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Abstract. We study the phasespace behaviour of helio-
spheric pick-up ions after the time of their injection as newly
created ions into the solar wind bulk flow from either charge
exchange or photoionization of interplanetary neutral atoms.
As interaction with the ambient MHD wave fields we allow
for rapid pitch angle diffusion, but for the beginning of this
paper we shall neglect the effect of quasilinear or nonlin-
ear energy diffusion (Fermi-2 acceleration) induced by coun-
terflowing ambient waves. In the up-to-now literature con-
nected with the convection of pick-up ions by the solar wind
only adiabatic cooling of these ions is considered which in
the solar wind frame takes care of filling the gap between
the injection energy and energies of the thermal bulk of solar
wind ions. Here we reinvestigate the basics of the theory be-
hind this assumption of adiabatic pick-up ion reactions and
correlated predictions derived from it. We then compare it
with the new assumption of a pure magnetic cooling of pick-
up ions simply resulting from their being convected in an
interplanetary magnetic field which decreases in magnitude
with increase of solar distance. We compare the results for
pick-up ion distribution functions derived along both ways
and can point out essential differences of observational and
diagnostic relevance. Furthermore we then include stochas-
tic acceleration processes by wave-particle interactions. As
we can show, magnetic cooling in conjunction with diffu-
sive acceleration by wave-particle interaction allows for an
unbroken power law with the unique power indexγ=−5 be-
ginning from lowest velocities up to highest energy particles
of about 100 KeV which just marginally can be in resonance
with magnetoacoustic turbulences. Consequences for the re-
sulting pick-up ion pressures are also analysed.
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1 Introduction

It is common knowledge since years that suprathermal pick-
up ions are produced from neutral atoms all over the inner
heliosphere, while their phase-space propagation is a subject
much less settled in the present literature. Especially there
is an ongoing debate of how efficiently pick-up ions just af-
ter the pick-up process are accelerated to higher energies due
to nonlinear wave-particle interactions (see e.g. Fisk, 1976a,
b; Lee, 1982; Isenberg, 1987; Bogdan et al., 1991; Chalov
and Fahr, 1996; Chalov and Fahr, 1998; Fahr and Lay, 2003;
Chalov et al., 2004). There is perhaps some hint given by the
behaviour of the solar wind proton temperature with solar
distance. Namely its observed non-adiabatic temperature be-
havior proves that a specific solar wind proton heating must
operate in the outer heliosphere which, as meanwhile dis-
cussed in length, can only be due to energy absorption from
pick-up ion generated turbulence (see Smith et al., 2001;
Chashei and Fahr, 2003; Chashei et al., 2003). The ionization
of interstellar H-atoms penetrating the heliosphere results in
the formation of keV-energetic protons in the supersonic so-
lar wind regime which may be called primary pick-up ions
(PUI‘s∗). The velocity distribution of these newly produced
PUI‘s∗ is a toroidal function which is highly anisotropic and
unstable. With the free energy of this unstable distribu-
tion these PUI‘s∗ drive Alfvenic turbulence which by itself
selfconsistently enforces pitchangle isotropization of the ini-
tial velocity distribution and energy diffusion to occur (see
Chalov et al., 2004, 2006).

Due to wave-wave coupling the wave energy generated by
PUI‘s∗ at the injection wavelengthλi=U/�p (U = solar
wind speed;�p = local ion gyrofrequency) is then trans-
ported in wavevector space both to smaller wavelengths
where it can be absorbed by solar wind protons and to larger
wavelengths where it is reabsorbed by PUI‘s. This effect is
seen as the main reason for solar wind proton heating oc-
curing in the outer heliosphere (Smith et al., 2001; Fahr and
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2650 H. J. Fahr: Pick-up ion transport

Chashei, 2002; Chashei et al., 2003). From estimations it is,
however, evident that only a small fraction of about 5 percent
of the PUI-generated wave energy reappears in the observed
proton temperature profiles, raising the question where the
major portion of the wave energy produced during the pri-
mary pick-up process is going.

A thermodynamic study of the solar wind proton/PUI –
twofluid temperature behaviour at larger solar distances un-
der consistent wave-particle energy sharing between protons
and PUI‘s was carried out (Chashei et al., 2003). This study
revealed the non-adiabatic proton temperature behaviour as
well as a nearly isothermal pick-up ion behaviour. To clarify
more quantitatively the energy branching kinetic and spec-
tral details of the relevant transfer processes had to be inves-
tigated. A detailed numerical study of the PUI velocity dis-
tribution and the spectral Alfv́enic wave power evolution has
meanwhile been carried out (Chalov et al., 2004, 2006a, b)
and consisted in the simultaneous solution of a coupled sys-
tem of equations consistently describing both the isotropic
velocity distribution function of PUI‘s and the spectral wave
power intensity.

