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Abstract. We compare the probability distributions of sub-
storm magnetic bay magnitudes from observations and a
minimal substorm model. The observed distribution was de-
rived previously and independently using the IL index from
the IMAGE magnetometer network. The model distribu-
tion is derived from a synthetic AL index time series created
using real solar wind data and a minimal substorm model,
which was previously shown to reproduce observed substorm
waiting times. There are two free parameters in the model
which scale the contributions to AL from the directly-driven
DP2 electrojet and loading-unloading DP1 electrojet, respec-
tively. In a limited region of the 2-D parameter space of the
model, the probability distribution of modelled substorm bay
magnitudes is not significantly different to the observed dis-
tribution. The ranges of the two parameters giving accept-
able (95% confidence level) agreement are consistent with
expectations using results from other studies. The approx-
imately linear relationship between the two free parameters
over these ranges implies that the substorm magnitude sim-
ply scales linearly with the solar wind power input at the time
of substorm onset.

Keywords. Ionosphere (Modeling and forcasting) – Mag-
netosphere physics (Solar wind-magnetosphere interactions;
Storms and substorms)

1 Introduction

Since the introduction of the substorm concept as a sequence
of events observed in the aurora (Akasofu, 1964), much of
the focus in the literature has been on the phenomenology of
the substorm. From this, a picture has developed in which
the substorm has three distinct phases: growth, expansion
and recovery (Akasofu, 1964; McPherron et al., 1973). In
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the growth phase, energy is accumulated in the magneto-
spheric lobes. Substorm onset and the ensuing expansion
phase is marked by the sudden release of this stored energy,
the mechanism by which this occurs is still a subject of lively
debate (e.g.Baker et al., 1999; Lui, 2001). In the expan-
sion and recovery phases the released energy is dissipated
via different channels, including ionospheric Joule heating,
ring current enhancement and plasmoid ejection. A number
of phenomenological models have been developed that de-
scribe the detailed evolution of various observables during
the substorm (e.g.Lui, 1991, and references therein). These
models agree with the 3-phase cycle but differ in the empha-
sis they place on describing different observables, especially
those associated with substorm onset. Whilst being very use-
ful in synthesizing complicated observations and motivating
possible physical descriptions, phenomenological models do
not quantify or predict behaviour.

Thus, in tandem with phenomenology, mathematical mod-
els have been developed. Global MHD models solve the fun-
damental physical equations of large-scale plasma dynam-
ics in a realistic magnetospheric geometry but do not ade-
quately capture processes on the kinetic scale that can cou-
ple to the large scale. Consequently, they have had limited
success in reproducing substorm behaviour (seeRaeder and
Maynard, 2001, and other papers in that issue). Furthermore,
their behaviour can be almost as difficult to understand as the
real system and the very long simulations or statistical en-
sembles that would be necessary to analyse their non-linear
dynamics are impractical due to the large computational ex-
pense. Intermediate complexity models have been designed
that are less computationally expensive and which arguably
try to improve the representation of kinetic-scale processes
appropriate to the substorm, at the expense of simplified
physics and a simplified magnetospheric geometry (Klimas
et al., 1992, 1994; Horton and Doxas, 1998; Klimas et al.,
2004). The dynamics of these models can be analysed statis-
tically but is complicated by the number of free parameters.
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Consequently, it is also desirable to derive a minimal sub-
storm model which captures the essential properties of sub-
storms with a minimal number of parameters, such that its
dynamical properties can be more completely analysed and
understood.

Based on principles developed inFreeman and Farrugia
(1995, 1999) and consistent with the 3-phase substorm phe-
nomenology, a Minimal Substorm Model (MSM) has been
developed with just three mathematical rules and one free
parameter (Freeman and Morley, 2004, hereafter F and M).
This model is the first to explain the timing of substorms, by
reproducing the probability distribution of waiting times be-
tween substorms observed byBorovsky et al.(1993). The
model focusses on the dynamics of the whole system, with-
out explicitly adopting any of the instabilities proposed to
cause substorm onset.

