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Abstract. In the frame of magnetized plasmas, reconnection
appears as an essential process for the description of plasma
acceleration and changing magnetic field topology. Under
the variety of reconnection regions in our solar system, we
focus our research onto the Earth’s magnetotail. Under cer-
tain conditions a Near Earth Neutral Line (NENL) is free to
evolve in the current sheet of the magnetotail. Reconnec-
tion in this region leads to the formation of Earth- and tail-
ward propagating plasma bulges, which can be detected by
the Cluster or Geotail spacecraft. Observations give rise to
the assumption that the evolved reconnection line does not
provide a steady state behavior, but is propagating towards
the tail (e.g., Baker et al., 2002). Based on a time-dependent
variant of the Petschek model of magnetic reconnection, we
present a method that includes an X-line motion and discuss
the effects of such a motion. We focus our main interest on
the shock structure and the magnetic field behavior, both for
the switch-on and the switch-off phase.

Keywords. Magnetospheric physics (Magnetotail; Storms
and substorms) – Space plasma physics (Magnetic reconnec-
tion)

1 Introduction

Magnetic reconnection is an important energy converting
plasma process, occurring at the solar corona or at plane-
tary magnetospheres, for instance. Due to the interaction
of two magnetized plasmas with opposite directed magnetic
fields, initially separated by a current sheet, magnetic energy
may be converted into kinetic energy of the plasma. An-
other important feature of this mechanism is the change of
the magnetic field configuration, meaning that magnetic field
lines from initially different topological regions get merged.

Correspondence to:S. A. Kiehas
(stefan.kiehas@stud.uni-graz.at)

The dissipative processes, leading to a field line merging in
the so-called diffusion region, can be specified in terms of a
source functionEr(t), the reconnection electric field (Biernat
et al., 1987). This electric field appears as a result of a local
breakdown of the ideal MHD constraint of infinite conduc-
tivity, meaning the appearance of a locally enhanced elec-
tric resistivity. With the release of stored magnetic field en-
ergy, incoming plasma gets accelerated and propagates along
the current sheet with Alfv́en velocity vA. Decades ago,
Petschek(1964) suggested that the appearance of a recon-
nection site is accompanied with the formation of large am-
plitude MHD waves and shocks that are generated inside the
diffusion region (Heyn et al., 1988).

This steady-state model of standing waves was extended
to a time-dependent model (e.g.,Pudovkin and Semenov,
1985; Biernat et al., 1987; Rijnbeek et al., 1991; Semenov
et al., 1992), including the basic Petschek mechanism. The
time-dependent model acts on the assumption that enhanced
electric resistivity appears in a local area in the current sheet,
exhibiting the onset of magnetic reconnection. This active
phase of reconnection is called the switch-on phase. Even-
tually, the reconnection electric field, generated by enhanced
resistivity, drops to zero and reconnection ceases. At this mo-
ment, the switch-on phase passes into the switch-off phase.
The shocks, previously generated in the diffusion region, de-
tach from the reconnection site and propagate in opposite di-
rections along the current sheet, enclosing the outflowing,
accelerated plasma. For this reason, the area bounded by the
shocks is called outflow region. An important feature is the
fact that magnetic field lines from either side of the current
sheet are connected via the shocks, as shown in Fig.1. This
implies the appearance of a topologically new region of re-
connected flux, called field reversal region (FRR). The point,
where the magnetic fields appear in an X-type configuration
is called X-point. In the three dimensional case we work with
an X-line.
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acceleration and changing magnetic field topology. Under
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evolve in the current sheet of the magnetotail. Reconnec-
tion in this region leads to the formation of Earth– and tail-
ward propagating plasma bulges, which can be detected by
the Cluster or Geotail spacecraft. Observations give rise to
the assumption that the evolved reconnection line does not
provide a steady state behavior, but is propagating towards
the tail (e.g., Baker et al., 2002). Based on a time–dependent
variant of the Petschek model of magnetic reconnection, we
present a method that includes an X–line motion and discuss
the effects of such a motion. We focus our main interest on
the shock structure and the magnetic field behavior, both for
the switch–on and the switch–off phase.

1 Introduction

Magnetic reconnection is an important energy converting
plasma process, occurring at the solar corona or at plane-
tary magnetospheres, for instance. Due to the interaction
of two magnetized plasmas with opposite directed magnetic
fields, initially separated by a current sheet, magnetic energy
may be converted into kinetic energy of the plasma. An-
other important feature of this mechanism is the change of
the magnetic field configuration, meaning that magnetic field
lines from initially different topological regions get merged.
The dissipative processes, leading to a field line merging in
the so–called diffusion region, can be specified in terms of a
source function Er(t), the reconnection electric field (Bier-
nat et al., 1987). This electric field appears as a result of a
local breakdown of the ideal MHD constraint of infinite con-
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Fig. 1. Geometrical configuration of time–dependent reconnection.
Two antiparallel directed magnetic fields are separated by a current
sheet. The shocks, denoted by S−, propagate in opposite directions
along the current sheet. The shaded regions, enclosed by the shocks,
represent the outflow or field reversal regions. The dashed lines de-
note the separatrices, which separate regions of different magnetic
field topology (after Semenov et al. (2004)).
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nection site is accompanied with the formation of large am-
plitude MHD waves and shocks that are generated inside the
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This steady–state model of standing waves was extended
to a time-dependent model (e.g., Pudovkin and Semenov,
1985; Biernat et al., 1987; Rijnbeek et al., 1991; Semenov
et al., 1992), including the basic Petschek mechanism. The
time–dependent model acts on the assumption that enhanced
electric resistivity appears in a local area in the current sheet,
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phase of reconnection is called the switch–on phase. Even-
tually, the reconnection electric field, generated by enhanced
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Fig. 1. Geometrical configuration of time-dependent reconnection.
Two antiparallel directed magnetic fields are separated by a current
sheet. The shocks, denoted byS−, propagate in opposite directions
along the current sheet. The shaded regions, enclosed by the shocks,
represent the outflow or field reversal regions. The dashed lines de-
note the separatrices, which separate regions of different magnetic
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Especially with the four Cluster spacecraft, exhibiting a
tetrahedron constellation, it is possible to observe magnetic
reconnection in Earth’s magnetotail in more detail (e.g.,Cat-
tell et al., 2005). With this special spacecraft constellation it
is possible to distinguish between temporal and spatial phe-
nomena. One result of observing magnetic reconnection in
the magnetotail was the indication of a tailward moving X-
line (e.g.,Runov et al., 2003). In the following, a model for
time-dependent reconnection with a moving X-line is pre-
sented. Owen and Cowley (1987) showed that a moving
X-line leads to a compression of the magnetic field ahead
the X-line and, therefore, to an increase ofBz as well as a
thickening of the field and particle layers. Behind the X-line,
a decrease ofBz and thinner layers occur. WhereasOwen
and Cowley(1987) implemented a sudden change in the re-
connection rate in their model, the presented model is based
upon a continuous build-up and decay of the reconnection
rate, associated with impulsive reconnection.