As one can see from this study the largest portion of the
self-generated wave energy is reabsorbed by PUI‘s them-
selves as a result of the cyclotron resonant interaction and
leads to PUI-acceleration. This just results in the energiza-
tion of pick-up protons due to the stochastic acceleration pro-
cess probably finally producing ubiquitous power-law PUI-
tails extended to energies much higher than the PUI injection
energy (i.e. about 1 KeV). These tails are seen everywhere in
the solar system (see Fisk et al., 2000; Fisk and Gloeckler,
2006, 2007) and they essentially reduce the amount of the
wave energy which is left for absorption by solar wind pro-
tons. In the following paper we shall, however, not primarily
look into details of the diffusive acceleration of PUI‘s and
the terms describing this phasespace propagation process, but
we shall reconsider those terms in the phasespace transport
equation describing processes that are effective in the redis-
tribution of PUI energies from the injection energy threshold
to lower energies by adiabatic ion reactions to changing mag-
netic fields in the plasma box comoving with the solar wind.

2 Kinetics of magnetic cooling

In a magnetic fieldB, variable in magnitude with solar dis-
tancer, freely wind-convected ions have to conserve their
magnetic momentM=mv2

⊥
/2B, wherem, v⊥, B denote the

ion mass, the component of the ion velocityv perpendicular
to the magnetic field, and the interplanetary magnetic field,
respectively. The gyro-averaged Lorentz force acts on these
ions by decreasingv2

⊥
at the decrease ofB. For an isotropic

distribution function this can be interpreted as an induced
convection in velocity space due to a force connected with

a temporal velocity changėvm=

√
2
3 〈v̇⊥〉 (see Fahr and Lay,

2000).

The representative Boltzmann-Vlasow equation (BVE) in
the “solar” rest frame (SF) under these conditions for the sta-
tionary case is given by:

(U · ∇r)f + (
d

dt
vm · ∇v)f = U

∂f

∂r
+ U

∂vm

∂r

∂f

∂v
(1)

= P(r, v)

while the corresponding Boltzmann-Vlasow equation (BVE)
in the ”solar wind” rest frame (WF) has the following form:

∂f̃

∂t
+

1

v2

∂

∂v
(v2v̇mf̃ ) = P̃ (t, v) (2)

where the second term on the left hand side describes the
velocity-space divergence of the phasespace flow connected
with the acceleratioṅvm=dvm/dt . The coordinatet=t (r)

denotes the proper time in the co-moving reference frame
(WF). FurthermoreP̃ (r, v) is the local ion injection rate
given byP̃ (r, v)=β(r) 1

4πv2 δ(v−U) with β(r) being the lo-
cal pick-up ion production rate. In contrast, in the SF,
taking H-atom velocities as negligibly small with respect
to the wind velocityU , the injection term is given by
P(r, v)=β(r) 1

4πv2 δ(v).
Furthermorėvm denotes the magnetic velocity decrease of

particles with a velocityv, when they are convected out with
the solar wind bulk flow at a mean velocityU to larger dis-
tances where the co-convected interplanetary magnetic field
B is decreased. If in fact the field decreases by(1/r), as
in case of the nearly azimuthal, distant Parker field, then,
with the pitchangle average〈v⊥〉ϑ of the velocity component
v⊥ for pitchangle isotropic distribution functions, i.e. with〈
v2
⊥

〉
ϑ

=
2
3v2, one finds the followingv− dependent mag-

netic velocity-space drift

v̇m = −U
v

r
(3)

and as well its associated radial gradient

∂vm

∂r
=

1

U
v̇m = −

v

r
(4)

As a reminder one may note, that for the more radial field at
smaller distances, falling off withr−2 , one simply gets an
additional factor 2 in the above relations.

If no rapid pitchangle isotropisation can be assumed,
magnetic cooling as derived above should evidently only
cool down the velocity degree of freedom perpendicular
to the magnetic field and thus should lead to increasingly
anisotropic distribution functions. This problem, especially
coming up in the radially expanding solar wind plasma, was
already clearly seen by Griffel and Davies (1969) and re-
viewed by Fahr and Shizgal (1983). These authors claimed
for effective collision frequencies to act in the solar wind re-
gion inside 1 AU, which should be much higher than the ac-
tual Coulomb collision frequencies, in order to keep the ion
and electron velocity distributions sufficiently isotropic, as
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is seen in observations. Interestingly enough, one can, how-
ever, show that the problem, seen up from these early days,
is essentially solved by additionally considering the second
CGL invariant,CGL2=(P‖B

2/ρ3), in addition to the first
CGL-invariant,CGL1=(P⊥/Bρ). HereP⊥,‖ andρ denote
the components of the ion pressure and the solar wind ion
density, respectively. Conservation ofCGL2 namely implies
an independent cooling of the velocity degree parallel to the
magnetic field, i.e. ofv‖ (see Siewert and Fahr, 2007).

