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Abstract. The Galileo magnetometer data are used to inves-
tigate the structure of the Alfv́en wing during three flybys of
Europa. The presence of an induced magnetic field is shown
to shrink the cross section of the Alfvén wing and offset it
along the direction radial to Jupiter. Both the shrinkage and
the offset depend on the strength of the induced field. The
entry and exit points of the spacecraft into and out of the
Alfv én wings are modeled to determine the angle between
the wings and the background magnetic field. Tracing of the
Alfv én characteristics in a model magnetic field consisting
of Jupiter’s background field and an induced field in Europa
produces an offset and shrinking of the Alfvén wing consis-
tent with the geometric modeling. Thus we believe that the
Alfv én wing properties have been determined correctly. The
Alfv én wing angle is directly proportional to the local Alfvén
velocity, and is thus a probe for the local plasma density. We
show that the inferred plasma density can be understood in
terms of the electron density measured by the plasma wave
experiment. When Europa is located in the Jovian plasma
sheet the derived mass-per-charge exceeds the previous esti-
mates, which is a result of increased pickup of sputtered ions
near the moon. The estimated rate of O+

2 pickup agrees well
with the results from numerical models.

Keywords. Magnetospheric physics (Current systems;
Magnetosphere interaction with satellites and rings; Plasma
waves and instabilities)

1 Introduction

An Alfv én wing (henceforth AW) is created by the interac-
tion of a conducting body (in this case the moon Europa) with
a flowing magnetized plasma. The moon serves as an obsta-
cle in the flow, and will slow the plasma and divert it around
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its sides. The slowing results from ion pickup and compres-
sional forces. The ion pickup mass-loads the flux tube and
creates currents flowing perpendicular to the magnetic field,
producing aj×B force (wherej is the electric current andB is
the magnetic field) that decelerates the flow upstream. North
and south of the moon along the magnetic field, where the
pickup is negligible, the flux tube can propagate unimpeded.
This creates a velocity shear along the flux tube bending it.
The bend is transported along the magnetic field by an Alfvén
wave, with characteristic velocityvA=Bm/

√
µ0ρ whereBm

is the unperturbed magnetic field magnitude,µ0 is the per-
meability of vacuum andρ is the plasma mass density. In the
frame of the conducting moon, the plasma flows acrossB at
the flow velocityvflow. This will give rise to fronts moving
away from the moon at an angleθA with respect to the back-
ground magnetic field, which is related to the Alfvén Mach
number

MA = vflow/vA, (1)

by:

θA = atan(MA). (2)

In the Jovian system the AW was first discussed for Io (Gol-
dreich and Lynden-Bell, 1969; Neubauer, 1980; Southwood
et al., 1980; Herbert, 1985; Wright and Southwood, 1987;
Chust et al., 2005), and the analysis was later expanded to
describe the interaction of other Galilean satellites, in partic-
ular Europa (Neubauer, 1998, 1999; Khurana and Kivelson,
1999; Volwerk et al., 1999).

The properties of the AWs, such as the AW angleθA , can
be useful in determining the local plasma density of the sur-
rounding medium (Neubauer, 1980) if no direct measure-
ments are available. Also, the characteristics of the AW can
be used to determine whether there is a internal or induced
magnetic field in the object creating the wings. The presence
of a magnetic field in the conducting body (a tilted dipole,
permanent or induced) will reflect itself in the “shrinking”
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Fig. 1. A schematic overview of the three different coordinate
systems in this paper, with projections onto thexz-, yz- andxy-
plane. Starting from the EφB coordinate system (solid lines), the
top graphs show the definition of the EφB coordinate system, with
the background magnetic field in thexz-plane, mainly directed
along z. A rotation throughφBO around the x-axis to obtain the
Eφ� coordinate system (dashed lines). The bottom graphs show
how the AW coordinate system (dashed lines) is defined starting
from the EφB coordinate system.

and displacement of the AW (Neubauer, 1999), or an “expan-
sion” if the moon is magnetised with a surface field stronger
than the ambient Jovian field, as in the case of Ganymede
(Kivelson et al., 1998; Schilling et al., 2003).

2 Coordinate systems

In this paper we use three different coordinate systems. Two
of them have their x-axes aligned along the corotational flow
direction:

1. EφB
x-axis along the corotational flow direction.
z-axis is chosen such that it is perpendicular tox, and
the background magnetic field at closest approach is
contained in thexz-plane.
y-axis completes the triad:̂y=ẑ×x̂.
This coordinate system best shows the symmetries re-
lated to the magnetic field e.g. the AW.