In this paper we present a synthetic AL index comprised
of two parts (directly-driven and loading-unloading) derived
from basic physical considerations and empirical relation-
ships. The loading-unloading component of the synthetic
index is here driven by the MSM. Thus we can test the
MSM further by comparing the probability distributions of
substorm sizes from the model and from observation. The
observed distribution is of substorm magnetic bay magni-
tudes measured byTanskanen et al.(2002) using the IL index
(Kallio et al., 2000), a local AL index derived from the IM-
AGE magnetometer network (Viljanen and Ḧakkinen, 1997)
(http://www.ava.fmi.fi/image). Here, we repeat their analysis
using the synthetic AL index and compare the results.

2 Method

Tanskanen et al.(2002, hereafter TEA) identified substorms
from the IL index using certain selection criteria (discussed
in Sect.3.1) and measured substorm size by the peak magni-
tude of the IL index during the substorm so identified. Thus,
in order to compare best their substorm size distribution with
that of the MSM, it is desirable to create a synthetic IL index
from the minimal substorm model and analyse it in the same
way as TEA. This section explains the method for creating
the synthetic IL index. F and M give full details of the MSM,
with justifications and limitations.

The IL index is a local magnetic index derived from the
IMAGE magnetometer network, which mimics the global
AL index in the 17:30–04:00 MLT sector (Kauristie et al.,
1996; Kallio et al., 2000). It comprises a latitudinal chain of
magnetometers and thus is less prone to measurement errors
in the magnetic bay magnitude caused by variations in the
latitude of the auroral electrojet. Thus, in what follows, we
shall use IL and AL interchangeably, but remembering the
local time restriction, where necessary.

The AL and other Auroral Electrojet (AE) indices are de-
rived from the northward (H ) component of the geomagnetic
field vector measured at 12 reference stations situated under

the statistical location of the auroral oval (Davis and Sug-
iura, 1966). The AL index is the 1-min averaged time series
formed by the lower envelope of theH component measure-
ments from all stations (i.e. the most negative disturbance),
which is induced by westward electrojet equivalent currents.

The AL index consists of two primary components – the
DP1 component arising from the unloading process of the
substorm and the DP2 component that is directly-driven by
the solar wind (e.g.Sun et al., 1998). Thus we write:

AL=AL 1+AL2 (1)

where AL1 and AL2 are the DP1 and DP2 components of
AL, respectively.

2.1 The directly-driven component – AL2

The directly-driven component of the AL index comes from
the DP2 current system (Nishida and Kokubun, 1971) asso-
ciated with the typically two-cell ionospheric convection cy-
cle of Dungey(1961). Remembering that the AL index is
derived from the northward magnetic perturbation1H mea-
sured on the ground, we first use the Biot–Savart law to relate
this to an eastward equivalent current to get:

1H=gJe (2)

whereJe is the height-integrated eastward ionospheric equiv-
alent current density above the magnetometer location andg

is a geometrical factor that depends on the horizontal varia-
tion ofJe in the vicinity. For example,g=µ0/2 for an infinite
plane current sheet.

In the approximation of a vertical magnetic field and uni-
form ionospheric conductivity, the equivalent current is equal
to the Hall current (Fukushima, 1969)

Je= ± 6H En (3)

where6H is the height-integrated Hall conductivity andEn

is the northward component of the electric field. The±-signs
refer to the northern/southern hemisphere.

The electric field at any point in the ionosphere can be ex-
pressed in terms of the total electric potential dropVmax(>0)

associated with the convection pattern (which measures the
total rate of magnetic flux transport)

En=f Vmax (4)

Heref is a factor that depends on position (r, λ, φ) and the
assumed ionospheric convection pattern.r, λ andφ are the
radial, latitudinal and azimuthal coordinates, respectively.
For example, from the ionospheric convection solution given
in Freeman et al.(1991) andFreeman(2003) we have

f =
−1

r cosλ

∞∑
m=1

mcm sin(mφ)
cosh(m (x − x2))

sinh(m (x1 − x2))
(5)

wherex=loge (tan(π/4−λ/2)) and the equation applies to
auroral latitudes between the region 1 current system atx=x1
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and the region 2 current system atx=x2. In this model of
the Dungey(1961) paradigm, the locusx=x1 is co-located
with the region 1 current, the convection reversal boundary,
and the boundary between open and closed geomagnetic field
lines, commonly referred to as the polar cap boundary.cm