For larger distancesr ≥ r0=5 AU with magnetic fields de-
creasing like(1/r) this is quantitatively seen in the following
way:

CGL2 = (P‖B
2/ρ3) =

1
2ρ
〈
v2
‖

〉
B2

ρ3
=

1

2

〈
v2
‖

〉
(
B

ρ
)2 (5)

=
1

2
(

B0

ρ0r0
)2
〈
v2
‖

〉
r2

As we have shown in Siewert and Fahr (2007) the above re-
lation is fulfilled, if

v2
‖
r2

= const= C2 (6)

is valid for all individual ions. Then this above relation sim-
ply requires that

dv‖

dr
= −

2C2

v‖r3
= −

v‖

r
(7)

This interestingly enough demonstrates that conservation
of the first and second CGL invariants requires that both ve-
locity degrees of freedom, i.e.v‖ andv⊥, cool by the same
rate at the expansion of the solar wind, thus at least at larger
distances tending to keep pitchangle isotropic distribution
functions.

Ions which are picked up atrv with a velocityU will, if
nothing else happens, have adiabatically, or better say “mag-
netically”, cooled down to a velocityv at r, if the following
relation is fulfilled:

rv(v) =
v

U
r (8)

Thus the injection of freshly created pick-up ions atrv(v)

with an initial velocityv=U will be responsible for ions with
velocityv at r .

Taking all these constraints together one finally finds,
when reminding that the time and distance coordinates are
related to eachother bydr=Udt , that the solution forf̃ in
the WF can be given by:

f̃ =
1

2π

rβ( v
U

r)

U
v−3 (9)

The fact that the above distribution functioñf actually solves
the BVE given by Eq. (2) is explicitly proven in the Ap-
pendix A of this paper.

The above distribution function can now be further devel-
oped for larger solar distancesr≥r0=5 AU in the upwind
hemisphere. At large enough solar distances the upwind H-
atom density can be considered as essentially constant al-
lowing to assume thatnH ( v

U
r)=nH (r)=nH,∞, which is an

acceptable approximation for solar distancesr≥5 AU and ve-
locitiesv≥0.2U . Then one evidently finds

f =
r

2πU
νex,Er2

E(
v

U
r)−2nH,∞v−3 (10)

=
νex,Er2

EU

2πr
nH,∞v−5

The astonishing fact that one should recognize in this func-
tion above is that, under pure magnetic cooling, the result-
ing PUI distribution function is a power law with the inter-
esting power indexα=−5, a power index which, astonish-
ingly enough, was also found by Fisk and Gloeckler (2006,
2007), however, as result for the quasi-equilibrium state
established between magnetoacoustically driven ion energy
diffusion and magnetoacoustic turbulence generation. This
seems to open up the interesting possibility that the PUI dis-
tribution could perhaps be characterized by a thorough un-
broken power law with the transitive uniform power index
“−5” running from regions of velocities where energy diffu-
sion by wave-particle interaction operates (Fisk and Gloeck-
ler, 2007) down to the region where this process stops to op-
erate due to non-existence of resonant conditions with the
magnetoacoustic wave fields.

3 Adiabatic cooling as a contrast

As a competing approach to the above presented derivation in
the up-to-now literature a phasespace transport equation has
always been applied which in its general form is borrowed
from the CR-transport equation originally developed for cos-
mic rays (see Parker, 1965; Gleeson and Axford, 1967). This
equation, though well approved for the high energy range of
cosmic rays, may, however, become questionable, if it is to
be applied to low energy particles like pick-up ions. This we
want to demonstrate in the following.

The argumentation for the adiabatic cooling term that ap-
pears in the CR transport equation (Parker, 1965; Jokipii,
1971) and also is used in the PUI transport equation (see
e.g. Isenberg, 1987; Chalov et al., 1995, 1997; Mall, 2000)
usually runs as follows: If the pressure of pick-up ions does
work at the volume expansion, connected with the expansion
of a spherically diverging solar wind flow, then thermody-
namically a loss of internal pick-up ion energy4 (i.e. en-
thalpy) in the comoving frame is to be expected to occur.
This then results in the following thermodynamic relation

d4

dt
= nV

dχ

dt
= −P

dV

dt
(11)

where χ=4/nV here denotes the enthalpy per particle.
This effect is expected from thermodynamic principals under
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conditions where adiabatic reactions of the gas in the expand-
ing flow can be expected, i.e. under subsonic expansion rates
and a quasi-isentropic gas behaviour.

The latter two conditions may, however, not be fulfilled
in the region of supersonic solar wind expansion with no
rapid relaxation processes like collisions or wave-particle in-
teractions being involved (N.B.: A piston gas with a piston
expanding supersonically!). That means at larger solar dis-
tances, i.e. beyond 1 AU, conditions for low energy particles
are in contradiction to the assumption of the validity of the
above mentioned thermodynamic relation.

This is, of course, different for high energy particles of a
quasi-massless species ”i” with velocitiesvi or sound veloci-
tiesci=

√
dPi/dρi much greater than the solar wind velocity.