2. Eφ�

x-axis along the corotational flow direction.
z-axis is aligned with the Jovian rotation axis.
y-axis completes the triad:̂y=ẑ×x̂.
This coordinate system is convenient for discussion of
the spacecraft trajectory, because the spacecraft remains
close to constantz during a flyby.

We will denote the coordinates and the magnetic field by a
subscript “B” and “�” for EφB and Eφ�, respectively. The

two systems are linked by a simple rotation around thex-axis
through an angleφB� (given in Table3) and is visualized
in Fig. 1. The cross-section of a cylindrical Alfvén wing is
elliptical for a cut at constantzB and is differently elliptical
for a cut at constantz�. In Fig. 2 the angleα is labeled in
the EφB system. We do not show the different angles and
directions in the Eφ� system.

The third system that will be used in this paper is specifi-
cally related to the AW:

3. AWS
z-axis along the AW
y-axis is same as EφB y-axis
x-axis completes the triad̂x=ŷ×ẑ

This coordinate system is obtained from the EφB coordinate
system by a rotation around theyB-axis through an angleθA
in the Northern Hemisphere orπ−θA in the Southern Hemi-
sphere. When used in this paper, the ordinates will be la-
beled “W.” The cross-section of a cylindrical AW is circular
for constantzW if no induced magnetic field is present in the
moon, otherwise it is elliptical.

3 Alfv én wings

Neubauer (1998, 1999) described the AW and its modifica-
tion by an internal or induced magnetic field (at low Alfvén
Mach number). In this section we summarize his analysis.

In Neubauer(1998) the magnetic field that is being trans-
ported to Europa is perpendicular to the flow velocity. In the
case of Europa, however, the background magnetic field is
slightly tilted at a small angleθbk (given in Table3) with re-
spect to thezB-axis. This means that when the AW angleθA
is determined, a correction for the slight tilt of the field needs
to be made.

The upstream boundaries of the southern portion of the
AW are shown in Fig.2. Note that these fronts represent
the locus of the bend in the magnetic field lines and not
the direction of the field lines themselves (see e.g.Kivelson
et al., 2004, Fig. 1). The bend of the magnetic field lines is
produced by currents flowing along the surface of the AW
(Neubauer, 1998).

The maximum current flowing along the AW is given by:

Imax = 4E0RW6A, (3)

whereE0=vflow×B, RW is the radius of the AW and6A is
the Alfvén conductance ((µ0vA)−1 Neubauer, 1980). This
current flows into the moon on the sub-Jovian side and out
of the moon on the anti-Jovian side, and over the whole cir-
cumference of the AW the current is described by a sin8AW
function:

I (8AW) = I0 sin(8AW), (4)

where8AW is the angle in thexy-plane with respect to the
positive x-axis which corresponds to8AW=0.
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This is the simple case for interaction with a non-
magnetized, uniformly conducting moon. However, the pres-
ence of an inductive magnetic field in Europa has now un-
ambiguously been shown byKhurana et al.(1998); Kivelson
et al.(1999, 2000) and is discussed in great detail byZimmer
et al.(2000).

As noted above, the introduction of an induced magnetic
field has two major consequences; the cross-section of the
AW shrinks, and its center shifts (Neubauer, 1999). The dis-
tortion of the AW depends on the inclinationαinc of the Jo-
vian magnetic field with respect to the Jovian equator at the
location of the moon, and the ratioQ=Rc/RA , the ratio of
the radius of the conducting bodyRc to that of its conduct-
ing atmosphereRA . Neubauer shows that the ratio of the
radius of the AW to that of the atmosphereri=RAW/RA de-
pends onQ andαinc (defined in Fig.2, αinc=π/2−βinc). The
shape of the AW cross section is not far from circular. The
maximum current flowing along the AW is modified by the
induced magnetic field:

Imax ≈ 4E0RA6Ari(αinc, Q)

≈
4

µ0

√
v2

flowρ0RAri . (5)

For Europa we can estimateQ andαinc. For an ionosphere
at Hion=100−200 km height (Hall et al., 1998; Kliore et al.,
1997) and assuming that the conducting layer is located near
the surface (1RE=1560 km) we obtainQ≈0.9. The mini-
mum inclination of the magnetic field for the three flybys in
this paper (E17, E25A and E26) isαinc≈75◦. From Fig. 5
of Neubauer(1999) it follows that we are in the region of
ri≥0.95, a limit in which there is little distortion of the cross
section of the AW provided the Alfv́en Mach number is�1.
The maximum currentImax for the three flybys is given in
Table3.

