n
≡ ~,

ω2
pi ≡

∑
j

ω2
pj , (6)

whereωp is the value of the electron plasma frequency calcu-
lated for an electron densityne equal to the total densityn of
the positive charges, which is greater thanne in the presence
of negative ions (or negative dust grains). In this paper, we
do not restrict ourselves to the case of an overdense plasma
and thus the ratioω2

c/ω
2
p is of the order of unity and should

not be considered as vanishingly small. The charge neutrality
condition is

n =

∑
α

Zαnα = ne +

∑
β

Zβnβ . (7)

Actually an additional rather soft limitation,ω2
pe�ω2

pi , i.e.
ne/n�(m/M)(Z/M)eff, is applied in Eq. (6), with

(Z/M)eff ≡

∑
j

Zjnj

n

ZjM

Mj

,
∑
j

Zjnj

2n − ne

= 1, (8)

where the summation overj includes both positive and neg-
ative ions (compare with the Appendix B); without negative
ions one hasne=n.

The functionz(ω) is a finite constant in the frequency do-
mainωj�ω�ωc, namely

z(ω) =
ε2

− g2

η
'

ω2
pe

ω2
c

(
1 − χ

ω2

ω2
pe

(2 + χ
ω2

c

ω2
pe

)

)
(

1 − χ
ω2

ω2
pe

)−1

'
ω2

pe

ω2
c

≡ µ−1, (9)

and a plasma with smallµ is named as overdense. In the
same frequency range, one can find that

ε ' 1 +
ω2

pe

ω2
c

−
ω2

pi

ω2
, ε − η '

ω2
pe

ω2
� ε,

χ
ω2

ω2
pe

'
ω2

ω2
pe

(
1 −

ω2
pi

ω2

)
� 1, η ' −

ω2
pe

ω2
, (10)

ε ± g ' 1 −
ω2

pi

ω2
−

ω2
pe

ω(ω ± ωc)
, (11)
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where the summation overj in Eq. (6) for ω2
pi includes

positive and negative ions as well as dust particles of any
charge. Under the conditions (9–10) the electron whistler
dispersion law can be found in the form of the modified dis-
persion law obtained by Lundin and Krafft (2002) (see also
Eq. (25) below), where the resultant contribution of all the
ions reduces toωpi or ωlhr ; ωlhr (27) is not the exact so-
lution of ε(ωlhr)=0, but a simplified expression calculated
using the approximationωH �ω�ωc, as done for the first
time by Smith and Brice (1964).

For calculatingz(ω)=(ε−g)(ε+g)/η in the extra-low-
frequency domain close to the ions’ gyrofrequencies, i.e.
ω'ωj , we use the approximations

ε ± g = 1 ∓
n

ne

ω2
pe

ωωc(
−νe

ω

ω ± ωc

−

∑
β

νβ

ω

ω ± ωβ

+

∑
α

να

ω

ω ∓ ωα

)

' 1+
ω2

pe

ω2
c

∓
ω2

pe

ωωc

(
1 +

∑
β

νβ/νe

1 ± ω/ωβ

−

∑
α

να/νe

1 ∓ ω/ωα

)
,

(12)

whereνj=Zjnj/n>0. Then, in the extra-low-frequency do-
main whereω'ωH �ωc, and for ω2

p/ω2
c∼1 (for plasmas

which are at least moderately dense,ω2
pe/ωωc�1+ω2

pe/ω
2
c ,

see Smith and Brice, 1964), one can estimate the cutoff fre-
quencies in the zero order approximation from the equations
(see also the Appendix B)

zm(ω) =

∑
α

να

ω

ω+ωα

−

∑
β

νβ

ω

ω−ωβ

−νe

ω

ω−ωc

=0, (13)

zp(ω) =

∑
α

να

ω

ω−ωα

−

∑
β

νβ

ω

ω+ωβ

−νe

ω

ω+ωc

=0. (14)

However, to obtain more accurate numerical estimates for a
plasma with small relative electron density,ne/n�1, so that
ω2

pe/ω
2
c�1, when the highest ion cutoff frequency can tend

to ωlhr (as below in Fig. 3), one needs to use the equation
z(ω)=0 in a more complete form

z(ω) =
n

ne

ω2
p

ω2
c

zmzp+
n

ne

ω

ωc

(zp−zm)−
n

ne

ω2

ω2
p

= 0. (15)