These latter particles, like galactic or anomalous cosmic rays,
undergoing scattering processes at stochastically distributed,
magnetic inhomogeneities, quasi-frozen into the supersoni-
cally expanding solar wind, will in fact behave nearly isen-
tropic and adiabatic and may approximately fullfill the above
thermodynamic relation (e.g. see Toptygin, 1985). This is
not so, however, for low energy subsonic ions. As both
exospheric solar wind theories (see Lemaire and Scherer,
1971, Marsch and Livi, 1985) and in-situ plasma observa-
tions (Marsch et al., 1981) can clearly show, solar wind ions
at their expansion evidently behave non-adiabatic and non-
isentropic in the supersonic solar wind.

Nevertheless, since the isentropy assumption and the
above thermodynamic relation has often been used also for
low energy ions in the literature of the past (see e.g. Vasyli-
unas and Siscoe, 1976; Isenberg, 1987; Chalov and Fahr,
1995, 1998; Mall, 2000) we shall look into this approach
here again and want to compare it with the approach made
above for pure magnetic cooling.

For a spherically symmetric radial solar wind with con-
stant bulk velocityU the change of the comoving proper vol-
ume with time is given by

dV

dt
= (∇ · U)V = 2

U

r
V (12)

and thus with the relation further above delivers the following
equation

n
dχ

dt
= −P

1

V

dV

dt
= −2P

U

r
(13)

One now can play a trick and replace without a good physical
basis macroscopic thermodynamic by corresponding kinetic
quantities, taking the enthalpy per particle and the pressure
in the form

χ =
γ

γ − 1

〈
p2

2m

〉
(14)

and

P = nkT ' n
2

3

〈
p2

2m

〉
(15)

which then leads one to the relation

n
1

P

dχ

dt
'

3

2

γ

γ − 1

d
dt

〈
p2
〉〈

p2
〉 = −2

U

r
(16)

Transcribing now this macroscopic relation to properties of
individual particles, not caring for probability weights only
defined by the distribution function, – in general a highly
problematic and questionable procedure –, will then finally
yield

3

2

γ

γ − 1

2p d
dt

p

p2
= −2

U

r
(17)

which evidently leads to the resulting so-called adiabatic mo-
mentum change given by

(
dp

dt
)ad = −

2

3

γ − 1

γ

U

r
p (18)

This strongly simplified expression has been introduced as
well into the CR transport equation as also into the pick-up
ion Boltzmann equation by takingγ�1 and understanding
(
dp
dt

)ad as an “adiabatic force” acting on the comoving parti-
cles. For PUI‘s this then leads to the following BVE

U
∂f

∂r
−

2

3
U

v

r

∂f

∂v
= β(r)

1

2v2
δ(v − U) (19)

It has first been shown by Vasyliunas and Siscoe (1976) that
this differential equation is solved by

fpui(r, v) =
3r

8πU4
β(rv,ad) · (

v

U
)3/2 (20)

whererv,ad denotes that specific place, conjugated tor un-
der adiabatic deceleration due to the adiabatic velocity drift,
which is given by

rv,ad = r · (
v

U
)3/2 (21)

The above expression then translates into the following form
of the distribution function whenβ(rv,ad) is expressed with
the charge exchange ionization frequency:

fpui(r, v) =
3νex,Er2

E

8πrU4
nH (rv,ad) · (

v

U
)−3/2 (22)

which for larger distances when again setting
nH (rv,ad)'nH (r)'nH,∞ needs then to be compared
with the expression found for purely magnetic cooling (see
Eq. 10) which latter when given for the normalized velocity
argument(v/U) takes the form:

fpui(r, v) =
νex,Er2

E

2πrU4
nH,∞(

v

U
)−5 (23)

Both functions have identicalr-dependences and both are
power law distributions, however, the main difference be-
tween these two distribution functions, as can clearly be rec-
ognized, is the difference in the prevailing power law indices,
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i.e. “−3/2” for the adiabatic cooling instead of “−5” for the
magnetic cooling. This also implies interestingly enough
that under quasi-equilibrium energy diffusion driven by mag-
netoacoustic turbulences (see Fisk and Gloeckler, 2007) to-
gether with adiabatic cooling a broken power-law distribu-
tion would result, similar to the one presented already by
Isenberg (1987).

4 Distribution and pressure of wave-accelerated pick-
up ions

As we have shown before pure magnetic cooling of pick-up
ions leads to a power law distribution with the power index
γm=−5. However, from the theory behind this power law
one can conclude that it should only be governing the PUI
distribution from the injection threshold downward, i.e. it
should be valid for PUI velocities ofv≤U . The question
thus arises how the PUI distribution might look in regions
v≥U . In this region pick-up ions have definitely been ob-
served (Gloeckler et al., 1993; Geiss et al., 1994; Möbius et
al., 1996, 1998) and thus they must have been transported
there by acceleration processes. The idea is that this accel-
eration takes place by means of diffusive Fermi-2 accelera-
tion via quasilinear interaction of ions with either Alfvenic
or magnetoacoustic turbulences (see Isenberg, 1987; Chalov
and Fahr, 1998, 2000; Toptygin, 1985). In our calculations
of the ongoing paper here we shall rely on the well-based ar-
gument given by Fisk and Gloeckler (2006, 2007) that pick-
up ions under resonant interaction with ambient magnetoa-
coustic turbulences tend to develope in the range of resonant
ions a saturated, unbroken power-law distribution just with a
unique spectral power index ofγs=−5.