For Mach numbers relevant to Europa, the cross section of
the AW is neither circular, nor elliptical (seeNeubauer, 1999,
Fig. 4). With a flow velocityvflow≈105 km/s, a magnetic
field strengthB≈400 nT and a plasma densityni≈100 cm−3

of mass 12.3 (Bagenal, 1994; Kivelson et al., 2004) AMU
ions we find thatvA≈250 km/s andMA=vflow/vA≈0.4. In
this limit we will approximate the cross-section of the AW
by an ellipse.

4 The data

To be able to observe the AW near Europa, the spacecraft’s
orbit needs to pass the moon through a region downstream
of the moon that bends away from the background field di-
rection at an angleθA . From a total of 12 flybys of Europa,
Galileo crossed through the AW on only 3 passes: during the
E17 flyby; a non-targeted passage during the I25 orbit, which
we will call the E25A flyby; and during the E26 polar flyby.
Some parameters of the flybys are given in Table1; exten-
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Fig. 2. The topology of the fitted ellipse with semi-major axisD

and semi-minor axisb. View of the AW in thexz-plane. In a sim-
ple model of the AW the characteristic moves away from the moon
at an angleθA with respect to the background magnetic fieldBbk
or with an angleα with respect to thez-axis. The circle repre-
sents Europa and from there the AW is a cylinder with radius 1RE .
Galileo crosses the AW atz0 and the cross-section has the shape
of an ellipse whose semi-major axis is defined byD=z0 tanα. The
inclination of the magnetic field is given by the angleβinc.

sive details about the surroundings of Europa in the Jovian
magnetosphere can be found inKivelson et al.(2004).

Figure3 shows the measured components and the magni-
tude of the magnetic field across the AWs in the EφB coor-
dinate system (Kivelson et al., 1992). Clearly visible is the
rotation of the magnetic field without a change in total field
strength for the first two cases (E17 and E25A). During E26,
Galileo passed close to the moon and the signature is influ-
enced by the closure currents in Europa’s ionosphere, which
both rotate the field and enhance the magnetic field strength.
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Table 1. Flyby overview.

Orbit ID date DOY Galileo Europa Sys. III location
time (UT) altitude (km) E-long magn. lat. LT

E17 26 Sept 1998 269 0354:20 3587.4 220◦ 3.6◦ 0955
E25A 25 Nov 1999 329 1629:05 8580 166◦ 9.9◦ 0313
E26 3 Jan 2000 3 1859:43 348.4 357◦

−9.6◦ 0257

The entry into the AW, characterized by the sharp rota-
tion in the magnetic field, takes place over a very short inter-
val, indicating that the Alfv́en wing current flows in a region
whose thickness is small compared to Europa’s radius. In
E17, for example, the rotation takes place over 6 data points,
i.e. 2 s. Galileo’s average velocity with respect to Europa was
8 km/s so this corresponds to a thickness of∼16 km. In the
discussion section we will return on the specifics of the entry
and exit point, e.g. why the entry of E17 is so sharp, whereas
the exit seems to be much smoother.

In the Bx components of the data (top panels of Fig.3)
there are significant differences among the three flybys. For
E17 a region of strong negative deviation of the magnetic
field created by the fringe fields of the currents flowing along
the AW is followed by a quick rotation of the field in the
xz-plane at the entrance into the AW. This occurs at con-
stant magnetic field magnitude as can be seen in the bot-
tom panel of the left column in Fig.3. For E25A there
is little evidence of the fringe fields inBx before entrance
into the AW, however small positive perturbations appear af-
ter the AW exit. Note that at E17 Galileo entered the AW
at 8AW≈−90◦, which means at maximum strength of the
current in the AW, which explains the strong fringe field,
whereas at E25A Galileo entered the AW at a much smaller
value of8AW . The negative perturbations ofBx within the
AW are expected for a flyby at positivezB. The perturbation
magnitude is much smaller than in the E17 case and there
is little evidence of the AW in theBz component. The E26
data are similar to the E17 data, first a negative deviation be-
cause of the fringe fields and then positive perturbation in the
AW consitent with a flyby atzB<0. However, the magnetic
field magnitude changes because of the effects of closure cur-
rents flowing through Europa’s surface and ionosphere, as
the spacecraft passed much closer to the moon during this
flyby (see Table1). In this paper we do not discuss theBy
component, as this has little influence on our determination
of the shape of the AW.

