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Abstract. We report average profiles of the solar wind and
outer radiation belt during the extreme flux enhancement of
relativistic electrons at geosynchronous orbit (GEO). It is
found that seven of top ten extreme events at GEO during so-
lar cycle 23 are associated with the magnetosphere inflation
during the storm recovery phase as caused by the large-scale
solar wind structure of very low dynamic pressure (<1.0 nPa)
during rapid speed decrease from very high (>650 km/s) to
typical (400–500 km/s) in a few days. For the seven events,
the solar wind parameters, geomagnetic activity indices, and
relativistic electron flux and geomagnetic field at GEO are
superposed at the local noon period of GOES satellites to in-
vestigate the physical cause. The average profiles support
the “double inflation” mechanism that the rarefaction of the
solar wind and subsequent magnetosphere inflation are one
of the best conditions to produce the extreme flux enhance-
ment at GEO because of the excellent magnetic confinement
of relativistic electrons by reducing the drift loss of trapped
electrons at dayside magnetopause.

Keywords. Magnetospheric physics (Magnetotail; Storms
and substorms) – Space plasma physics (Nonlinear phenom-
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1 Introduction

The Van Allen radiation belts are composed of ions and elec-
trons ranging from hundreds of keV to tens of MeV. The
outer radiation belt usually exists atL=3.5–7.0 where GPS
satellites, metrological satellites, broadcasting and commu-
nication satellites are operating. Deep dielectric charging
can occur when high fluxes of relativistic electrons penetrate
the spacecraft shielding and imbed themselves in spacecraft
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dielectrics such as coaxial cables and circuit boards. Dis-
charges and subsequent damages tend to occur after long pe-
riods of the high fluxes, and these effects have been demon-
strated in the laboratory (Baker et al., 1987, 1998). Under-
standing the physical cause of extremely high flux of outer
belt electrons is therefore important for the space weather
forecast of the potentially problematic satellite environment.
Two major mechanisms have been suggested for the fun-
damental acceleration process of outer belt electrons (e.g.
Friedel et al., 2002): Pc5-type ULF waves can work as a
driver for the adiabatic radial diffusion (e.g. Elikington et al.,
1999), while whistler-mode chorus VLF waves are another
candidate to cause the non-adiabatic acceleration via wave-
particle interactions (e.g. Miyoshi et al., 2003).

It has been well known that the outer belt electrons tend to
increase associated with high-speed solar wind (e.g. Paulikas
and Blake, 1979). Recently, Miyoshi and Kataoka (2008a)
showed that the flux enhancement depends not only on the
solar wind speed but also on the interplanetary magnetic field
(IMF) Bz offset as determined by the sector polarity of the
IMF and seasons, via so-called “spring toward fall away”
(STFA) rule of Russell and McPherron (1973). Miyoshi
et al. (2007) showed that the STFA rule controls the non-
adiabatic acceleration for outer belt electrons by the whistler-
mode chorus wave-particle interactions during HILDCAAs
(High Intensity Long Duration Continuous Substorm Activ-
ities) (Tsurutani and Gonzalez, 1987). Also, Miyoshi and
Kataoka (2005) showed that the high-speed solar wind as-
sociated with corotating interaction regions (CIRs) is more
effective for the flux enhancement during the storm recov-
ery phase on average than the high-speed solar wind asso-
ciated with coronal mass ejections (CMEs). Based on the
findings of the solar wind driver dependence, Kataoka and
Miyoshi (2006) developed an algorithm of a probabilistic
forecast of the NOAA alert level of relativistic electrons at
GEO, and the algorithm was further extended to general
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Table 1. Event list of top 10 extreme flux enhancements determined from GOES-8 and 12 observations during solar cycle 23. From left
to right, columns show the maximum flux of>2.0 MeV electrons at GEO (pfu=/cm2 s str), date of the event, minimum daily variation of H
component at GEO in the VDH-coordinate system fromt=−2.0 to 0.0 days, minimum solar wind dynamic pressure, maximum solar wind
speed, solar wind driver, the STFA relationship, and HILDCAAs occurrence.

max flux date mindH min Pd maxV solra wind STFA HILDCAAs
log10(pfu) yyyymmdd nT nPa km/s driver rule

5.223 20040729 19.7 0.27 1027 CME+CHS summer no
4.936 20050518 24.6 0.22 959 CME spring-to yes
4.876 20050919 17.5 0.32 862 not clear fall-away no
4.719 20060417 22.2 0.56 676 CHS spring-to possible
4.691 20050809 27.3 0.46 714 CME+CHS summer no
4.689 20040218 20.3 0.08 735 CHS winter possible
4.674 20041111 64.3 1.21 809 CME fall-away no
4.660 20061215 86.6 0.77 896 CME winter no
4.629 20030920 45.7 0.77 812 CHS fall-away yes
4.590 20050905 17.9 0.68 743 not clear fall-away no

stream interface events based on the STFA rule (Miyoshi
and Kataoka, 2008b) to operate the probabilistic forecast
(http://hbksw1.stelab.nagoya-u.ac.jp/).