Adopting this as a fact, well supported both by theory
and observations, we now calculate quantitatively the abso-
lute spectral intensity of this power-law distribution from the
physical principles behind. We begin with a PUI-distribution
function given in the form:

fpui(r, v) = fpui,0 · (v/v0)
γs (24)

which yields the PUI density in the form:

npui(r) = 4πfpui,0(r) ·

∫ v∞

v0

(w/w0)
−5w2dw (25)

wherefpui,0(r) is a local normalization value, andv0 and
v∞ are lower and upper velocity resonance limits of the
PUI power law. These quantities have to be fixed by phys-
ical constraints. From the above expression one first ob-
tains the PUI density, withx=w/w0 and with the assumption
x∞=v∞/v0 � 1 , by

npui(r) = 4πfpui,0(r) · v3
0

∫ x∞

1
x−3dx (26)

' 2 πfpui,0(r) · v3
0

and the PUI pressure as formulated by

Ppui(r) = 4πfpui,0(r) ·
m

2
v5

0

∫ x∞

1
(x)−5x4dx (27)

= 4πfpui,0 ·
m

2
v5

0 ln(x∞)

As one can see, the definition of the absolute value of the
PUI pressure requires the determination of the values,fpui,0,
v0 andv∞, which we aim at now.

To impede PUI‘s at some inner velocity border from com-
pletely migrating to lower energies by magnetic cooling
(i.e. energy loss due to conservation of the magnetic mo-
ment at convection to regions with smaller magnetic fields!)
it should be guaranteed that they are restored with the ade-
quate rate just at this lower borderv=v0 of the power-law
distribution, where energy diffusion stops to operate due to
loss of resonance conditions with the turbulence. This means
that near the pick-up velocity border, the particle loss rate
due to magnetic cooling must be compensated by a diffusive
flow due to the established energy diffusion rate. This means
that the differential particle fluxes in velocity space should
just be identical, i.e.(dj)m = (dj)diff .

Hereby the differential flux in velocity space due to mag-
netic ion cooling at the inner velocity resonance borderv=v0
is given by

(dj)m = 4πv2
0fpui(v0)

(
δv0

δt

)
m

(28)

= 4πv2
0fpui(v0)U

(
δv0

δr

)
m

When B denotes the interplanetary magnetic field which
at larger distances in the ecliptic according to the Archi-
median Parker spiral configuration can be assumed to be
purely azimuthal and given byB=B0(r/r0)

−1, then yields,
with v2

⊥
/B=v2 sin2 ϑ/B=const and the assumption of a

pitchangle isotropic functionfpui leading to
〈
v2
⊥

〉
ϑ

=(2/3)v2,
the following relation(

δv0

δr

)
m

= −
1

2

v0

r
(29)

and thus the following expression

(dj)m = −2πv2
0fpui(v0)U

v0

r
) (30)

To keep the inner border stationary, this adiabatic loss rate
needs to be compensated by the energy-diffusion gain rate
given by

(dj)diff = 4πv2Dvv

∂

∂v
fpui (31)

whereDvv is the energy-diffusion coefficient due to interac-
tion with compressive magnetosonic turbulences which ac-
cording to Chalov et al. (2003) is given in the form:

Dvv = Dvv,0 ·

(
U3

rE

)( v

U

) ( rE

r

)3/4
(32)
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whereDvv,0 is a reference value atr = rE=1 AU.

(dj)diff = 4πDvv,0 ·

(
U2

rE

)( rE

r

)3/4
v3 ∂

∂v
fpui (33)

yielding

(dj)diff = −4πDvv,0 ·

(
U2

rE

)( rE

r

)3/4
v3 5

v
fpui (34)

evaluating at the lower velocity boundary to

(dj)diff,0 = −20πDvv,0 ·

(
U2

rE

)( rE

r

)3/4
v2

0fpui,0 (35)

Equating adiabatic loss rate and energy diffusion rate atv=v0
then leads to

− 2πv2
0fpui(v0)U

v0

r
= (36)

−20πDvv,0 ·

(
U2

rE

)( rE

r

)3/4
v2

0fpui,0

and thus requires that the inner border is at

v0 = 5Dvv,0 · U

(
r

rE

)1/4

(37)

where the reference value for the diffusion coefficient ac-
cording to Chalov et al. (2003) is given by

Dvv,0 =

√〈
δU2

m

〉
E

U

rE

9Lm

(38)

where
〈
δU2

m

〉
E

and Lm denote the wavenumber-average
of the magnetosonic fluctuation power at 1 AU and the
magnetosonic correlation length. Taking values as those
favoured by Chalov et al. (2003), i.e.Lm=3 AU and√〈

δU2
m

〉
E
/U=0.5, one then finally obtains for the lower ve-

locity boundary the mildly distance-dependent value

v0 = 5

√〈
δU2

m

〉
E

U

rE

9Lm

· U

(
r

rE

)1/4

' 0.2U

(
r

rE

)1/4

(39)

and therewith one also finds using Eq. (26)

fpui,0(r) = npui(r) ·
1

2πv3
0(r)