5 Shrinking of the Alfv én Wing

Based on the data from the Galileo flybys that intersected the
AW, we seek to identify the shrinkage and displacement that
are implied by an induced magnetic field (Neubauer, 1999).
Athough no analytical expression is given for the shrinkage

of the AW, an estimate can be made from first principles. In
our model it is assumed that the interior of Europa, where
the eddy currents flow that respond to the time varying back-
ground magnetic field, is perfectly conducting. This approx-
imation justified by the results obtained byZimmer et al.
(2000) on this conductivity of Europa. It was shown that ba-
sically all of the time-varying component of the Jovian mag-
netic field was cancelled by currents in the moon (see also
Schilling et al., 2003). If no induced field is present in Eu-
ropa, then all field lines in a flux tube of radius 1RE penetrate
the moon, giving a magnetic fluxF=BmπR2

E . However, in
the presence of an inductive magnetic field (for a perfect con-
ductor inside the moon) the time varying components of the
external magnetic field are cancelled by the moon. In the
Eφ� coordinate systemBx,� andBy,� are time-varying. In
this case we find that the field penetrating into the moon is
only Bz,�, giving a magnetic fluxF=Bz,�πR2

E.
Above or below the moon a flux tube that contains field

lines that penetrate the moon will be reduced in cross section
to a fractionBz/Bm of the cross section area representing the
conducting moon (and its conducting atmosphere). There-
fore, the fractional reduction of the cross-section area of the
AW can be described by:

T = 1 −
Bz,�

Bm
. (6)

For EuropaBy,��Bx,� for the unperturbed time varying
background field, and thus the shinkage is mainly in the y-
direction. Ifγxy= tan−1(|By/Bx|), the shrinkage in thex and
y direction will be described bySx andSy, which are func-
tions of γxy. We will define these shrinkage factors as fol-
lows:

Sx = 1 − T ∗ cos2(γxy), (7)

Sy = 1 − T ∗ sin2(γxy), (8)

consistent with the requirement that ratio of the area of the
AW in the presence of induction (AAW,ind) to the area when
no induction is present (AAW,no), for small angleγxy is:

AAW,ind

AAW,no
= (1 − Sx)(1 − Sy) ≈ 1 − (Sx + Sy) = 1 − T .(9)
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Fig. 3. The magnetometer data of the E17, E25A and E26 flybys in the EφB coordinate system (see text). Shown are the three components of
the magnetic field and the magnitude. For E17 and E25A the magnetic field strength remains constant indicating that the interaction currents
produce a pure rotation. For E26 the data are influenced by closure current systems near the moon and the field magnitude is affected. The
vertical lines show where Galileo enters and exits the AW.

6 Fitting the Alfv én wing ellipse

The solution for the parameters of the Alfvén wing can be
obtained by transforming the Galileo trajectory to so-called
Alfv én wing coordinates, in which thezW-axis is aligned
with the appropriate AW characteristic (see Sect.2). This
transformation involves a rotation around the y-axis through
an angleξ=θbk+θA in the EφB coordinate system (see
Figs. 1 and2). In this coordinate system the cross section
at constantzW of the unperturbed AW is a circle with a ra-
dius of 1RE (or RE+Hion in case of the presence of an in-
teracting ionosphere of heightHion). In the presence of an
induced magnetic field, the shape of the AW will be distorted
as described above. Note that the shrinking in the y direction
(the main component) is invariant under rotation around the
y axis. We will useSx andSy as defined above.

In the new coordinate system the entrance and exit points
of Galileo for each flyby are related to the entrance and
exit points in the EφB coordinate systen(x0,B, y0,B, z0,B)

through:

xW = x0,B cosξ − z0,B sinξ, (10)

zW = x0,B sinξ + z0,B cosξ, (11)

for clockwise rotations over an angleξ around the y-axis in
Fig. 2. In this coordinate systemyW=y0,B, and the offset of
the AW by the induced magnetic field is given byyoff . The
initial value of θA is unknown, but can be estimated using
the PWS electron density (Gurnett et al., 1992; Kurth et al.,
2001) and an assumed average ion mass (see Table4). After
rotation, the equation to be solved for the entrance and the
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Table 2. The Alfvén wing characteristics used in fitting the ellipse and the field line tracing. Given are: the AW entry and exit times of the
spacecraft; the coordinates in both EφB and Eφ� and the background magnetic field in EφB and Eφ�.