In Sect.2 we summarize the basic considerations, which
are necessary for our investigations. In Sect.3 we discuss
the structure of the Petschek-shocks for the assumption of a
moving X-line. Sections4 and5 deal with the behavior of
the magnetic field in the outflow and inflow region, respec-
tively. Effects of compressibility are discussed in Sect.6. In
Sect.7 we show some qualitative observational aspects for
spacecraft measurements in the vicinity of an reconnection
event. A summary of our results is given in Sect.8.

2 Basic considerations

We consider two oppositely oriented magnetic fields of the
same field strength, embedded in two identical, uniform and
initially stationary incompressible plasmas, separated by a
current sheet, modelled as a tangential discontinuity along
the x-axis. In our geometry the x-axis is directed parallel and
the z-axis perpendicular to the current sheet. The magnetic

field B, total pressureP , composed of the plasma pressurep

and magnetic pressureB2/8π , can be written as,

B1,2 = (B1,2, 0),

P1 = P2 ⇒ p1 +
B1

2

8π
= p2 +

B2
2

8π
,

where subscripts 1 and 2 denote the upper and lower half
plane, respectively. The densityρ, pressurep, magnetic field
strengthB and plasma velocityv are linked as

ρ1 = ρ2 = const., p1 = p2,

B1 = −B2 = B0.

As a boundary condition, we assume a reconnection electric
field Er(t), acting as initiator of the reconnection process.
With the inequalityEr�EA=B0vA/c we discuss this prob-
lem under the aspect of weak reconnection. This implies the
identification of a small parameter

ε =
Er

EA

� 1.

QuantityEA denotes the Alfv́en electric field, formed by the
initial magnetic fieldB0 and the Alfv́en velocityvA. Con-
sidering active reconnection during the time interval 0<t≤1,
Er is modelled as a sine-pulse in the form,

Er(t) =

{
0 t > 1
sin(π t) 0 < t ≤ 1.

By introducing the eight-dimensional MHD state vector (Ri-
jnbeek and Semenov, 1993), information about all eight vari-
ables in the MHD equation set (e.g.,Akhiezer et al., 1975)
are summarized in one single quantity

U = U(ρ, p, B, v).

Since we discuss weak reconnection, the small parameterε

allows us to expand the MHD variables by using an asymp-
totic series (see alsoKiendl et al., 1997; Alexeev et al., 2001),

U = U(0)
+ εU(1)

+ ..., (1)

where subscripts 0 and 1 denote undisturbed and disturbed
quantities, respectively. In the weak reconnection approxi-
mation, the outflow region can be considered as a boundary
layer, meaning that the longitudinal scale in x-direction is
much larger than the perpendicular scale in z-direction (Son-
nerup, 1970). An order-of-magnitude estimation gives (Se-
menov et al., 2004),

P, vx, Bx, x ∼ 1,

vz, Bz, z ∼ ε.

Due to this approximation, we introduce new boundary layer
variables,

x̃ = x, B̃x = Bx, ṽx = vx, P̃ = P,

z̃ = z/ε, B̃z = Bz/ε, ṽz = vz/ε. (2)
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The behavior of the magnetic field and the plasma in the
field reversal region can be determined by using the Rankine-
Hugoniot jump equations (e.g.,Baumjohann and Treumann,
1996) and the equations of ideal MHD (e.g.,Akhiezer et al.,
1975). For the plasma velocity and the magnetic field we can
write

ṽ(0)
x (x, z, t) = vA = const.,

ṽ(1)
z (x, z, t) = 0,

B̃(0)
x (x, z, t) = 0,

B̃(1)
z (x, z, t) = B0g(x ∓ vAt),

as shown bySemenov et al.(2004) andBiernat et al.(1987).
The functiong(x ∓ vAt) is an arbitrary function of its argu-
ment.

3 Structure of the shock

Inside the diffusion region so-called Petschek shocks are
generated and propagate into the surrounding medium. We
denote the shape of the shock by

z = εf (x, t), (3)

with the surface normal vectorn=(ε∂f/∂x,−1). The shock
speed is given byu=(∂x/∂t, ∂z/∂t). Thus, the correspond-
ing shock speed normal to the surface can be written as
u=−ε∂f/∂t .

With the results ofBiernat et al.(1987) we can write the
functionf (x, t) from Eq. (3) in the upper half-plane

f ±(x, t) = ±
c

vAB0

1(
1 ∓

U
vA

)2
(x−Ut) Er

(
x ∓ vAt

U ∓ vA

)
, (4)

with c andU as the speed of light and the velocity of the
reconnection line, respectively. Formulas are written in the
CGS-unit system. Since we suppose an X-line motion with a
constant velocityU along the current sheet, it is necessary to
distinguish betweenx>Ut andx<Ut , denoted by plus and
minus signs, respectively. The termEr([x∓vAt]/[U∓vA])

represents the reconnection electric field as a function of its
argument. For the special caseU=0, the functionsf + and
f − are

f +(x, t) = f −(−x, t) =
c

vAB0
x Er

(
t −

x

vA

)
,

which can also be found for the normalized case in the paper
of Semenov et al.(2004). For the caseU=0, the shape of the
shock structures moving in positive and negative x-direction
is symmetric with respect to the z-axis, as shown in Fig.2.