(40)

=
53

2πU3
npui(r) ·

(
r

rE

)−3/4

The local PUI densitynpui(r) can be derived from the H-
atom densitynH (r, θ) and the [charge exchange + photoion-
ization] rate

βpui = nH (r, θ)[νpui] = nH (r, θ)[ns(r)σexU + νi] (41)

Herens(r),νpui, σex , Us , νi denote solar wind proton density,
the total H-atom ionization frequency, the charge exchange
cross section, the solar wind bulk velocity and the photoion-
ization frequency. The cold-model H-atom density, which is
good enough for our purposes here, is given for the upwind
hemisphere by (see Fahr, 1971)

nH (r, θ) = nH,∞ exp[−
νpui,0r

2
0θ

Ur sinθ
] (42)

and thus in view of smallθ– gradients and quasi-radial PUI
flow with the accordingly simplified PUI continuity equation

1

r2

d

dr
(r2Unpui) = βpui(r, θ) (43)

leads to the following PUI density

npui(r, θ) = (
r0

r
)2npui,0 +

1

r2U

∫ r

r0

νpui(r, θ)r2dr (44)

5 The upper velocity resonance border

For the quantitative calculation of the higher PUI moments,
like the PUI pressure, one more quantity needs to be de-
fined, namely the upper velocity boundaryv∞. We shall
determine this quantity by asking for the condition which
must be fulfilled for energy-diffusion to be operative at all.
The important restriction to energy diffusion by nonlinear in-
teraction with magnetosonic compressive fluctuations is that
the typical diffusion periods for ions should be much larger
than the associated convection periods over coherent fluctu-
ation structures with coherence lengthsLm that are given by
τcon ' Lm/U . This leads to the requirement (see Chalov et
al., 2003)

Lm �
vλ‖

3U
(45)

This requirement can be taken as limiting the uppermost ve-
locity and hence means that the largest particle velocity al-
lowed from this requirement is

v∞ ≤
3ULm

λ‖

(46)

whereλ‖ is the mean free path for particles moving parallel
to the magnetic field and given by

λ‖ =
3v

8

∫
+1

−1

(1 − µ2)2dµ

Dµµ

(47)

Here Dµµ denotes the pitchangle diffusion coefficient
(µ= cosϑ denoting the pitchangle cosine) which is repre-
sented by (see Schlickeiser, 1989; or Chalov and Fahr, 1998)

Dµµ ∼ Dvv,0V
−2
A

(
U3

rE

)( v

U

) ( rE

r

)3/4
(48)
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with VA being the Alfv́en velocity which due toVA∼B/
√

ρ

at distancesr≥r0 with B∼r−1 andρ∼r−2 can be taken as
constant. This clearly shows thatλ‖ is independent of the
particle velocity and thusv∞ is simply given by

v∞ ≤
3ULm

λ‖E

( rE

r

)3/4
(49)

and reminding that the reference value ofλ‖ at r=rE has
been found withλ‖E

'0.3 AU (see Chalov and Fahr, 1999)
then leads to the result

v∞ ≤
3Lm

λ‖E

( rE

r

)3/4
U ' 30

( rE

r

)3/4
U (50)

This states thatv∞ slowly falls off with solar distance and
e.g. atr=r0=5 AU is given byv∞'9.6Us . Please note that
the above relation can only be applied in the supersonic solar
wind region and does not include the region downstream of
the termination shock.

6 The power-law PUI pressure

On the basis of the above derived results one then obtains the
PUI pressure as given by

Ppui(r) = 2πm · fpui,0v
5
0 ln(x∞) (51)

= m
ln(x∞)

182
U2

(
r

rE

)1/2

npui(r)

wherex∞ for general solar wind conditions is given by

x∞ =
v∞

0.2U
(

r
rE

)1/4
=

0
(

rE
r

)3/4
U

0.2U
(

r
rE

)1/4
(52)

= 50 ·

( rE

r

)
where we have introduced the quantity0=Lm/λ‖ and hence
leads to

Ppui(r) =
ln(50 rE

r
)

52

(
r

rE

)1/2

npui(r)mU2 (53)

At a solar distance ofr=r0=5 AU whith0=30 one thus finds
e.g.

Ppui(r0) =
ln(30)

52 (5)1/2 npui(r)mU2 (54)

= 0.306· [npui(r)mU2
]

and at larger distances like 50≤r/rE≤80 from the above ex-
pressions (53) and (54) one derives a ratioαpui(r) of the lo-
cal PUI pressurePpui(r) and the accumulated kinetic energy
of freshly injected PUI´s, i.e.[npui(r)mU2

s ], which is only
mildly variable with distance and roughly given by

αpui(r) =
Ppui(r)

[npui(r)mU2]
' 0.306 (55)
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Fig. 1. Shown is the functionαpui as function of the solar distance
in the upwind direction for differerent values0=Lm/λ‖=20 (ξ=1),
30 (ξ=2), 40 (ξ=3).