But actually, if the relative electron density is not very
small, i.e. forne/n&0.05, the last term of Eq. (15) can be
omitted (see the Appendix B). The conditionne/n�1 (and
ω2

pe/ω
2
c�1) can be typical of a plasma enriched by a no-

ticeable amount of heavy negatively charged particles, due
to the presence of electronegative gas ions or dust grains that
are strongly adherent to the electrons (Smith, 1965; An et al.,
1993; Kashyapi et al., 1993, for references). The presence
of such plasma regions can be detected owing to the spectral

features of the registered emissions, even if this local plasma
state can be considered only as transient.

To illustrate our general approach to derive a dispersion
law, let us simplify Eq. (15) for a plasma with two different
positive ion species only (hydrogenH+ and oxygenO+, for
example,ω1=ωH , ω2=ωO , ne=n=nH +nO ). Then, from
Eq. (14)

zp(ω)∝ω(ωc+νOωO+νH ωH )

−νH ωcωO−νOωcωH −ωOωH =0, (16)

we get the ion cutoff frequencyωcut

ωcut '
nO

n
ωH +

nH

n
ωO . (17)

One hasωO<ωcut<ωH and, as is well known, in the re-
gions where the hydrogen ions are prevalent (nH �nO ), ωcut
is close to the gyrofrequency of the more heavy ion-oxygen
here (and vice versa). Then, Eq. (15) leads to

z(ω) '
n

ne

ω2
p

ω2
c

zmzp =
ω2

pe

ω2
c

ω2(ω2
− ω2

cut)

(ω2 − ω2
H )(ω2 − ω2

O)

'
ω2

pe

ω2
c

(ω2
− ω2

cut)

(ω2 − ω2
H )

, (18)

z(ω) =
ω2

pe

ω2
c

(
1 +

ω2
H − ω2

cut

ω2 − ω2
H

)
,

ω2
' ω2

H � ω2
O , ω2

pe = ω2
p, (19)

where only one resonant term atωH is conserved finally for
the frequency domainω2

�ω2
O , i.e. well above the gyrofre-

quency of the more heavy charged plasma particles.
The more general case when the plasma contains two types

of positive ions and one type of heavy negatively charged par-
ticles is considered in Appendix B; however, the most simple
resultant expression forz(ω) can be reduced to Eq. (19),
if the highest cutoff frequencyωcut sufficiently exceeds the
other ions’ cutoff and resonant frequencies. The expres-
sion for the analytical estimate ofωcut requires that the ions’
species content data should be available; if those are not, then
the value of the highest ion cutoff frequency should be taken
from the registered spectra as the value of the lower cutoff
frequency for the electron whistler waves.

3 Extra-low-frequency dispersion law

Actually, the parameterK in Eq. (1) is very close
to ~=ω2

pe/k2c2 (with an error not larger than

ω2
pi/ω

2
pe∼(n/ne)(m/M)), so that one can write the

dispersion Eq. (1) in the form

~[z(~+sin2 θ)+ε(1+cos2 θ)]+ε−(ε−η) cos2 θ = 0. (20)

A crucial simplification of Eq. (20) can be carried out only if
the single resonant term proportional to 1/(ω2

−ω2
j ) (where
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ωj is the gyrofrequency of the lightest ion, i.e.ωj=ωH here)
is conserved finally inε(ω) andz(ω)

ε ' 1 +
ω2

pe

ω2
c

−
ω2

pi

ω2
−

ω2
pH ω2

H

ω2(ω2 − ω2
H )

, (21)

η ' −
ω2

pe

ω2
, ε − η '

ω2
pe

ω2
−

ω2
pH ω2

H

ω2(ω2 − ω2
H )

. (22)

For the frequency range above the largest cutoff frequency
ωcut (see also Appendix B), we will mainly use an expres-
sion of z(ω) which has a form similar to the simplest one
(Eq. 19) (it is clear that in the estimation of the cutoff fre-
quency one should keep not only the contribution of hydro-
gen ions). Then, in the extra-low whistler frequency domain,
the dispersion lawω(k, θ) satisfies