Since the switch-on phase lasts from 0<t≤1, both panels
show the shock structure during active reconnection. In the
course of time, the structure blows up in x- and z-direction,
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which can also be found for the normalized case in the paper
of Semenov et al. (2004). For the case U = 0, the shape
of the shock structures moving in positive and negative x–
direction is symmetric with respect to the z–axis, as shown
in Fig. 2.

Since the switch–on phase lasts from 0 < t ≤ 1, both
panels show the shock structure during active reconnection.
In the course of time, the structure blows up in x– and z–
direction, but still shows a symmetric behavior. This chang-
ing in shape and size can be seen in more detail in Fig. 3.

Fig. 4 shows the same situation for a moving reconnec-
tion line with a velocity U = 0.5vA. The reconnection
line, again denoted by a dot, reaches its maximum distance
from the initial reconnection site x = 0.5 when reconnection
ceases. During this motion, the rightward evolved shocks
get squeezed in x–direction, whereas the leftward evolved
shocks get stretched in x–direction. For the z–elongation of
the shocks the situation is vice versa.

Fig. 5 shows the situation after reconnection ceased for
different velocities of the reconnection line. Reconnection
starts at time t = 0, when in the diffusion region non–
ideal MHD holds and finite conductivity appears. After time
t = 1, when the system returns into a stable state, the re-
connection electric field drops to zero. Up to the time of
switch–off, the diffusion region can be considered as a con-
tinuous emitter of MHD waves. After switch–off no more
MHD waves are generated by the reconnection process and
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Fig. 2. Structure of the field reversal region during active recon-
nection (switch–on phase) for the times t = 0.3 (upper panel) and
t = 0.9 (lower panel) and velocity of the reconnection line U = 0.
The reconnection line is denoted by a dot in the center, constant at
xr = zr = 0. Mind the different axis scaling in the upper and lower
panel.

no more reconnected flux is added to the system. This im-
plies that the outflow regions detach from the original site
of reconnection and the current sheet is re–established in its
wake. Since the previously generated MHD waves continue
to propagate, the outflow regions now appear as a pair of
solitary waves propagating in opposite directions along the
current sheet. In the course of time, the outflow regions con-
tinue to change both, in shape and size, as in the case for a
fixed X–line.

With the lower panels of Fig. 5, a clear correlation be-
tween the X–line velocity and the degree of asymmetry be-
tween both shock structures is evident.
During the switch–on phase, the volume of the shocks in-
creases nonlinearly, as it is shown in the upper panel of Fig.
6, which displays the growth of the shock during active re-
connection during the time 0 < t ≤ 1. After reconnection

Fig. 2. Structure of the field reversal region during active recon-
nection (switch-on phase) for the timest=0.3 (upper panel) and
t=0.9 (lower panel) and velocity of the reconnection lineU=0.
The reconnection line is denoted by a dot in the center, constant
atxr=zr=0. Mind the different axis scaling in the upper and lower
panel.

but still shows a symmetric behavior. This changing in shape
and size can be seen in more detail in Fig.3.

Figure 4 shows the same situation for a moving recon-
nection line with a velocityU=0.5vA. The reconnection
line, again denoted by a dot, reaches its maximum distance
from the initial reconnection sitex=0.5 when reconnection
ceases. During this motion, the rightward evolved shocks
get squeezed in x-direction, whereas the leftward evolved
shocks get stretched in x-direction. For the z-elongation of
the shocks the situation is vice versa.

Figure5 shows the situation after reconnection ceased for
different velocities of the reconnection line. Reconnection
starts at timet=0, when in the diffusion region non-ideal
MHD holds and finite conductivity appears. After timet=1,
when the system returns into a stable state, the reconnection
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Fig. 3. Evolution of the shock structure in the first quadrant. For
U = 0 the shape of the shock is plotted for t = 0.5, t = 0.7,
t = 0.9, t = 2, t = 3.5 (from left to right).

ceased, the growth increases linearly with time, as figured in
the lower panel. There is no difference neither in total growth
nor in the evolution between leftward and rightward propa-
gating shocks. The values on the axis of ordinates in Fig.
6 do not represent true values for the volume of the shock.
In the strict sense, the calculation of the volume is only the
calculation of the surface area in the x–z–plane. Since no
change in shape in y–direction is assumed, this function rep-
resents the temporal behavior of the shock structure.

4 Magnetic field behavior in the outflow region

For the computational analysis of the problem it is conve-
nient to introduce normalized quantities. The normaliza-
tion is done with respect to the initial undisturbed magnetic
field B0 and the Alfvén velocity vA. The component B̃

(0)
z

can be derived from the ideal MHD equations. Assuming
ṽ

(0) = (±1, 0) and B̃
(0)
x = 0, this yields

∂B̃
(0)
z

∂t
±

∂B̃
(0)
z

∂x
= 0,

with B̃
(0)
z = F ((x ∓ t)/(U ∓ 1)) as the general solution for

this equation (Semenov et al., 2004). The arbitrary function
F ((x ∓ t)/(U ∓ 1)) can be concretized through the bound-
ary condition at the reconnection line at x = 0 by using the
general form of the reconnection electric field for the nor-
malized case, in the frame of reference of the reconnection
line

Er = (±ṽ(0)
x − U)B̃(0)

z .

With ṽ
(0)
x = vA = 1, this yields

B̃(0)
z = −

1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

)

= F

(

x ∓ t

U ∓ 1

)

, (5)
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nection (switch–on phase) for the times t = 0.3 (upper panel)
and t = 0.9 (lower panel) and velocity of the reconnection line
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and thus

B̃ =

(

εB̃(1)
x ,−

1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

))

. (6)

The magnetic field shows an undisturbed behavior only
in z–direction in the field reversal region. Therefore, it is
sometimes convenient to work with a magnetic field in the
outflow region which has only a z–component. The behavior
of the z–component of the magnetic field is shown in Fig. 7.
The upper panel shows the situation for the case of a fixed
X–line. In this case, the magnetic field shows a highly anti-
symmetric behavior in the leftward and rightward propagat-
ing shock structures. The magnetic field is plotted for three
times t1 = 0.3, t2 = 0.5, and t3 = 0.8 during active re-
connection (0 < t ≤ 1). It can be seen that the magnetic
field strength increases with time continuously in both shock
structures and that a clear bipolar behavior is exhibited. This

Fig. 3. Evolution of the shock structure in the first quadrant. For
U=0 the shape of the shock is plotted fort=0.5, t=0.7, t=0.9,
t=2, t=3.5 (from left to right).

electric field drops to zero. Up to the time of switch-off,
the diffusion region can be considered as a continuous emit-
ter of MHD waves. After switch-off no more MHD waves
are generated by the reconnection process and no more re-
connected flux is added to the system. This implies that the
outflow regions detach from the original site of reconnection
and the current sheet is re-established in its wake. Since the
previously generated MHD waves continue to propagate, the
outflow regions now appear as a pair of solitary waves prop-
agating in opposite directions along the current sheet. In the
course of time, the outflow regions continue to change both,
in shape and size, as in the case for a fixed X-line.