When furtheron representing the PUI pressure by a PUI tem-
perature writingPpui(r)=(3/2)npuiKTpui , this then shows
that pick-up ions at their convection towards larger distances
nearly behave like an isothermal fluid with

Tpui(r) ' 0.204·
m

K
U2 (56)

a result which was also found earlier from a different ap-
proach by Fahr (2002a, b).

To illustrate the more exact variation ofαpui(r) with so-
lar distancer as it results for different solar wind condi-
tions during the solar activity cycle, i.e. with a typical range
20≤0=Lm/λ‖≤60, we have shown the plots given in Fig. 1.
It has perhaps to be mentioned here that0 essentially is
variable within the solar activity cycle because of the vari-
ation ofLm, while the pitchangle scattering mean free path
λ‖dependent on the Alfvenic turbulence level may essentially
be constant, i.e. 0.3≤λ‖≤0.9 (see Chalov and Fahr, 1995).
The coherence scaleLm is essentially given by the typi-
cal distance between two consecutive high velocity humps
in the solar wind velocity and, according to Richardson et
al. (2001), amounts to about 3 AU≤Lm≤9 AU.

7 Solar wind deceleration by PUI pressure

In order to compare our above result for power law PUI pres-
sures with earlier work (Fahr and Fichtner, 1995; Fahr and
Rucinski, 1999; Fahr and Scherer, 2004) we can represent
the above result in the following form

Ppui(r) = αpui(r)ρpui(r)U
2 (57)

where the functionαpui(x) for x=r/rE is defined by

αpui(x) =
ln(50/x)

52 (x)1/2 (58)
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Fig. 2. Shown is the solar wind velocity profile resulting for dif-
fererent values of the parameter3 andr=30. In all cases the as-
sociated dashed curve gives a comparison to the pressure-less case
(i.e.αpui=0).

The solar wind deceleration resulting from the action of both
the momentum loading of the solar wind by injected PUI‘s
and by the PUI pressure gradient is then given by a formula
derived in the Appendix B of this paper and given by

U(r) = U(r0) exp[
∫ x=r/rE

x=5

dx

(1 + 2αξ)
[

ξ

25rE
√

x
+ (59)

3

2rE

αξ

x
+

α3

5rE
ξ −

3

rE
(1 +

α

5
)]

whereξ denotes the local PUI abundance which in the up-
wind hemisphere for distancesr≥r0=5 AU is roughly given
by

ξ = 1 − exp[−3(
r

r0
− 1)] (60)

with 3=σexnH∞rE . In Fig. 2 we have shown solar wind
velocity profiles in upwind direction for differerent values of
the parameters0 and3.

8 Conclusions

We have shown that pick-up ions appearing as ionized H-
atoms in the inner heliosphere and freshly injected into the
supersonic solar wind experience magnetic cooling, rather
than adiabatic cooling, after their injection into the solar
wind bulk plasma. This newly derived magnetic cooling
is due to the fact that ions, embedded as subsonic ions in
a supersonically expanding wind, do not react adiabatically
and isentropically, but at their propagation to larger distances
co-moving with the bulk of the solar wind plasma they are
subject only to energy-conserving pitchangle scattering and
magnetic moment conservation processes. As a consequence
of that they undergo magnetically induced drifts in velocity

space, thus filling the gap between the injection velocity and
the thermal energies of solar wind protons. The resulting
pick-up ion distribution function is a power law with a power
index ofγm=−5, instead of a power indexγad=−3/2 found
for adiabatic cooling.

Including in addition stochastic pick-up ion acceleration
by nonlinear interactions with magnetoacoustic turbulences
at quasi-equilibrium saturation levels (see Fisk and Gloeck-
ler, 2007) this then leads to an unbroken power law for pick-
up ions with a unique power index ofγ=−5 valid from the
lowest to the highest velocity resonance borders, i.e. from
0.5 to 100 KeV. We fix the absolute spectral intensity of the
actually resulting pick-up ion power distribution by the use
of its lowest velocity moments like pick-up ion density and
pressure and then can calculate the pick-up ion pressure.
We can show here that the ratioαpui=Ppui/[mnpuiU

2
]'0.3

at distancesr≥r0=5 AU behaves as a mildly variable quan-
tity which also characterizes the pick-up ion fluid as a quasi-
isothermal fluid with a temperatureTpui'0.204· mU2/K.

As we can show in this paper, the bulk solar wind velocity
is decelerated towards larger solar distances with respect to
its inner asymptotic value at 5 AU. This deceleration clearly
is shown in Fig. 2 and clearly is more efficient with increas-
ing interstellar H-atom densitynH,∞. Though this deceler-
ation is mainly due to momentum-loading of the solar wind
by PUI‘s, there is in addition an accelerative effect exerted on
to the solar wind bulk due to the action of the PUI-pressure
gradient. As we can also show in Fig. 2, the PUI pressure by
its gradient acts counteractive to the momentum-loading and
partly compensates for the effect of momentum loading. In
the theoretical approach derived for the PUI pressure in this
paper it, however, turns out that the effect of this pressure
gradient is not as pronounced as expected from earlier the-
oretical approaches (see Fahr and Fichtner, 1995; Fahr and
Rucinski, 1999) in which the ratioαpui of PUI pressure and
PUI kinetic energy density was found as a constant with a
value ofαpui=0.3.