EφB Eφ�

ID time xB yB zB Bx,B By,B Bz,B x� y� z� Bx,� By,� Bz,�
UT RE nT RE nT

E17 in 0356:42 2.06 −0.9 −2.47 73 −2 −431 2.06 −1.42 −2.21 76 −94 −429
out 0403:45 3.29 0.15 −2.18 3.29 −0.33 −2.16

E25A in 1635:24 3.28 −0.86 6.25 −20 4 −464 3.28 2.55 5.76 −14 −237 -385
out 1638:44 3.42 0.40 7.01 3.42 4.03 5.75

E26 in 1759:23 −0.84 −0.48 −0.76 −22 0 −432 −0.84 −0.07 −0.89 −23 208 −377
out 1801:22 −0.76 0.25 −1.16 −0.76 0.79 −0.89

Table 3. More encounter parameters: The angleφBO through which
the EφB coordinate system is rotated around the y-axis to obtain the
Eφ� coordinate system; the angleθbk of the magnetic field with
thezB axis; the size of the interacting bodyRA (moon radius plus
ionosphere) and the maximum currentImax flowing along the AW.
The value ofri in Eq. (5) can be taken as 0.95 for these encoun-
ters (seeNeubauer, 1999, Fig. 5). The values forv0=90 km/s and
ρ0=2500 AMU/cm3 are taken fromKivelson et al.(2004).

ID φB� θbk RA Imax
◦ ◦ km MA

E17 −12 −9.6 1560–1710 0.89–0.95
E25A 32 2.5 1560–1710 0.89–0.95
E26 29 2.9 1560–1710 0.89–0.95

exit points of an offset and shrunk circle is:

x2
W

S2
x

+
(yB − yoff)

2

S2
y

= 1, (12)

or after reorganizing to obtain the offset:

yoff = yB ±

√
1 − x2

W
S2

x

S2
y
, (13)

where it should be noted that in the case of an interacting
ionosphere the 1 in the square root should be replaced with
1+Hion/RE. Only for the correct choice ofθA (alternatively
ξ in Eq. (13) after Eqs. (10) and (11) have been substituted) is
the value ofyoff the same for the entrance and exit points. We
let ξ vary to obtain the intersection of the two curves describ-
ing the offsetyoff for the entrance and exit point. The graph-
ical result of this method is shown in Fig.4. The results for
this fitting procedure can also be found in Table4, where we
showyoff and assuming a charge-per-ion,Z=1.5 (Bagenal,
1994) we give the value for the ion mass-per-charge A/Z. As
a comparison we show the only published PLS plasma den-
sity data near Europa (Paterson et al., 1999) for the E4 and
E6 flyby.
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Fig. 4. The curves showing the dependence ofyoff on ξ as given in
Eqs. (10) and (13) for E17 (left), E25A (middle) and E26. Where
the curves for the entry and exit points intersect, the values of both
unknowns are found. For the E25A flyby the intersection atξ≈24
is the physically correct solution as the second solutionξ≈36 leads
to an unrealistic mass density (NA>4300) for Europa away from
the centre of Jovian plasma sheet.

The value obtained forθA=ξ−θbk for each of the fly-
bys can be used to estimate the local plasma densityNA,
assuming that the plasma is at full corotation near Europa
with vflow≈105 km/s. The Alfv́en velocity is obtained from
Eq. (1). One finds that:

NA =

(
21.8Bm[nT]

vA[km/s]

)2

,

= 0.043B2
m[nT] tan2 θAcm−3. (14)

Inserting the values forBm andθA from Table2 we obtain
the mass densityNA from Eq. (14), which we present in
Table4. We compare the numbers from theBagenal(1994)
torus modelρm (see also Kivelson et al., 2004), for the region
near Europa with our results. The mass densityNA agrees
well with the ranges given forρm, with E17 slightly exceed-
ing the maximum quoted value (Kivelson et al., 2004). We
use the electron density (Kurth et al., 2001), determined from
the upper hybrid frequency provided by the Plasma Wave
System (PWS) (Gurnett et al., 1992), and a charge-per-ion
of 1.5 (Bagenal, 1994; Kivelson et al., 2004) to calculate the
average ion mass. The results can be found in Table4. We
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find that our ion mass per charge, 10.0≤A/Z≤17.3, differs
significantly from the value in the literature,〈A〉/Z=12.3.
We will return to this matter later.

We have performed a similar fitting of the AW for the case
of a conducting interacting ionosphere around Europa with
Hion=150 km. The results are shown in Table4, where in the
column “fit RA=1.0/1.1” the values on the right-hand side
of the left slash should be read. As one would expect, for a
larger object in the flow the angleξ decreases for E17 which
is at the “downstream” side of the moon, whereasξ increases
for E26 which is at the “upstream” side. The determined
offset of the AWyoff naturally also changes.