With the lower panels of Fig.5, a clear correlation be-
tween the X-line velocity and the degree of asymmetry be-
tween both shock structures is evident.

During the switch-on phase, the volume of the shocks in-
creases nonlinearly, as it is shown in the upper panel of Fig.6,
which displays the growth of the shock during active recon-
nection during the time 0<t≤1. After reconnection ceased,
the growth increases linearly with time, as figured in the
lower panel. There is no difference neither in total growth
nor in the evolution between leftward and rightward propa-
gating shocks. The values on the axis of ordinates in Fig.6
do not represent true values for the volume of the shock. In
the strict sense, the calculation of the volume is only the cal-
culation of the surface area in the x-z-plane. Since no change
in shape in y-direction is assumed, this function represents
the temporal behavior of the shock structure.

4 Magnetic field behavior in the outflow region

For the computational analysis of the problem it is conve-
nient to introduce normalized quantities. The normaliza-

4 S. A. Kiehas et al.: Moving Reconnection Line

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x−direction

z−
di

re
ct

io
n

Fig. 3. Evolution of the shock structure in the first quadrant. For
U = 0 the shape of the shock is plotted for t = 0.5, t = 0.7,
t = 0.9, t = 2, t = 3.5 (from left to right).

ceased, the growth increases linearly with time, as figured in
the lower panel. There is no difference neither in total growth
nor in the evolution between leftward and rightward propa-
gating shocks. The values on the axis of ordinates in Fig.
6 do not represent true values for the volume of the shock.
In the strict sense, the calculation of the volume is only the
calculation of the surface area in the x–z–plane. Since no
change in shape in y–direction is assumed, this function rep-
resents the temporal behavior of the shock structure.

4 Magnetic field behavior in the outflow region

For the computational analysis of the problem it is conve-
nient to introduce normalized quantities. The normaliza-
tion is done with respect to the initial undisturbed magnetic
field B0 and the Alfvén velocity vA. The component B̃

(0)
z

can be derived from the ideal MHD equations. Assuming
ṽ

(0) = (±1, 0) and B̃
(0)
x = 0, this yields

∂B̃
(0)
z

∂t
±

∂B̃
(0)
z

∂x
= 0,

with B̃
(0)
z = F ((x ∓ t)/(U ∓ 1)) as the general solution for

this equation (Semenov et al., 2004). The arbitrary function
F ((x ∓ t)/(U ∓ 1)) can be concretized through the bound-
ary condition at the reconnection line at x = 0 by using the
general form of the reconnection electric field for the nor-
malized case, in the frame of reference of the reconnection
line

Er = (±ṽ(0)
x − U)B̃(0)

z .

With ṽ
(0)
x = vA = 1, this yields

B̃(0)
z = −

1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

)

= F

(

x ∓ t

U ∓ 1

)

, (5)
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and t = 0.9 (lower panel) and velocity of the reconnection line
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and thus

B̃ =

(

εB̃(1)
x ,−

1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

))

. (6)

The magnetic field shows an undisturbed behavior only
in z–direction in the field reversal region. Therefore, it is
sometimes convenient to work with a magnetic field in the
outflow region which has only a z–component. The behavior
of the z–component of the magnetic field is shown in Fig. 7.
The upper panel shows the situation for the case of a fixed
X–line. In this case, the magnetic field shows a highly anti-
symmetric behavior in the leftward and rightward propagat-
ing shock structures. The magnetic field is plotted for three
times t1 = 0.3, t2 = 0.5, and t3 = 0.8 during active re-
connection (0 < t ≤ 1). It can be seen that the magnetic
field strength increases with time continuously in both shock
structures and that a clear bipolar behavior is exhibited. This

Fig. 4. Structure of the field reversal region during active reconnec-
tion (switch-on phase) for the timest=0.3 (upper panel) andt=0.9
(lower panel) and velocity of the reconnection lineU=0.5 vA.
Mind the different axis scaling in the upper and lower panel.

tion is done with respect to the initial undisturbed magnetic
field B0 and the Alfv́en velocityvA. The component̃B(0)

z

can be derived from the ideal MHD equations. Assuming
ṽ(0)

=(±1, 0) andB̃
(0)
x =0, this yields

∂B̃
(0)
z

∂t
±

∂B̃
(0)
z

∂x
= 0,

with B̃
(0)
z =F ((x∓t)/(U∓1)) as the general solution for this

equation (Semenov et al., 2004). The arbitrary function
F ((x∓t)/(U∓1)) can be concretized through the boundary
condition at the reconnection line atx=0 by using the gen-
eral form of the reconnection electric field for the normalized
case, in the frame of reference of the reconnection line

Er = (±ṽ(0)
x − U)B̃(0)

z .
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Fig. 6. Growth of the shock structure. The upper and lower panels
show the growth during switch–on and switch–off phase, respec-
tively.

is due to the fact that the reconnected magnetic field in the
rightward propagating outflow region is oppositely directed
to the field in the leftward propagating structure. The lower
panel of Fig. 7 shows the magnetic field behavior in the field
reversal region for an unsteady behavior of the X–line. A
motion with U = 0.5 vA in positive x–direction is assumed.
The magnetic field in the leftward propagating shock struc-
ture has finite values over a larger x–range, due to the size
of the shock structure that is stretched in x–direction. The
field strength does not reach values as high as in the situation
for U = 0. An opposite situation is given in the rightward
plasma bulge, due to a compression of the outflow region
in x–direction. In the latter, the magnetic field strength is
approximately doubled compared to the field strength in the
leftward propagating structure for t = 0.8.