Appendix A

PUI distribution function

In the following we will confirm by introduction of the so-
lution given by Eq. (10) into the BVE given by Eq. (2) valid
in the WF that Eq. (6) actually is the correct solution. Intro-
ducing Eq. (10) into Eq. (2) we find:

∂

∂t
(
rβ( v

U
r)

U
v−3) +

1

v2

∂

∂v
(v2v̇ad

rβ( v
U

r)

U
v−3) (A1)

= β(r)
1

2v2
δ(v − U)
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which leads to

v−3 1

U

∂

∂t
(rβ(

v

U
r)) +

1

v2

∂

∂v
(v2(−U

v

r
)
rβ( v

U
r)

U
v−3) (A2)

= β(r)
1

2v2
δ(v − U)

and

v−1 1

U

∂

∂t
(rβ(

v

U
r)) −

∂

∂v
(v3β(

v

U
r)v−3) (A3)

= β(r)
1

2
δ(v − U)

This furthermore is leading to

v−1 1

U
(Uβ(

v

U
r) + r

∂β

∂rv

∂rv

∂t
) −

∂

∂v
(β(

v

U
r)) (A4)

= β(r)
1

2
δ(v − U)

and

v−1(β(
v

U
r) + r

∂β

∂rv

v

U
) −

∂β

∂rv

r

U
= β(r)

1

2
δ(v − U) (A5)

which finally yields

v−1β(
v

U
r) +

∂β

∂rv

r

U
−

∂β

∂rv

r

U
= β(r)

1

2
δ(v − U) (A6)

The above relation then reduces to:

β(
v

U
r) = β(r)

1

2
vδ(v − U) (A7)

and evidently can be rearranged into the following from

1 = β(r) ·
1

2

1

β( v
U

r)
vδ(v − U) (A8)

This above equation can then be integrated overv∫ U

0
dv = β(r) ·

∫ U+ε

U−ε

1

β( v
U

r)
vδ(v − U)dv (A9)

and then evaluates to

U = β(r) ·

∫ U+ε

U−ε

v

β( v
U

r)
δ(v − U)dv = U

β(r)

β(r)
! (A10)

This demonstrates that the PUI distribution function given in
Eq. (6) in fact fulfills the Boltzmann-Vlasow equation given
by Eq. (2) and thus is the solution of the problem.

Appendix B

Equation of motion of PUI-modulated winds

In the following we derive the equation of motion for the
PUI-modulated solar wind. We start out with the following

equation containing the effect of the PUI-pressure gradient
and the momentum loading due to pick-up of new ions by
the solar wind:

ρU
dU

dr
= −

d

dr
(αρiU

2) − (mpU)(σexnH nU) (B1)

Carrying out the derivatives then leads to

U
dU

dr
= −

1

ρ
[ρiU

2dα

dr
+ αU2dρi

dr
(B2)

+ 2αρiU
dU

dr
] − σexnH U2

and furtheron to

1

U

dU

dr
(1 + 2αξ) = −[ξ

dα

dr
+ α

1

ρ

dρi

dr
] −

3

rE
(B3)

or

d ln U

dr
=

1

(1 + 2αξ)
(−ξ

dα

dr
− α

1

ρ

dξρ

dr
−

3

rE
) (B4)

With the explicit derivative ofαpui(r) given in Eq. (53) and
x=r/rE one finds

dα

dr
=

d

dr
(

1

25
ln(

50

x
)
√

x) (B5)

=
1

25rEx
[−

√
x +

1

2
ln(

50

x
)
√

x]

= −
1

25rE
√

x
+

1

2rE

α

x

and obtains

d ln U

dr
=

1

(1 + 2αξ)
(

ξ

25rE
√

x
−

ξ

2rE

α

x
(B6)

− α
1

ρ

dξρ

dr
−

3

rE
)

Now with the derivative ofξ(r) given in Eq. (60)

1

ρ

dξρ

dr
=

dξ

dr
+ ξ

d ln ρ

dr
= −

3

5rE
(ξ − 1) + ξ(−

2

r
) (B7)

one furthermore finds

d ln U

dr
=

1

(1 + 2αξ)
(

ξ

25rE
√

x
−

ξ

2rE

α

x
(B8)

−
α3

5rE
(1 − ξ) + αξ(

2

rEx
) −

3

rE
)

or finally after integration:

U(r) = U(r0) exp[
∫ x=r/rE

5

dx

(1 + 2αξ)
[

ξ

25rE
√

x
(B9)

+
3

2rE

αξ

x
+

α3

5rE
ξ −

3

rE
(1 +

α

5
)]]
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