7 Alfv én characteristics tracing around Europa

In order to check the results obtained from fitting the AW in
the previous section, a characteristics tracing was performed.
In the Eφ� coordinate system, the spacecraft remains at ap-
proximately the samez� during the flybys. Therefore, in this
coordinate system a plane atz�=zGalileo for each flyby has
been used to trace the AW characteristics back to Europa.
The direction of the AW characteristics is given by the vec-
tor sum of the plasma flow velocity,vflow=(105, 0, 0) km/s
and the Alfv́en velocityvA . To calculate the Alfv́en velocity,
the plasma densityNA as given in Table4 is used. For the
three flybys an area of 4RE by 4RE in the Eφ� xy-plane
was divided up into a grid of 0.05RE separated points in the
x- and y-direction. Each point was traced along the AW char-
acteristic and checked whether it reached Europa, or a region
of 1.1RE in case of a Europa with a 150 km ionosphere.

The result of this tracing can be found in Fig.5, where the
locations that reach Europa are coloured red and the locations
that pass within 1.1RE are coloured blue. The green line
represents Galileo’s flyby and the two cyan dots represent
the entry and exit points of the AW by the the spacecraft.

Secondly, the moon was traced to the aforementionedxy-
plane along the AW characteristic, under the assumption that
there was no induced magnetic field present in Europa. The
black ellipse in Fig.5 shows the size and the location of the
AW in case of no induced magnetic field. It is clear that the
red area is shrunk and offset with respect to the black ellipse.

The tracings show that the densities that were determined
in the previous section are acceptable. For the E17 flyby the
exit point lies slightly out of the blue area, whereas for the
other two flybys the entry and exit poinst are located very
near the red-blue boundary.

8 Discussion

We have used Galileo’s magnetometer data from three cross-
ings of Europa’s AW to study the influence of an induced
magnetic field. The cross-section of the AW is well described
by an ellipse, determined by the size of Europa (possibly in-
cluding an ionsphere), the angleθA by which the AW moves

away from the z-axis and the displacementyoff introduced
by an induced magnetic moment. Inductive magnetic fields,
generated in the moon by the time varying magnetic field of
Jupiter, shrink the cross section of the AW and displace it,
and must be taken into account. However, in first approxi-
mation, the induced fields do not influence the angleθA be-
tween the wing and the background field. This means that
by measuring the AW angleθA and e.g. knowing the plasma
flow velocity one can get an estimate of the local plasma den-
sity through Eqs. (1) and (2), without having to take the in-
duced field into account. A more detailed numerical mod-
elling of the AW interaction of Europa is currently underway
by Schilling et al.(2006).

8.1 Magnetic signature of entrance and exit

There are strong differences in the magnetic signature of the
entrance and exit of the AW, see Fig.3, in between flybys
but also comparing entrance and exit of one flyby. Theore-
tially, crossing a perfect, plane-parallel infinite current sheet,
there will be an abrupt turning of the magnetic field when
the spacecraft crosses the sheet. However, in the case of an
AW there is a different geometry (cylindrical) and the AW
surface current, as explained above in Eq. (4) varies over this
cylinder as:I (8AW)=I0 sin(8AW).

In the previous sections we discussed how how the space-
craft crosses the AW (see Fig.5). The maximum currents
will flow at maximum y in Fig. 5 and the least current at
maximumx. This means that in the case of E17 Galileo en-
ters the AW at the location of maximum current, and exits
the AW at the location of minimal current. Indeed, what
one can see in the data is that the entrance into the AW is
quite abrupt (after crossing a fringe field region) and the exit
of the AW is more gradual over a longer time span. Simi-
larly, in E25A the entrance and exit of the AW happens at
an estimated8AW≈±45◦, i.e. entrance at a location of “in-
termediate” current, note that the1Bx at entrance and exit
are roughly the same, whereas in E17 there is a significant
difference.

Before Galileo’s entrance into the AW during the E17
flyby there is a significant negative1Bx. This so-called
fringe field results from the fact that the AW surface cur-
rent is not an infinite plane, but curved and varying in current
strength. This effect can well be modeled with a wire-current
model for the AW (see e.g.Schilling et al., 2003). All three
crossings of the AW show this phenomenon, some more
clearly then others. Recent work bySchilling et al.(2006)
will investigates this, and a better insight will be gained on
how and where the currents flow along the AW.

8.2 E26

It may be noted that theBm signature for the E26 flyby shows
a significant rise of∼50 nT just before entering the AW and
quickly drops during the crossing of the AW. The E26 flyby
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Fig. 5. The cross section of the AW obtained in the Eφ� xy-plane by AW characteristic tracings for the E17, E25A and E26 flybys. The red
area shows the region which is connected to Europa through the AW characteristic and the blue area shows the region which connects to a
possible Europa ionosphere of 150 km. The straight line is Galileo’s orbit and the black ellipse is the location of the AW expected if there
were no inductive magnetic field present. The big dots on the orbit are the AW entry and exit points observed.