ω2
−ω2

md+ω2 ~̃(~+ sin2 θ)

p
1z−�2

c

q̂

p

nH

ne

m

M

ω2
H

ω2−ω2
H

=0,

(23)

where1z=µz−1; ~̃ and�2
c are defined in Eq. (26). In

more general cases (as two positive ions and negative ion
or dust grain, for example) to reduce Eq. (23) finally to a
biquadratic equation forω, the structure of1z should not
be more complex than

1z =
ω2(ω2

H − ω̂2
cut1 − ω̂2

cut2) + ω̂2
cut1̂ω

2
cut2

ω2(ω2 − ω2
H )

. (24)

In the above expression, however, one should provide
the data about the two highest ion cutoff frequencies
ω̂2

cut1>ω̂2
cut2, in comparison with Eq. (19), which is appli-

cable ifω2&ω2
cut=ω̂2

cut1�ω̂2
cut2 (see also Appendix B). One

can comparêq=q− cos2 θ in Eq. (23) with the parameterq
appearing in the expression of the modified electron whistler
dispersion law (Lundin and Krafft, 2002)

ω2
md =

�2
c

p
(cos2 θ + qδi), δi =

ω2
pi

ω2
pe

=
ω2

lhr

�2
c

, (25)

where

p = (1 + ~)(1 + ~̃) + µ~̃ cos2 θ,

~̃ = ~ /(1 + µ),

q = 1 + ~ + ~ cos2 θ, µ = ω2
c/ω

2
pe,

�2
c = ω2

c/(1 + µ), (26)

and

ω2
lhr ≡

µ

1 + µ
ω2

pi = ωH ωc

ω2
p

ω2
c + ω2

pe

(Z/M)eff,

ω2
pi ≡

∑
j

ω2
pj , (27)

with an effective specific charge of the ion population
(Z/M)eff defined by Eq. (8).

Let us estimate the typical values of the wavelengths, or
~=ω2

pe/k2c2, corresponding to the different frequency do-
mains which are spanned by the largest root of Eq. (23). The
high frequency limit of Eq. (23), whenz'1/µ (Eq. 9) and
ε'1+1/µ−ω2

pi/ω
2, leads to the modified whistler disper-

sion law (Eq. 25),ω2
'ω2

md�ω2
H . This frequency domain

near or aboveωlhr can be covered for values~.
√

M/m, so
that q/p (Eq. 26) belongs to the interval

√
m/M.q/p.1.

However, to approach the extra-low-frequencies close to
ωH when the wave propagation is oblique with respect to
B0, one should provide rather large~, i.e. ~'M/m�1
(or ω2

pH /k2c2
'1) so that p'~2/(1+µ)�q'~�1 and

q/p∼m/M; then the value ofωmd (Eq. 25) contributing to
(23) can reachωH

ω2
md '

�2
c

p
' ω2

H >
q

p
ω2

lhr =
q

p

ωH ωc

1 + µ
M−1

eff '
ω2

H

1 + µ
M−1

eff .

(28)

Substituting the simplest form of1z (corresponding to
Eq.19) into Eq. (23), one obtains the biquadratic equation

ω4
− ω2

[ω2
md + ω2

H −
~̃(~ + sin2 θ)

p
(ω2

H − ω2
cut)]

+ω2
H

(
ω2

md − �2
c

q̂

p

nH

ne

m

M

)
= 0. (29)

Then the largest root of Eq. (29), where~ stretches over the
interval 1.~.M/m, spans over the full electron whistler
frequency domain, while the smallest root describes the
branch with a frequency lower thanωH and a resonance near
ωH .

4 Numerical fitting and conclusions

Let us now demonstrate by numerical calculations that the
biquadratic dispersion equation presented in Eqs. (23–24) is
relevant, due to its very good agreement with the electron
whistler mode branch dispersion law in a cold plasma, at any
angle of propagation. Actually, the most visible difference
arises mainly in the high frequency domain when the ratio
ω/ωpe becomes finite and not small; however, in this case
some noticeable difference between the total cold plasma and
the new or the modified dispersion laws, is expectable (see
Eqs.9, 10).