Fig. 5. Shape of the shocks. The upper panel shows the shape
of the shock structures for the caseU=0 andt=2, the middle for
U=0.3 vA andt=2 and the lower panel for the caseU=0.5 vA and
t=2. The dot represents the final position of the reconnection line.

S. A. Kiehas et al.: Moving Reconnection Line 5

−3 −2 −1 0 1 2 3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x−direction

z−
di

re
ct

io
n

 

 

shock
X−line

U = 0

−3 −2 −1 0 1 2 3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x−direction

z−
di

re
ct

io
n

 

 

shock
X−line

U = 0.3

−3 −2 −1 0 1 2 3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x−direction

z−
di

re
ct

io
n

 

 

shock
X−Line

U = 0.5

Fig. 5. Shape of the shocks. The upper panel shows the shape of
the shock structures for the case U = 0 and t = 2, the middle for
U = 0.3 vA and t = 2 and the lower panel for the case U = 0.5 vA

and t = 2. The dot represents the final position of the reconnection
line.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

g
ro

w
th

 o
f 

th
e 

sh
o

ck
 s

tr
u

ct
u

re
 z

+

0 20 40 60 80 100
0

1

2

3

4

5

6

7

time

g
ro

w
th

 o
f 

th
e 

sh
o

ck
 s

tr
u

ct
u

re
 z

+

Fig. 6. Growth of the shock structure. The upper and lower panels
show the growth during switch–on and switch–off phase, respec-
tively.

is due to the fact that the reconnected magnetic field in the
rightward propagating outflow region is oppositely directed
to the field in the leftward propagating structure. The lower
panel of Fig. 7 shows the magnetic field behavior in the field
reversal region for an unsteady behavior of the X–line. A
motion with U = 0.5 vA in positive x–direction is assumed.
The magnetic field in the leftward propagating shock struc-
ture has finite values over a larger x–range, due to the size
of the shock structure that is stretched in x–direction. The
field strength does not reach values as high as in the situation
for U = 0. An opposite situation is given in the rightward
plasma bulge, due to a compression of the outflow region
in x–direction. In the latter, the magnetic field strength is
approximately doubled compared to the field strength in the
leftward propagating structure for t = 0.8.

Fig. 6. Growth of the shock structure. The upper and lower pan-
els show the growth during switch-on and switch-off phase, respec-
tively.

With ṽ
(0)
x =vA=1, this yields

B̃(0)
z = −

1

U ∓ 1
Er

(
x ∓ t

U ∓ 1

)
= F

(
x ∓ t

U ∓ 1

)
, (5)

and thus

B̃ =

(
εB̃(1)

x , −
1

U ∓ 1
Er

(
x ∓ t

U ∓ 1

))
. (6)

The magnetic field shows an undisturbed behavior only in
z-direction in the field reversal region. Therefore, it is some-
times convenient to work with a magnetic field in the out-
flow region which has only a z-component. The behavior
of the z-component of the magnetic field is shown in Fig.7.
The upper panel shows the situation for the case of a fixed
X-line. In this case, the magnetic field shows a highly anti-
symmetric behavior in the leftward and rightward propagat-
ing shock structures. The magnetic field is plotted for three
timest1=0.3, t2=0.5, andt3=0.8 during active reconnection
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Fig. 7. Behavior of the z–component of the magnetic field in the
field reversal region for a magnetic field topology as illustrated in
Fig. 1. In the upper panel, the assumption U = 0 holds, whereas in
the lower panel the case U = 0.5 vA is shown. Both functions are
calculated for times t = 0.3, t = 0.5, t = 0.8.

5 Magnetic field behavior in the inflow region

The magnetic field in the outflow region from Equation (6)
yields with Equation (2),

B =

(

εBx
(1),−ε

1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

))

.

An approach for the magnetic field in the inflow region can
be achieved by using a Taylor expansion (1) as,

B = (1 + εBx
(1), εBz

(1)). (7)

Using the jump relation
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Fig. 8. Behavior of the magnetic field x–component in the inflow
region. In the upper panel, the assumption U = 0 holds, whereas in
the lower panel, the case U = 0.5 vA is shown. Both functions are
calculated for t = 2. Besides the magnetic field strength, the actual
positions of the field reversal regions are shown. The dot represents
the final position of the reconnection line again. Bx is blown up by
the factor 10 for a better visibility.

+ ε
1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

)

. (8)

Neglecting terms of order O(ε2), the boundary condition
Bz

(1)|z=0 in the inflow region can be written as

Bz
(1)|z=0 = −

1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

)

+
∂f

∂x
.

The shape of the shock from Equation (4) appears in the nor-
malized case as

f±(x, t) = ±
1

(1 ∓ U)
2 (x − Ut)Er

(

x ∓ t

U ∓ 1

)

.

Fig. 7. Behavior of the z-component of the magnetic field in the
field reversal region for a magnetic field topology as illustrated in
Fig. 1. In the upper panel, the assumptionU=0 holds, whereas in
the lower panel the caseU=0.5vA is shown. Both functions are
calculated for timest=0.3, t=0.5, t=0.8.

(0<t≤1). It can be seen that the magnetic field strength in-
creases with time continuously in both shock structures and
that a clear bipolar behavior is exhibited. This is due to
the fact that the reconnected magnetic field in the rightward
propagating outflow region is oppositely directed to the field
in the leftward propagating structure. The lower panel of
Fig. 7 shows the magnetic field behavior in the field rever-
sal region for an unsteady behavior of the X-line. A motion
with U=0.5 vA in positive x-direction is assumed. The mag-
netic field in the leftward propagating shock structure has fi-
nite values over a larger x-range, due to the size of the shock
structure that is stretched in x-direction. The field strength
does not reach values as high as in the situation forU=0. An
opposite situation is given in the rightward plasma bulge, due
to a compression of the outflow region in x-direction. In the
latter, the magnetic field strength is approximately doubled

compared to the field strength in the leftward propagating
structure fort=0.8.

5 Magnetic field behavior in the inflow region

The magnetic field in the outflow region from Eq. (6) yields
with Eq. (2),

B =

(
εBx

(1), −ε
1

U ∓ 1
Er

(
x ∓ t

U ∓ 1

))
.