Table 4. The results from the AW fittings:S (a known parameter), the AW angleθA can be obtained fromξ and the offsetyoff . The plasma
mass densitiesNA near Europa as determined from the angleθA and Eq. (14), the results are given for two values of the obstacle size, i.e.
1RE and 1RE+Hion=1.1RE . As a comparison the electron densitiesne are given (Kurth et al., 2001). Nomimal values for the plasma
near Europa are: average ion mass〈A〉=18.5 AMU/ion, average ion chargeZ=1.5, (Bagenal, 1994; Kivelson et al., 2004). The PLS ion
densities for E4 and E6 have been taken fromPaterson et al.(1999).

fit RA = 1.0/1.1 Lit. PLS
ID S |B| ρm ne ξ yoff A/Z NA 〈A〉/Z 〈N〉 (E4, E6)

nT AMU/cm3 cm−3 ◦ RE AMU AMU cm−3 AMU cm−3

E17 0.96 446 200–3000 193 42/41 0.10/0.16 17.8/16.5 3463/3206 12.3 (20, 14)
E25A 0.85 452 200–3000 70 24/24 −0.27/−0.24 14.3/14.3 1511/1511 12.3 (20, 14)
E26 0.87 431 200–3000 20 7/10 −0.19/−0.22 10.0/18.0 201/362 12.3 (20, 14)

occurred at very low altitude (348.4 km, see Table1), close
to Europa’s ionosphere. The magnetic signature, therefore,
is influenced by the closure currents that flow through the
ionosphere and/or through the moon proper and by plasma
pickup.

In the Northern Hemisphere the current in the AW flows
down on the sub-Jovian side and up on the anti-Jovian side
(see Fig. 21.1 inKivelson et al., 2004). This means that the
closure currents flow away from Jupiter. As the flyby took
place near the upstream side of Europa (see Fig.5) we would
expect a negative1Bz produced by the closure currents.

A quick inspection of Galileo’s orbit shows that theBz
signature starts to decrease strongly when the spacecraft en-
tersy≈−1, whereas crossing the AW does not occur until
y≈−0.48. This means that apart from the closure currents
the mass loading near Europa also plays a part in creating a
magnetic signature. New pick-up ions will create a current

because of the corotational electric field in the Jovian magne-
tosphere. The current is in the same direction as the closure
current, and hence will enhance the magnetic signature. It is
quite likely that these pick up currents create theBz before
the spacecraft enters the AW.

Modelling the magnetic signature using a wire current
model representing the AW can rather well model theBx
andBy components, however fail to correctly model theBz
component (see Fig. 4 inSchilling et al., 2003). The model
included the AW and an induced magnetic field (and/or an
internal dipole or multipole) and no pick up currents. If it
would be possible to include this mass loading to the model
theBz will most like also be well fitted. Therefore, there is no
problem in using the E26 flyby to fit the offset and shrinkage
of the AW, even though the flyby sees a significant increase
of Bm.
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8.3 Average mass-per-charge

There is a difference between the derived ion mass-per-
chargeA/Z in this paper and the average value given in the
literature (Bagenal, 1994; Kivelson et al., 2004). The differ-
ence between our derived ion mass-per-charge and the aver-
age ion mass-per-charge in the literature cannot be explained
by the assumption that there is sub-corotation of the plasma
near Europa. For fixed Alfv́en Wing Angle,θA (as deter-
mined in Sect.6, and thus Mach number,MA , sub-corotation
(i.e. vflow<105 km/s) reduces the inferred the Alfvén veloc-
ity (see Eq.1), vA using Eq. (14) and hence implies an even
larger value ofNA and thusA/Z. Therefore, our high es-
timates ofNA during the flybys most probably reflect local
properties of the plasma near Europa.