is the coefficient of a Fourier series expansion of the electric
potential distribution around the polar cap boundary such that

cm= −
1

2
for m=1 cm=0 for m>1 (6)

for the simplest ionospheric convection pattern. In this case,
the transport of plasma and magnetic flux into the polar cap
across the dayside polar cap boundary is balanced by the
plasma and flux transport out of the polar cap across the
nightside polar cap boundary, such that the polar cap does
not expand. This may be appropriate to the late expansion
phase of the substorm when the peak AL magnitude is real-
ized (Lockwood and Cowley, 1992). Typically, the axis of
symmetry of the 2–cell convection pattern is observed to be
at an angleπ/12<φs<π/6 counter-clockwise with respect
to the noon–midnight meridian (e.g.Ruohoniemi and Green-
wald, 1996). Thus we may writeφ=φ

′

+φs , whereφ
′

is the
angular equivalent of MLT andφ

′

=0 corresponds to 0 MLT.
Many studies have shown good correlation between var-

ious functions of solar wind variables and the transpolar
voltage Vmax. Reiff et al. (1981) found the highest cor-
relations were between a modified form of theε function
(Perreault and Akasofu, 1978) and linear or quadratic pow-
ers of Vmax. Using emu units,Perreault and Akasofude-
fined ε=L2

0

(
υB2/4π

)
sin4(θ/2), wherev is the solar wind

speed,B is the magnitude of the interplanetary magnetic field
(IMF), θ is the IMF clock angle, andL0 is a length scale es-
timated to be 7RE . Definingε=PAeff and using SI units we
have a power input per unit area

P=

(
υB2/µ0

)
sin4(θ/2) (7)

whereµ0 is the permeability of free space, and an effective
areaAeff=4πL2

0 (Koskinen and Tanskanen, 2002). Applying
theReiff et al.modification,P becomes

Pal=

(
υB2

al/µ0

)
sin4(θ/2) (8)

whereBal is an amplified-limited form of the IMF magnitude
B given by

Bal[nT] = min

(
B[nT],

60[nT]

F

)
(9)

where we take the amplification factorF to be 7 (Reiff et al.,
1981). This is thought to represent the effects of IMF com-
pression in the dayside magnetosheath on the solar wind
power input,P .

We have determined a polynomial equation forVmax that
lies between the linear and quadratic relations found empiri-
cally byReiff et al.:

Vmax[kV ]=20
3
√

πPal[µ W m−2
]+1.4πPal[µ W m−2

] (10)

Unlike their quadratic relationship, this equation has a real
potential drop for any solar wind input, but, unlike their lin-
ear relationship, passes through the origin (thus neglecting
any contribution to the transpolar voltage from viscous in-
teraction). Through the amplification-limitation procedure
of Eq. ( 9), Vmax saturates at about 200–250 kV for a high
magnetic field strength (depending on the solar wind veloc-
ity), in agreement with observation (e.g.Russell et al., 2001;
Hairston et al., 2003), theoretical prediction (Hill et al., 1976)
and MHD modelling (seeSiscoe et al., 2004, for a review).
The commonly-used linear relationship does not display this
saturation characteristic to the same extent and for similar
values of the solar wind variables predicts polar cap voltages
of over 300 kV.

Combining Eqs. (2), (3), (4) and (10), we get

AL2=1H= ± fg6H Vmax=−aVmax(Pal) (11)

wherea has the same sign at conjugate points in both hemi-
spheres by construction and is expected to be positive by the
requirement that AL<0. To synthesize the AL index, we
note that the relevant contributing magnetometers are local-
ized in latitude but distributed in MLT (Davis and Sugiura,
1966). Thus,a would be evaluated at the typical latitudeλ

of the contributing AL stations and at the MLT (φ′) giving
the minimum AL. From Eq. (1), this equation is evaluated at
the AE magnetometer station giving the minimum AL value.
Generally, this may not be the location where AL2 itself is a
minimum, in that AL2 is expected to minimise just prior to
dawn MLT (i.e.φ=π/2), whereas AL1 will likely minimise
in the DP1 electrojet region around midnight MLT. Empiri-
cally, AL comes mostly from magnetometers located in the
00:00–06:00 MLT sector (Allen and Kroehl, 1975).