Usual flux enhancement can be predicted even in real-time
operation as shown above. However, the extreme flux en-
hancement of relativistic electrons at GEO is still hard to pre-
dict and the generation mechanism remains unknown. More
recently, Kataoka and Miyoshi (2008) showed evidence that
the largest increase of outer belt electrons at GEO during so-
lar cycle 23 is associated with the magnetosphere inflation
due to very low dynamic pressure of the solar wind. The very
low dynamic pressure at the trailing part of a CME is pro-
duced by the speed difference between the very fast CME and
following a coronal hole stream (CHS). The purpose of this
paper is to show average profiles of the solar wind and outer
radiation belt during the extreme flux enhancement of rela-
tivistic electrons at GEO as listed by Kataoka and Miyoshi
(2008) to investigate the mechanism of the extreme events in
more detail.

2 Results and discussions

Table 1 shows the event list of the Kataoka and Miyoshi
(2008) with some additional information. In order to create
the top 10 event list, daily maximum flux (1st column) was
calculated for>2.0 MeV electron flux measured at GOES 8
and 12 during solar cycle 23 (1996–2006). Kataoka and
Miyoshi (2008) discussed a favorable condition of extreme
events as coronal hole stream, storm recovery phase, and
very low dynamic pressure. The last two columns show addi-
tional information on the solar wind driver: The combination
of CME and CHS (July 2004, August 2005), CHS (Febru-
ary 2004, September 2003, April 2006), and CME (Novem-
ber 2004, May 2005, December 2006) can be possible so-
lar wind structures to produce the effective solar wind pro-

file for the extreme events at GEO. It is interesting to note
that all of the extreme events, except for those in summer
and winter, follow the STFA rule. In order to find a mean-
ingful average profiles, the extreme events on 20 Septem-
ber 2003, 11 November 2004, and 15 December 2006 are
removed from the following superposed epoch analysis be-
cause the geomagnetic field daily variation (3rd column) and
dynamic pressure (4th column) are significantly larger than
other events, implying some different mechanisms. The data
source is summarized as follows: The OMNI2 hourly solar
wind data is provided from NASA/SPDF (http://spdf.gsfc.
nasa.gov/), GOES electrons and magnetic field and POES
particle data are provided from NOAA/NGDC (http://www.
ngdc.noaa.gov/). The Dst index is provided from Kyoto
University (http://swdcwww.kugi.kyoto-u.ac.jp/). The ex-
istence of CME is confirmed using LASCO CME catalog
(http://cdaw.gsfc.nasa.gov/cmelist/). The particle data from
GOES-12 and NOAA/POES-15 are used for the following
analysis since all of the extreme events occurred after 2003.

Figure 1 shows the average profiles of solar wind parame-
ters and geomagnetic activities superposed at 17:00 UT of the
day of maximum flux at GEO. Note that GOES-12 is roughly
located at the local noon at 17:00 UT where the electron flux
usually becomes largest because the magnetic field is highly
compressed at noon. It is found from Fig. 1 that the max-
imum flux occurs when the dynamic pressure has very low
value of <1.0 nPa for two days during the storm recovery
phase, as indicated by two vertical dahsed lines. The esti-
mated magnetopause distance (Shue et al., 1998) of>12RE

is also very large. The typical values of dynamic pressure
and magnetopause distance are 2.0–3.0 nPa and 10–11RE ,
respectively, as also indicated at the start and end of Fig. 1.
The maximum solar wind speed of>650 km/s is also very
fast, as can be seen from Table 1 and Fig. 1, and the very fast
speed and subsequent rapid speed decrease is the essential
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Fig. 1. Average profiles of solar wind parameters and geomagnetic
activities during extreme events superposed at 17:00 UT of the day
of maximum flux enhancement: From top to bottom, shown are in-
terplanetary magnetic field strengthB, the southward component
Bz in the GSM coordinate system, magnetic field fluctuation level
dB/B, solar wind speedV , proton number densityN , dynamic pres-
surePd, proton temperatureT , subsolar magnetopause distance
MP , Kp index, andDst index. Light gray curves show the pro-
files of each event. Vertical dashed lines indicate the period when
the dynamic pressure has very low value of<1.0 nPa.

Fig. 2. Average profiles of GOES-12>2.0 MeV electron flux and
magnetic field at GEO during extreme events superposed at 17 UT
of the day of maximum flux enhancement: (top)>2.0 MeV electron
flux, (middle) magnetic filed H component in the VDH-coordinate
system, (bottom) theDst index. In order to avoid any contamina-
tions from the solar protons, the electron data are not used when the
flux of the 9–15 MeV proton sensor is larger than 10/cm2 sec str.
Light gray curves show the profiles of each event. Vertical dashed
lines indicate the period when the dynamic pressure has very low
value of<1.0 nPa as shown in Fig. 1.

cause of the solar wind rarefaction structure. It is important
to note here that a lot of much faster solar wind structures
such as very fast CMEs cannot always produce the large en-
hancement at GEO (e.g. Miyoshi and Kataoka, 2005), and it
is true that a very fast solar wind is not a sufficient condition
for producing large enhancement events at GEO (Miyoshi
and Kataoka, 2008a).