The E17 flyby occurs while Europa is exiting the Jovian
plasma sheet and sputtering of particles from the moon’s sur-
face and pickup is assumed to be at near maximum rate,
whereas the E25A and E26 flybys occur when Europa is fur-
thest away from the Jovian plasma sheet and no sputtering
takes place. This explains why the ion mass-per-charge in-
ferred for the latter two flybys is close to the average ion mass
per charge 14.3 and 10.0 vs. 12.3. With increased sputtering
and pickup near the moon, and the main pickup ion beingO+

2
with A=32 the increased ion mass per charge of 17.3 is easily
explained.Volwerk et al.(2001) have shown that for two fly-
bys through Europa’s wake that the pickup rate of new ions
is significantly higher when Europa is in the Jovian current
sheet (E15) compared with when Europa is outside (E11). It
was shown that the mass loading rate of O+

2 ions was almost
3 times as high for E15 compared with E11. Indeed,Saur
et al. (1998) have modelled the molecular oxygen loss at a
rate of 8.5×1026 s−1, for Europa in the Jovian current sheet.
However, this loss is dominated by neutral molecular oxy-
gen, and the pick-up loss rate ofO+

2 is 1.2×1026 s−1 Using
the current results for E17, an estimate can be made of the
amount of O+2 that is needed to increase theA/Z. The elec-
tron density is known,N=193 cm−3, assume that a density
O is molecular oxygen and the rest is the usual plasma with
A/Z=12.3. Then the density of molecular oxygen is found
by:

12.3(N −O) + 32O = 17.8N, (15)

which leads toO≈53 cm−3. The molecular oxygen will
be transported away from Europa with the flow velocity
(∼105 km/s). Assuming a homogeneuos density of the
pickup the total loss rate can be estimated as:

Loss= O × vflow × π × R2
E ≈ 4.3 × 1025, (16)

where the pickup area is a lower estimate. This rate is ap-
proximately a factor 2 to 3 smaller than the rate calculated
numerically bySaur et al.(1998). This difference could be
explained by the column density of oxygen in the simula-
tion. Recently, (Smyth and Marconi, 2006) calculated the

loss rate of molecular oxygen from Europa at 5–10 kg/s. The
estimated loss rate from Eq. (16) implies 2.3 kg/s.

8.4 Comparison with numerical models

There have been many numerical models describing the in-
teraction of the Jovian magnetosphere with the Galilean
satellites.Linker et al.(1988, 1991, 1998) studied the inter-
action of Io with the plasma torus for two different scenarios,
Io is either conducting or magnetized. The former could be
used to describe Europa’s interaction. In these simulations
there is no significant offset or shrinkage found of the Alfvén
wing.

Another model discussed the interaction of the Jovian
magnetosphere with Europa (Saur et al., 1998). However,
this model deals mainly with the dynamics of the atmosphere
and ionosphere of Europa and the moon is taken as non-
conducting, which means that induction can only take place
in the ionosphere, while it has been shown to occur under
Europa’s icy surface (Zimmer et al., 2000) and an ionosphere
only may not be enough to cancel the time-varying compo-
nent of the Jovian magnetic field. In Fig. 10 (Saur et al.,
1998), the location of the Alfv́en wing currents are shown
as contour plots. The maximum current in the wings occurs
slightly downstream ofx=0, however the figure shows no
evidence of offset in the y-direction or shrinkage.

9 Conclusions

We have investigated the Alfvén Wing (AW) signature in the
magnetometer data of three Europa flybys. As expected from
theory we find that indeed the AW has shrunk and is offset
because of the presence of an induced magnetic field in the
moon in accordance withNeubauer(1998, 1999). Although
the fitting of the AW entrance and exit points has been done
by an implicit assumption of the shrinkageS, in an upcom-
ing paper Volwerk et al. (2007)1 will show that indeed this
approach is justified, the flux tube interacting with Europa is
shrunk by such a factor.

Tracing of the Alfv́en characteristics near the moon con-
firms that the values ofθA andyoff are consistent with the
modified Alfvén wing configureation. The inferred distor-
tions provide indirect support for the presence of an inductive
dipole moment in Europa.

An estimate of the average ion mass-per-charge in the
vicinity of Europa is made using the so-called AW angle,θA ,
and we find that when Europa is away from the Jovian plasma
sheet the estimated mass agrees well with that of published
models. However, with Europa in the Jovian plasma sheet the
local plasma density is enhanced by sputtering and associated

1Volwerk, M., Paranicas, C., Kivelson, M. G., and Khurana, K.
K.: Europa’s interaction with the plasma of the Jovian magneto-
sphere: The wake region, in preparation, 2007.
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ion pickup, leading to a much larger average ion mass-per-
charge than the standard model of the Jovian plasma sheet.
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Alfv én wing: Skewness and field aligned currents, EOS, 80,
F875, 1999.

Volwerk, M., Kivelson, M. G., and Khurana, K. K.: Wave activity in
Europa’s wake: Implications for ion pick-up, J. Geophys. Res.,
106, 26 033–26 048, 2001.

Wright, A. N. and Southwood, D. J.: Stationary Alfvénic structures,
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