For definiteness, let us present the example of a plasma
with finite ωpe/ωc, corresponding to the conditions of
the upper ionosphere in the transition region from the
oxygen to the hydrogen ions’ prevalence. The spatial
plasma density distributions are derived from a diffusive
equilibrium density model (Angerami and Thomas, 1964;
Kimura 1985) with two ions (O+ and H+). The al-
titude h0 where both ions’ densities are equal,nH =nO

(or νH ≡nH /n=νO=0.5), is selected ash0=1800 km; the
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Fig. 1a. Dispersion laws (ω/ωlhr as a function ofkc/ωpi) for dif-
ferent wave vector orientations with respect to the magnetic field
(θ=30, 45, 60, and 90 degrees) in a plasma with two positive ions
H+, O+, at an altitudeh'1900 km, and with a negative O− relative
content ofnD/n=0.1. Solid lines: new dispersion law; dotted lines:
whistler solution of the total cold plasma dispersion law; dashed
lines: modified whistler dispersion lawωmd . Main parameters are:
ωcut'ω̂cut1'0.29ωH , ω̂cut2'0.1 ωH , ωH /2π'0.21 kHz.

Fig. 1b. Total cold and new dispersion laws (solid and dotted lines,
respectively), for the parameters of Fig. 1a but with another fre-
quency scale:ω/ωH as a function ofkc/ωpi .

value of the electron plasma frequency is selected at the
base level ofh=1000 km asωpe/2π'963 kHz (correspond-
ing to ne=1.15×1010 cm−3); the characteristic scale of the
altitude distribution is governed by the electronTe and
the ion temperatures,Ti=Te/2'0.1 eV (more details can
be found in Lundin and Krafft, 2001). The plasma pa-
rameters ath0=1800 km are presented in Table 1 (with

Fig. 2. Dispersion laws (ω/ωlhr as a function ofkc/ωpi) for
different wave vector orientations with respect to the magnetic
field (θ=30, 45, 60, and 90 degrees) in a plasma with two pos-
itive ions H+, O+, at an altitudeh'1900 km, and with a neg-
ative O− relative content ofnD/n=0.9. Main parameters are:
ωcut'ω̂cut1'6.26ωH , ω̂cut2'0.11ωH , ωH /2π'0.21 kHz.

ωpe=ωp, ωH '0.22 kHz, ωcut'0.53 ωH ). Then for the
near equatorial region to a fixed magnetic latitudeλ=5◦,
the plasma parameters for different altitudesh are shown
in Table 1. Ath=2500 km (resp.h=1400 km), the plasma
consists of almost purely hydrogen (resp. oxygen) ions.
The LHR frequency maximum,ωlhr/2π'4.36 kHz, is real-
ized at the altitudeh=2100 km, whereνH '0.93, νO'0.07,
ωpe/2π=228 kHz, ω2

c/ω
2
pe=2.56, ωH /2π'0.2 kHz, and

ωcut'0.126 ωH . The plasma parameters correspond-
ing to h=1900 km are also presented in Table 1
(ωH /2π'0.21 kHz, ωcut'ω̂cut1'0.33 ωH ); this altitude is
above the altitude of equipartition between H+ and O+ but
lower than that corresponding to the LHR frequency maxi-
mum.

To examine the influence of the negative ions’ density on
the electron whistler dispersion law, let us use the same back-
ground plasma parameters (i.e. the relative densities of all the
positive ions) at the altitudeh=1900 km, except for the rel-
ative electron densityνe, which is reduced by selecting an
appropriate relative contentνD of negative heavy particles
– for definiteness, let it be O− ions. Table 2 corresponds to
plasma parameters for two values of the relative negative ions
amount,νD=0.9 andνD=0.1.