Figure 2 shows the average profiles of>2.0 MeV electron
flux and magnetic field H component measured by GOES-12
superposed at 17:00 UT of the day of maximum flux, where
the H component is positive in direction of anti-parallel to
the dipole axis in the VDH-coordinate system. The extreme
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Fig. 3. AverageL-t diagram of NOAA-15 300–2500 keV electron
flux during extreme events superposed at 17:00 UT of the day of
maximum flux enhancement. TheL-value is McIlwain’sL de-
rived from the IGRF. TheDst index is also shown in the bottom
panel. In order to avoid any contamination from the energetic pro-
tons, the electron data are not used when the electron flux of the
NOAA/MEPED 300–2500 keV sensor is less than ten times of the
ion flux of the NOAA/MEPED 240–800 keV sensor.

enhancement begins two days before the maximum flux dur-
ing the storm recovery phase, when the daily variation of the
total magnetic field is getting smaller than usual due to the
very low solar wind dynamic pressure (Fig. 1). This means
that the magnetic field configuration is more dipole-like than
usual when the extreme flux enhancement takes place at
GEO. As a reference, average amplitude of the minimum H-
component daily variation during the recovery phase of in-
tense CIR storms of Miyoshi and Kataoka (2005) is 52.7 nT,
while that of Fig. 2 is only 21.3 nT. It is also worthwhile to
note here that the flux significantly decrease after the flux
maximum as following the magnetopause distance retreating
from the inflation state. Ukhorskiy et al. (2006) showed from
their test-particle simulation that the change of electron tra-
jectory causes a significant loss of the relativistic electrons
at magnetopause. They showed that a rapid enhancement of
solar wind dynamic pressure moves the magnetopause earth-
ward, causing the immediate electron loss from the outer-
most trapped region. Considering this simulation, it is ex-
pected that the inflation of the magnetosphere due to small
dynamic pressure reduces such loss process at the magne-
topause. Since the outer belt electron flux is determined
by the delicate balance between source and loss processes
(Reeves et al., 2003), reducing the loss process att=−2.0 to
0.0 can naturally induce the flux enhancement.

Figure 3 shows the average profiles of 300–2500 keV elec-
tron flux measured by NOAA/POES-15 MEPED (Evans and
Greer, 2000) superposed at 17:00 UT of the day of maximum
flux. Note that the NOAA/POES-15 orbits 07:30–19:30 local
time meridian. It is found that the outer belt shows outward
expansion of the outer boundary two days before flux maxi-
mum and then shrinks after the flux maximum. The outward
and inward motion of the outer belt is consistent with the
flux variation at GEO as shown in Fig. 2. The flux amplitude
around the peak of the outer belt (L=4.0–4.5) is compara-
ble to that of intense CIR storms (see Miyoshi and Kataoka,
2005), suggesting that the acceleration source itself at the
heart of the outer belt is not extremely strong. In fact, av-
erageKp index of extreme events during the recovery phase
(Fig. 1) is comparable or smaller than that of intense CIR
storms (Miyoshi and Kataoka, 2005), implying comparable
or smaller energy source for accelerating relativistic elec-
trons. It is also found that the extreme events are not always
associated with HILDCAAs. In Table 1, the association with
HILDCAAs is marked as “yes” if HILDCAAs occur dur-
ing the day of maximum flux, and is marked as “possible”
if HILDCAAs occur 1–2 days before the day of maximum
flux. The weak association with HILDCAAs is consistent
with the fact that the strength of Alfvénic fluctuation of the
solar wind during the extreme events is not strong on average
as shown in the third panels of Fig. 1.

In summary, all of the observations shown above are con-
sistent with the “double inflation” mechanism (Kataoka and
Miyoshi, 2008) that the solar wind rarefaction and subse-
quent magnetosphere inflation essentially cause the extreme
flux enhancement at GEO via the excellent magnetic con-
finement of relativistic electrons by reducing the drift loss
of trapped electrons at magnetopause. The fundamental ac-
celeration mechanism of relativistic electrons during the ex-
treme events is, however, still not clear from the results of
this paper, and further research and new observations of the
phase space density profiles and plasma wave activities are
definitely needed to clarify the acceleration process. Direct
evidence of the drift loss process that relativistic electrons es-
cape from the magnetopause is also necessary to understand
the mechanism because there are some other possible expla-
nations for the loss process. For example, Green et al. (2004)
concluded that the electron decreases are likely due to en-
hanced precipitation into the atmosphere by EMIC waves.
The planned satellite missions for the inner magnetosphere
during the solar maximum of solar cycle 24 such as OR-
BITALS, RBSP within the International Living With a Star
(ILWS) program, and Japanese ERG project (Shiokawa et
al., 2006) will provide the essential data for elucidating the
fundamental acceleration and loss mechanisms of relativistic
electrons of the radiation belts.
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