An approach for the magnetic field in the inflow region can
be achieved by using a Taylor expansion (1) as,

B = (1 + εBx
(1), εBz

(1)). (7)

Using the jump relation

[[
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=0 andn=(ε
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, −1), gives
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Neglecting terms of orderO(ε2), the boundary condition
Bz

(1)
|z=0 in the inflow region can be written as

Bz
(1)

|z=0 = −
1

U ∓ 1
Er

(
x ∓ t

U ∓ 1

)
+
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.

The shape of the shock from Eq. (4) appears in the normal-
ized case as

f ±(x, t) = ±
1

(1 ∓ U)2
(x − Ut) Er

(
x ∓ t

U ∓ 1

)
.

Hence, the first order componentBz at z=0 in the inflow
region is

Bz
(1)

|z=0 = −
1

U ∓ 1
Er

(
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)
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×
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′

(
x ∓ t
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))
, (9)

whereEr
′

(x∓t/U∓1) is the derivative of the electric field
with respect tox. With the solution of the Dirichlet problem
in a half plane, given by the Poisson integral (Spiegel, 1964),
we can compute the behavior of the magnetic field in the
inflow region, using

Bx
(1)

=
1

π

∫ t

−t

(x − ξ)Bz
(1)(ξ, 0, t)

(x − ξ)2 + z2
dξ, (10)

and

Bz
(1)

=
z

π

∫ t

−t

Bz
(1)(ξ, 0, t)

(x − ξ)2 + z2
dξ, (11)

whereBz
(1)(ξ, 0, t) is the magnetic field z-component vary-

ing along the x-axis as in Eq. (9). The total magnetic field
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Fig. 7. Behavior of the z–component of the magnetic field in the
field reversal region for a magnetic field topology as illustrated in
Fig. 1. In the upper panel, the assumption U = 0 holds, whereas in
the lower panel the case U = 0.5 vA is shown. Both functions are
calculated for times t = 0.3, t = 0.5, t = 0.8.

5 Magnetic field behavior in the inflow region

The magnetic field in the outflow region from Equation (6)
yields with Equation (2),

B =
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εBx
(1),−ε
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))

.

An approach for the magnetic field in the inflow region can
be achieved by using a Taylor expansion (1) as,

B = (1 + εBx
(1), εBz

(1)). (7)
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Fig. 8. Behavior of the magnetic field x–component in the inflow
region. In the upper panel, the assumption U = 0 holds, whereas in
the lower panel, the case U = 0.5 vA is shown. Both functions are
calculated for t = 2. Besides the magnetic field strength, the actual
positions of the field reversal regions are shown. The dot represents
the final position of the reconnection line again. Bx is blown up by
the factor 10 for a better visibility.
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Neglecting terms of order O(ε2), the boundary condition
Bz

(1)|z=0 in the inflow region can be written as

Bz
(1)|z=0 = −
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)

+
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The shape of the shock from Equation (4) appears in the nor-
malized case as
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.

Fig. 8. Behavior of the magnetic field x-component in the inflow
region. In the upper panel, the assumptionU=0 holds, whereas in
the lower panel, the caseU=0.5vA is shown. Both functions are
calculated fort=2. Besides the magnetic field strength, the actual
positions of the field reversal regions are shown. The dot represents
the final position of the reconnection line again.Bx is blown up by
the factor 10 for a better visibility.

in the inflow region can be achieved by using Eqs. (10), (11)
and (7). Figures8 and 9 show the behavior of the x- and
z-components of the magnetic field in the inflow region.

The upper panel of Fig.8 shows the behavior of the mag-
netic field x-component in the case of a steady-state X-line
for a point in time during switch-off phase. The actual po-
sitions of the shocks are displayed as well. Discussing the
behavior of the magnetic field from left to right, the first sig-
nature is a decrease in the field strength. This is due to an
increase in the magnetic field z-component, resulting from a
change in the magnetic field topology due to the appearance
of the shock. At the location, where the shock reaches its
highest elongation in z-direction, the magnetic field strength
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Hence, the first order component Bz at z = 0 in the inflow
region is

Bz
(1)|z=0 = −

1

U ∓ 1
Er

(

x ∓ t

U ∓ 1

)

±
1

(1 ∓ U)
2 ×

×

(

Er

(
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U ∓ 1

)

+
x − Ut

U ∓ 1
Er

′

(

x ∓ t

U ∓ 1

))

, (9)

where Er

′

(x ∓ t/U ∓ 1) is the derivative of the electric field
with respect to x. With the solution of the Dirichlet problem
in a half plane, given by the Poisson integral (Spiegel, 1964),
we can compute the behavior of the magnetic field in the
inflow region, using

Bx
(1) =

1

π

∫ t

−t

(x − ξ)Bz
(1)(ξ, 0, t)

(x − ξ)2 + z2
dξ, (10)

and

Bz
(1) =

z

π

∫ t

−t

Bz
(1)(ξ, 0, t)

(x − ξ)2 + z2
dξ, (11)

where Bz
(1)(ξ, 0, t) is the magnetic field z–component

varying along the x–axis as in Equation (9). The total mag-
netic field in the inflow region can be achieved by using
Equations (10), (11) and (7). Figs. 8 and 9 show the be-
havior of the x– and z–components of the magnetic field in
the inflow region.

The upper panel of Fig. 8 shows the behavior of the mag-
netic field x–component in the case of a steady–state X–line
for a point in time during switch–off phase. The actual po-
sitions of the shocks are displayed as well. Discussing the
behavior of the magnetic field from left to right, the first sig-
nature is a decrease in the field strength. This is due to an
increase in the magnetic field z–component, resulting from a
change in the magnetic field topology due to the appearance
of the shock. At the location, where the shock reaches its
highest elongation in z–direction, the magnetic field strength
in x–direction is maximized. The lower panel shows the sit-
uation for the case of a moving X–line with U = 0.5 vA. It
can be seen that the maximum field strength for the leftward
propagating shock is smaller than in the case of U = 0, due
to a smaller elongation of the shock in z–direction. For the
shock moving rightward, the situation is vice versa, since the
rightward shock is extended in z–direction. Thus, the mag-
netic field strength is enhanced.