Figures 1a and b (ω/ωlhr and ω/ωH as a function of
kc/ωpi , respectively) allow one to compare the three dis-
persion laws: the new dispersion law (solid lines), the total
cold plasma dispersion law (dotted lines in Figs. 1a and 2;
dashed lines in Fig. 1b) and the so-called modified disper-
sion law (dashed lines), fornD/n=0.1 and four different an-
gles of the wave vector, namelyθ=30, 45, 60 and 90 degrees
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Table 1. νH andνO are the relative content of Hydrogen and Oxygen, respectively;ωpe/2π andωlhr/2π are the electron plasma and the
LHR frequencies in kHz;ω2

c/ω2
pe is the square of the electron gyrofrequency to the electron plasma frequency of the background plasma;

νD=0 corresponds to the absence of negative ions. These values are presented for the set of altitudes indicated in the first column (in km)
and for a fixed latitude of 5 degrees.

h(km) νH νO ωpe/2π (kHz) ωlhr/2π (kHz) ω2
c/ω2

pe νD

2500 0.997 0.003 217 4.2 2.13 0
1900 0.71 0.29 243 4.11 2.6 0
1800 0.5 0.5 260.2 3.73 2.44 0
1400 0.02 0.98 457 2.2 1.1 0

Table 2. The parameters of Table 1 are presented at the altitude of 1900 km for two values of the relative contentνD of the negative ions O−

(last column).

h (km) νH νO ωpe/2π (kHz) ωlhr/2π (kHz) ω2
c/ω2

pe νD

1900 0.71 0.29 76.9 4.93 26 0.9
1900 0.71 0.29 230.6 4.19 2.9 0.1

(ωcut'ω̂cut1'0.29 ωH , ω̂cut2'0.1 ωH ). Figure 2 shows the
three dispersion laws by presentingω/ωlhr as a function of
kc/ωpi , for nD/n=0.9 and the same wave vector anglesθ as
in Fig. 1 (ωcut'ω̂cut1'6.26ωH , ω̂cut2'0.11ωH ).

Moreover, Fig. 3 represents the 2-D profile of the ratio
of the highest ion cutoff frequency to the LHR frequency
as a function of the relative negative ion charge content
ZDnD/n and the inverse specific charge of the negative
ionMD(a.u.)/ZD=(MD/M)/ZD for the plasma parameters
corresponding to the altitudeh=1900 km (represented only
for MD(a.u.)/ZD>4, where the error of simple analytical
estimates ofωcut (Eqs.B4, B9) is small enough).

In all the figures one can see that even the modified elec-
tron whistler dispersion lawωmd (dashed lines) provides a
rather good approximation of the total cold dispersion law, in
the frequency domain extending till the ions’ gyrofrequency:
the value of the frequency splitting between the curves does
not exceed the value of the proton gyrofrequency; however,
it cannot reproduce the details of the dispersion curve near
the cutoff frequency.

Thus, under rather general conditions, we have found an
expression for the low frequency whistler dispersion law
which requires the value of the electron gyrofrequency, the
electron plasma frequency, the LHR frequency, the highest
ion cutoff frequency and the relative content of the lightest
ion only. Except for the relative lightest ion content, all other
background plasma parameters can be found in the spectral
peculiarities of the electron whistler electromagnetic emis-
sions registered on board the satellites. The more complex
case when several light ions of comparable gyrofrequencies
and the heavy ions’ background contribute together to the
whistler dispersion can also be investigated by the above ap-

Fig. 3. The 2-D profile of the ratio of the highest ion cut-
off frequency to the LHR frequency as a function of the rela-
tive negative ion charge contentZDnD/n and the inverse specific
charge of negative ionMD(a.u.)/ZD=(MD/M)/ZD (in the inter-
val MD(a.u.)/ZD>4) for plasma parameters corresponding to the
altitudeh'1900 km.

proach. However, after relevant simplification one should
keep inz the resonant terms for all the light ions; then the
dispersion equation should be solved conventionally as a bi-
quadratic equation for the refractive indexes.

We should stress that our dispersion law is well applicable
also in the case when the content of negative ions or negative
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dust grains is large, when the highest ion cutoff frequency
governing the electron whistler dispersion law essentially ex-
ceeds the lightest ion gyrofrequency and can be rather close
to the LHR frequencyωlhr (around∼0.3ωlhr , in compari-
son with the conventional value around∼0.02ωlhr , for ex-
ample). This high value of the cutoff frequency will result
in the reflection of rather high frequency whistler waves at
low altitudes. At the same time, an essential variation of the
electron density and the LHR frequency in the local regions
enriched by negative ions of electronegative gases (even as
a transient state) also can lead to the observable features of
the registered frequency-time electron whistler spectra in the
ELF-VLF domain. The propagation of whistler wave packets
through the space regions with a noticeable amount of neg-
ative ions (even if it is a transient state of localized regions)
can be investigated by usual ray-tracing codes; the features of
possibly registered sonograms will be studied in forthcoming
papers.

Appendix A

Modified electron whistler dispersion law

Let us remember that the usual dispersion equation for waves
propagating in a cold plasma (without any approximation)
can be written in the following form (Lundin and Krafft,
2001, 2002)

cos2 θ
(
1 −

χ

N2

)
= (1 −

η

N2
)
(
cos2 θR(1 −

η

N2
) −

χ

N2

)
,

(A1)

whereN is the refractive index andθ is the angle defined by
cosθ≡k·B0/kB0; χ, η and cos2 θR are defined in the text
by Eqs. (2–4). In the high frequency limit, when the con-
tribution of the ions to the dielectric permittivity tensor is
negligible, one has(ε−1)(ε−η)=g2 (Wieder, 1964) and

χ = 1, cos2 θR =
ω2(1 + µ)

ω2
c

(
1 −

ω2

ω2
pe(1 + µ)

)
,

µ =
ω2

c

ω2
pe

, (A2)

where the tensor componentsε andg as well as the frequen-
ciesωpe andωc are defined in the text by Eqs. (4–5). Then,
the dispersion law of the electron whistler waves for a finite
value ofµ and for frequenciesω�ωpe can be written in the
form

ω2
=

�2
c cos2 θ

(1 + ~)(1 + ~̃) + µ~̃ cos2 θ
, (A3)

with cos2 θR'ω2/�2
c and

�2
c = ω2

c/(1 + µ), �2
pe = ω2

pe/(1 + µ), (A4)

~ = ω2
pe/k2c2, ~̃ = �2

pe/k2c2. (A5)

In an overdense plasma whereµ�1, the conventional
whistler dispersion law can be recovered from Eq. (A3),
namely

ω2
=

ω2
c cos2 θ

(1 + ~)2
.

In the frequency domain nearωlhr (ωH �ω�ωc), the para-
meters of Eq. (10) correspond to the following expressions

χ = 1 −
ω2

pi

ω2
, cos2 θR =

ω2

�2
c

(
1 −

ω2
lhr

ω2

)
,

ε ' 1 +
ω2

pe

ω2
c

−
ω2

pi

ω2
=

(
1 +

1

µ

)(
1 −

ω2
lhr

ω2

)
,

ω2
lhr =

µ

(1 + µ)
ω2

pi, ω2
pi =

∑
j

ω2
pj , µ =

ω2
c

ω2
pe

,

so that the modified electron whistler dispersion law (Eq. 25)
can be recovered from Eq. (A1).

Appendix B

Plasma containing three ion species of different charge
signs

Let us consider a rather general case which includes most
features of the considered phenomena, that is, a plasma con-
taining negative ions (dust particles, labeled by′D′) and two
positive ions’ species (hydrogen and oxygen ions, for exam-
ple, labeled′1′ and′2′, respectively). Owing to Eq. (12) one
obtains

ε±g=1−ω2
pe

4∑
i=1

νiωi

νeωc

(ω±ωcut1)(ω±ωcut2)

(ω±ωc)(ω±ωD)(ω∓ω1)(ω∓ω2)
,

(B1)

where the summation overi includes electrons, as well as
positive and negative ions; the relative particles’ densities

νi =
Zini

n
, (B2)

verify the charge neutrality condition

1 =

∑
α

να = νe +

∑
β

νβ . (B3)

The frequenciesωcut1 andωcut2 are the roots of the quadratic
equation corresponding toε−g'ε−g−1=0, that is

ω2
4∑

i=1

νiωi −ωωc[νDωD +ν2ω2+ν1ω1−νe(ω1+ω2−ωD)]

−ω[−(ν1 + ν2)ω1ω2 − (ν2 − νe)ω1ωD − (ν1 − νe)ω2ωD]
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−νeω1ω2ωD −ωc[ν1ω2ωD +ν2ω1ωD +νDω1ω2] = 0, (B4)

whereas −ωcut1 and −ωcut2 are the roots of
ε+g'ε+g−1=0; in accordance with Eq. (6), one can
use the relation

4∑
i=1

νiωi = νeωc

(
1 +

3∑
j=1

ω2
pj

ω2
pe

)
= νeωc(1+

ω2
pi

ω2
pe

) ' νeωc.