Fig. 9 shows the same situation, but displays the magnetic
field z–component in the inflow region. In the inflow region,
we assume a purely x directed magnetic field before recon-
nection is initiated. Thus, the field strength in z–direction is
zero without the appearance of the shock structures. In the
vicinity of the shocks, a bipolar structure can be observed.
With the appearance of the shock, the magnetic field is forced
to develop a magnetic field z–component, which drops to
zero in the vicinity of the peak of the shock, where the mag-
netic field again is purely x directed. In the lower panel, the
situation is shown for the case U = 0.5 vA. Around the left-
ward propagating shock structure, the magnetic field is less
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Fig. 9. Behavior of the magnetic field z–component in the inflow
region. In the upper panel, the assumption U = 0 holds, whereas in
the lower panel, the case U = 0.5 vA is shown. Both functions are
calculated for t = 2. The change in the magnetic field strength as
well as the actual positions of the field reversal regions are shown.
The dot represents the final position of the reconnection line again.
Bz is blown up by the factor 10 for a better visibility

enhanced than in the case of U = 0, whereas the maximum
magnetic field strength in z–direction around the rightward
shock is increased.

6 Effects of compressibility

In the compressible case, disturbances can not be seen as po-
tentials and they can not be computed with the aid of Poisson
integrals. Therefore, we work with the Cagniard–deHoop
method for the compressible case (Semenov et al., 2005a).
For this case, we accomplished a frame transformation to the
rest–frame of the reconnection line. In this case, the config-
uration is given by a resting X–line and a plasma flow with
velocity −U , which leads to the same asymmetries as men-

Fig. 9. Behavior of the magnetic field z-component in the inflow
region. In the upper panel, the assumptionU=0 holds, whereas in
the lower panel, the caseU=0.5vA is shown. Both functions are
calculated fort=2. The change in the magnetic field strength as
well as the actual positions of the field reversal regions are shown.
The dot represents the final position of the reconnection line again.
Bz is blown up by the factor 10 for a better visibility.

in x-direction is maximized. The lower panel shows the sit-
uation for the case of a moving X-line withU=0.5 vA. It
can be seen that the maximum field strength for the leftward
propagating shock is smaller than in the case ofU=0, due
to a smaller elongation of the shock in z-direction. For the
shock moving rightward, the situation is vice versa, since the
rightward shock is extended in z-direction. Thus, the mag-
netic field strength is enhanced.

Figure9 shows the same situation, but displays the mag-
netic field z-component in the inflow region. In the inflow
region, we assume a purelyx directed magnetic field be-
fore reconnection is initiated. Thus, the field strength in z-
direction is zero without the appearance of the shock struc-
tures. In the vicinity of the shocks, a bipolar structure can
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tioned in the previous sections. The compression, and there-
fore the shape of the shocks, depends on the plasma beta and
the adiabatic index γ,

ρFRR = ρ0
γ(β + 1)

γ(β + 1) − 1
,

where ρFRR and ρ0 correspond to the plasma density in
the field reversal (outflow) region and inflow region, respec-
tively. The density profiles for different velocities of the re-
connection line are shown in Figure 10. Whereas density is
assumed to be constant in the incompressible case, the den-
sity variation in a compressible plasma is rather large. Due
to the appearance of a moving obstacle, the plasma is com-
pressed at the leading front and diluted in the wake of the
outflow region. The function ρ(x) shows the typical bipolar
variation, similar to the magnetic field behavior. This effect
is strengthened for a moving X–line. The decay of the recon-
nection layer shows the appearance of switch–off shocks also
in the compressible case. The effects of compressibility on
the outflow regions result in the expected compression of the
regions, which leads to a smaller maximum and minimum of
the perturbations (see Semenov et al. (2005b)).

7 Qualitative observational aspects

Let us consider a spacecraft positioned as in Fig. 11. The
X–line propagates rightwards with sub-Alfvénic velocity
U . Eventually, the rightward propagating plasma bulge (re-
gion 2) reaches the spacecraft, which measures considerable
plasma flow and a magnetic field z–component. After re-
gion 2 passed by, the spacecraft is located in the intermediate
region between the two shock structures (region 3). If recon-
nection is still in progress, the shocks are not detached from
the X–line and also the leftward propagating plasma bulge
(region 4) reaches the spacecraft, which detects again plasma
flow and a magnetic field z–component, both oppositely di-
rected as in region 2. In magnetotail data this event can be
observed as a flow reversal (e.g., Deng et al., 2005). Since
the plasma in region 4 moves with local Alfvén velocity to-
wards the left, but the entire shock structure together with
the X–line with sub-Alfvénic speed towards the right, the
spacecraft is “trapped” in region 4 until reconnection ceases.
When this happens, the shock structures detach from the ini-
tial X–line and after some time the spacecraft finds itself in
region 3 again. Thus, it is not possible that both plasma struc-
tures entirely pass a spacecraft, located rightwards from the
reconnection scene.

8 Summary

We extended the time–dependent Petschek–type reconnec-
tion model for the situation of a moving reconnection line,
focusing on the discussion of the shock structures, which en-
close the outflow regions, and the behavior of the magnetic
field in the inflow and outflow regions. It is shown that the
shock structures on the left–hand and right–hand side of the
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Fig. 10. Density perturbations and corresponding shocks for U =

0 (upper panel) and U = 0.5 (lower panel) and z = 0.5. The
calculations were done for β = 1. The compression factor for the
shocks is ρ0/ρFRR = 0.7.

diffusion region lose their symmetric behavior under the as-
sumption of an unsteady X–line behavior. By modelling a
rightward (in positive x–direction) moving X–line situation,
the shock structure, which evolves on the right–hand side, is
squeezed in x–direction and elongated in z–direction. For
the shock structure propagating in the opposite direction, the
situation is vice versa. The degree of asymmetry depends
on the velocity of the X–line and increases with the velocity.
The classical time–dependent Petschek solution appears as a
border case for the situation of a steady–state reconnection
line, with velocity U = 0. The behavior of the magnetic
field was investigated for the z–component in the outflow
region, since an x–component appears only in form of dis-
turbances. The typical bipolar behavior of the magnetic field
z–component is extended by an asymmetry, appearing in the
outflow regions left– and rightwards to the (initial) diffusion
region. In the outflow region, propagating in the same direc-
tion as the X–line, the field strength is enhanced. The be-

Fig. 10. Density perturbations and corresponding shocks forU=0
(upper panel) andU=0.5 (lower panel) andz=0.5. The calcula-
tions were done forβ=1. The compression factor for the shocks is
ρ0/ρFRR=0.7.

be observed. With the appearance of the shock, the mag-
netic field is forced to develop a magnetic field z-component,
which drops to zero in the vicinity of the peak of the shock,
where the magnetic field again is purelyx directed. In the
lower panel, the situation is shown for the caseU=0.5 vA.
Around the leftward propagating shock structure, the mag-
netic field is less enhanced than in the case ofU=0, whereas
the maximum magnetic field strength in z-direction around
the rightward shock is increased.