(B5)

ωcut1 andωcut2 are real and verifyωcut1ωcut2<0; the largest
root ωcut1 (for definiteness) of the equationε−g'0 is pos-
itive while ωcut2 is negative, but−ωcut2>0 is a root of
ε+g'0. Thus, in the presence of three different ions one has
two positive low frequencies,ωcut1 and−ωcut2, which cor-
respond to two different positive ion cutoff frequencies for
which ε2

−g2
'0. Actually, the rootsωcut1 and−ωcut2 fit the

equationε2
−g2

'0 with a rather reliable accuracy, except for
the case of a plasma with a large amount of heavy negatively
charged particles, whereνe=ne/n�1 (see also Eq. 7).

In this case, the value of the upper ion cutoff frequency
ωcut differs fromωcut1 (which is the biggest root of Eq.B4)
and can essentially exceedωH and even approachωlhr , so
that a more accurate analytical estimate forωcut should be
used (if the highest ion cutoff frequencyωcut� |ωcut2| is not
available from the experiment).

Let us find this correction to the value ofωcut1, accompa-
nied by the necessary modification ofz (as well as1z), in
a plasma withne/n�1, due to some large amount of elec-
tronegative heavy particles. Using thatω�ωc and Eq. (B5),
one can find from Eq. (B1)

−ηz = −(ε2
− g2)

'

(
ωc

ω2
pe

ω2
c

)2
(ω2

− ω2
cut1)(ω

2
− ω2

cut2)

(ω2 − ω2
D)(ω2 − ω2

1)(ω
2 − ω2

2)

− ωc

ω2
pe

ω2
c

2ω2
[−ω2(ωcut1+ωcut2+ω1)−ω1ωcut1ωcut2]

(ω2−ω2
D)(ω2−ω2

1)(ω
2−ω2

2)

− 1,

where, in the numerator of the second term (which is impor-
tant only for smallne/n and thus for largeωcut1), we took
into account the conditionω&ωcut1�ω1�ωD, ω2.

To derive a biquadratic dispersion equation similar to
Eq. (23), let us use the correction1z≡zω2

c/ω
2
pe−1 (in the

high frequency approximation we havez'ω2
pe/ω

2
c ); then,

applying Eqs. (21–22), one obtains from Eq. (20) that

ω2
− ω2

md + ~̃(~ + sin2 θ)
ω2

p
1z − �2

c

ω2
pH

ω2
pe

ω2
H

(ω2 − ω2
H )

×
(q − cos2 θ)

p
= 0, (B6)

1z ' −
ω2

ω2
pe

µ − 1 +
(ω2

− ω2
cut1)(ω

2
− ω2

cut2)

ω2(ω2 − ω2
H )

+
2ωc[ω

2(ωcut1+ωcut2+ωH )+ωH ωcut1ωcut2]

ω2
pe(ω

2−ω2
H )

, (B7)

where we finally apply the conditionω2
�ω2

D, ω2
2 to all the

denominator terms and putω1=ωH .
If the function1z can be presented in the form

1z ∝
aω4

+ bω2
+ c

ω2(ω2 − ω2
1)

, (B8)

wherea, b, c andω2
1 are constants, then the resultant disper-

sion law (Eq.B6) has the form of a biquadratic equation for
ω, as Eq. (23). To provide the form (B8), it is sufficient to
omit the first term in Eq. (B7), i.e. µω2/ω2

pe. This can be
done if the characteristic cutoff frequencies inherent to the
ion gyrofrequency domain are sufficiently distant fromωlhr ,
i.e. if max{ω1, ωcut1, |ωcut2|}�ωlhr , which is not valid only
whenωcut1 is very large, in a plasma with a small amount
of free electronsn/ne&ωp/ωpi&50 (see Eqs. B15–B16). In
this case we have

1z '
ω2(ω2

1 − ω2
cut1 − ω2

cut2) + ω2
cut1ω

2
cut2

ω2(ω2 − ω2
1)

+ 2µ
[ω2(ωcut1− |ωcut2| +ω1)−ω1ωcut1 |ωcut2|]

ωc(ω2−ω2
1)

, (B9)

so that one can use the presentation

µz − 1 = 1z '
(ω2

− ω̂2
cut1)(ω

2
− ω̂2

cut2)

ω2(ω2 − ω2
1)

− 1

=
ω2(ω2

1 − ω̂2
cut1 − ω̂2

cut2) + ω̂2
cut1̂ω

2
cut2

ω2(ω2 − ω2
1)

, (B10)

where the corrected cutoff frequencieŝωcut1 and ω̂cut2 can
be estimated throughωcut1 and|ωcut2| using Eq. (B9) in the
equationµz=1z+1=0, or can be taken from the experi-
ment; then Eq. (B10) can be used in Eq. (B6).

At last, let us consider the case when the relative electron
density is very small

ne/n = νe � ν1 + ν2 = 1 ' νD, ω1 > ω2, ωD,

(B11)

in the presence of extra electronegative dust grains which
collect most part of the negative charge, i.e.νD'1, when
the cutoff frequencŷωcut1 (and ωcut1) can even tend to
ωlhr'ωpi (ω2

pe/ω
2
c∼ne/n�1). To estimateωcut1 using

ε−g'ε−g−1=0 (B1), let us take into account that it is
not very close to|ωcut2|, so that formally the roots of
ax2

+bx+c=0 (Eq.B4) under the condition 4ac�b2 can be
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found asx1'−b/a andx2'−c/b, that is

ωcut1 '

(
ν1

νe

− 1

)
ω1 +

(
ν2

νe

− 1

)
ω2 +

n

ne

ωD

'
ν1ω1 + ν2ω2 + νDωD

νe

=
n

ne

ω2
c

ω2
p

ω2
pi

ωc

, (B12)

−ωcut2 '
ω2

p

ω2
c

ωc

ω2
pi

[(ν1ω2 + ν2ω1)ωD + ω1ω2] . (B13)

Then, the condition for sufficiently separated cutoff frequen-
cies,ωcut1� |ωcut2|, can be, using Eq. (8), reduced to

n

ne

ωH

ωO

[(Z/M)eff]
2

�

(
1 +

ωD

ωO

)
, (B14)

whereωO is the gyrofrequency of the oxygen ions.
To validate the presentation of Eqs. (B6) and (B10),

let us find the condition for omitting the first term of
1z in Eq. (B7). For ω2&ω2

cut1�ω2
1, ω

2
cut2, and using

(ω2
c/ω

2
pe)(ne/n)=ω2

c/ω
2
p∼1, Eqs. (B7) and (B12) lead to the

estimate

1z ' −
ω2

ω2
pe

ω2
c

ω2
pe

−
ω2

cut1

ω2
+

2ωcωcut1

ω2
pe

∼
n2

n2
e

ω2
pi

ω2
p

(
−

ω2

ω2
pi

−
ω2

pi

ω2
+ 2

)
,

where the first term inside the brackets corresponds to the
first one in Eq. (B7); to neglect it for the frequency interval
of interest, one should satisfyω2

cut1.ω2
�ω2

lhr'ω2
pi and thus

ω2
pi

ω2
cut1

'
ω2

p

ω2
c

(ne

n

)2 ω2
p

ω2
pi

∼

(ne

n

)2 ω2
p

ω2
pi

� 1, (B15)

which leads to(ne

n

)2
�

ω2
pi

ω2
p

=
m

M
(Z/M)eff. (B16)

Thus, under the condition (B16) there is a rather wide fre-
quency domainωcut1.ω�ωlhr.ωpi where the approxima-
tion of 1z, corresponding to the biquadratic Eq. (B6), is
valid even for rather small relative electron densities. Fig-
ure 3 shows an example of the 2-D contours of the ra-
tio of the highest ion cutoff frequency to the LHR fre-
quency, as a function of the relative negative ion charge
contentZDnD/n and the inverse specific charge of neg-
ative ions MD(a.u.)/ZD=(MD/M)/ZD, in the interval
(MD/M)/ZD>4 (see also the text).
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