6 Effects of compressibility

In the compressible case, disturbances can not be seen as po-
tentials and they can not be computed with the aid of Pois-
son integrals. Therefore, we work with the Cagniard-deHoop
method for the compressible case (Semenov et al., 2005a).
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z

x

s/c

4 23 1

Fig. 11. Spacecraft in the vicinity (region 1) of a reconnection event.
The shaded regions denote the outflow regions and the arrows show
the direction of the accelerated plasma. The X–line moves right-
wards. In the course of time, the spacecraft gets passed by regions
1–4, measuring different plasma and magnetic field conditions in
each region.

havior of the magnetic field in the inflow region is evaluated
for x– and z–components as a comparison of steady–state
and unsteady X–line behavior, featuring asymmetric struc-
tures for a moving X–line assumption. Around the shock
structures propagating in the same direction as the X–line,
the magnetic field x– and z–components are enhanced. Fi-
nally, this paper delivers an appropriate theoretical model,
describing the effects of a moving reconnection line, and can
be seen as a basis for future concrete applications.
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Fig. 11. Spacecraft in the vicinity (region 1) of a reconnection
event. The shaded regions denote the outflow regions and the arrows
show the direction of the accelerated plasma. The X-line moves
rightwards. In the course of time, the spacecraft gets passed by
regions 1–4, measuring different plasma and magnetic field condi-
tions in each region.

For this case, we accomplished a frame transformation to the
rest-frame of the reconnection line. In this case, the config-
uration is given by a resting X-line and a plasma flow with
velocity −U , which leads to the same asymmetries as men-
tioned in the previous sections. The compression, and there-
fore the shape of the shocks, depends on the plasma beta and
the adiabatic indexγ ,

ρFRR = ρ0
γ (β + 1)

γ (β + 1) − 1
,

whereρFRR andρ0 correspond to the plasma density in the
field reversal (outflow) region and inflow region, respec-
tively. The density profiles for different velocities of the re-
connection line are shown in Fig.10. Whereas density is
assumed to be constant in the incompressible case, the den-
sity variation in a compressible plasma is rather large. Due
to the appearance of a moving obstacle, the plasma is com-
pressed at the leading front and diluted in the wake of the
outflow region. The functionρ(x) shows the typical bipolar
variation, similar to the magnetic field behavior. This effect
is strengthened for a moving X-line. The decay of the recon-
nection layer shows the appearance of switch-off shocks also
in the compressible case. The effects of compressibility on
the outflow regions result in the expected compression of the
regions, which leads to a smaller maximum and minimum of
the perturbations (seeSemenov et al., 2005b).

7 Qualitative observational aspects

Let us consider a spacecraft positioned as in Fig.11. The
X-line propagates rightwards with sub-Alfvénic velocityU .
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Eventually, the rightward propagating plasma bulge (re-
gion 2) reaches the spacecraft, which measures considerable
plasma flow and a magnetic field z-component. After re-
gion 2 passed by, the spacecraft is located in the intermediate
region between the two shock structures (region 3). If recon-
nection is still in progress, the shocks are not detached from
the X-line and also the leftward propagating plasma bulge
(region 4) reaches the spacecraft, which detects again plasma
flow and a magnetic field z-component, both oppositely di-
rected as in region 2. In magnetotail data this event can be
observed as a flow reversal (e.g.,Deng et al., 2005). Since the
plasma in region 4 moves with local Alfvén velocity towards
the left, but the entire shock structure together with the X-line
with sub-Alfvénic speed towards the right, the spacecraft is
“trapped” in region 4 until reconnection ceases. When this
happens, the shock structures detach from the initial X-line
and after some time the spacecraft finds itself in region 3
again. Thus, it is not possible that both plasma structures
entirely pass a spacecraft, located rightwards from the recon-
nection scene.

8 Summary

We extended the time-dependent Petschek-type reconnection
model for the situation of a moving reconnection line, fo-
cusing on the discussion of the shock structures, which en-
close the outflow regions, and the behavior of the magnetic
field in the inflow and outflow regions. It is shown that the
shock structures on the left-hand and right-hand side of the
diffusion region lose their symmetric behavior under the as-
sumption of an unsteady X-line behavior. By modelling a
rightward (in positive x-direction) moving X-line situation,
the shock structure, which evolves on the right-hand side,
is squeezed in x-direction and elongated in z-direction. For
the shock structure propagating in the opposite direction, the
situation is vice versa. The degree of asymmetry depends on
the velocity of the X-line and increases with the velocity. The
classical time-dependent Petschek solution appears as a bor-
der case for the situation of a steady-state reconnection line,
with velocity U=0. The behavior of the magnetic field was
investigated for the z-component in the outflow region, since
an x-component appears only in form of disturbances. The
typical bipolar behavior of the magnetic field z-component
is extended by an asymmetry, appearing in the outflow re-
gions left- and rightwards to the (initial) diffusion region. In
the outflow region, propagating in the same direction as the
X-line, the field strength is enhanced. The behavior of the
magnetic field in the inflow region is evaluated for x- and
z-components as a comparison of steady-state and unsteady
X-line behavior, featuring asymmetric structures for a mov-
ing X-line assumption. Around the shock structures propa-
gating in the same direction as the X-line, the magnetic field
x- and z-components are enhanced. Finally, this paper deliv-
ers an appropriate theoretical model, describing the effects

of a moving reconnection line, and can be seen as a basis for
future concrete applications.
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