In contrast, to synthesize the IL index, we should remem-
ber that it is compiled from a magnetometer network that is
distributed in latitude and localized in MLT. Thus,a would
be evaluated at the typical MLT (φ′) of the contributing IL
stations (which varies with Universal Time) and at the lat-
itude λ giving the minimum IL. Furthermore,φ′ should be
restricted only to the range 17:30–04:00 MLT for which IL is
valid as a suitable alternative to AL (Kauristie et al., 1996).

For simplicity, in what follows we shall assumea to be
constant in time and find the value ofa that yields the best
agreement between the probability distributions of modelled
and observed substorm magnetic bay magnitudes. In order to
aid the interpretation of this value ofa, let us first estimate its
likely bounds. Since the substorm magnetic bay magnitude is
equal to the minimum value of the synthetic IL index during
the expansion phase it is reasonable to assume that: (a) the
contributing station is between 20:29 MLT and 01:15 MLT
(the±1 standard deviation limits of the probability distribu-
tion of onset MLT for the TEA substorms) and atλ=70◦ (the
most common magnetic latitude of the minimum IL for the
TEA substorms); (b) the polar cap boundary is at the same
magnetic latitude, in order that the contributing station is at
the latitude where the eastward equivalent current minimises
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in the AL2 model; and (c) the height-integrated Hall conduc-
tivity 6H =15 Siemens, as measured in the midnight MLT
sector during the expansion phase of an individual substorm
(Coumans et al., 2004) and comparable to the conductivity
measured for a statistical ensemble of 28 isolated substorms
when averaged over the ensemble and over the whole sub-
storm region (Gjerloev and Hoffman, 2000). Let us also as-
sume that: (d) the simple convection pattern associated with
Eqs. (5) and (6) with φs=π/12 and with the region 2 current
system at a magnetic latitude of 55◦; (e) the Hall current layer
is at a height of 110 km above the Earth (r=6370+110 km);
and(f )g=µ0/2. Then we geta<2.3×10−12 T V−1. Thus,
for P=8×10−6 W m−2 (i.e. corresponding to a solar wind
speed of 400 km s−1 and a southward IMF of 5 nT) we have
Vmax=94 kV and AL2>-212 nT.

2.2 The Unloading Component – AL1

The unloading component of the AL index comes from the
DP1 current system (Nishida and Kokubun, 1971) associated
with the substorm current wedge (McPherron et al., 1973).
Using a superposed epoch analysis of the AE indices for an
ensemble of isolated substorms,Weimer(1994) showed that
the average AL curves, from substorm onset at timet=0 to
the end of the recovery phase, fitted the function

− 〈AL〉=c+bt exp(pt) (12)

where the time constantp=−2.22 h−1 for substorms of
medium intensity and〈〉 denotes the ensemble average. From
the symmetry of the AU and AL indices,Weimer(1994) ar-
gued that thec andb terms represented the ensemble aver-
ages of the directly-driven componentAL2 and the unloading
component AL1, respectively. Thus, the contribution to AL1
from theith substorm of the ensemble is

AL1i=−biS(t−ti) for t>ti (13)

whereti is the substorm onset time and we have assumed that
each substorm has the same functional formS(t)=t exp(pt)

but variable amplitudebi .
The amplitudebi can be expressed in terms of the total

Joule heating energy dissipated in the northern hemisphere
ionosphereWJ i using an empirical linear relationship de-
duced byAhn et al.(1983) between hemispheric Joule heat-
ing and the AL index. Integrating Eq. (13) from timet=ti to
t=∞ using this relationship we have

WJ i=−α

∫
∞

ti

AL dt (14)

=
αbi

p2

whereα=3×108 W nT−1.
Joule heating represents only a fractionβ of the total en-

ergy released by unloadingWi . The energy is distributed
among four main sinks: Joule heating, particle precipitation,

ring current enhancement, and plasmoid ejection (including
associated plasma sheet heating,Ieda et al., 1997). To a first
approximation, Joule heating can be considered to account
for one third of the total energy budget (Kamide and Baumjo-
hann, 1993; Tanskanen et al., 2002). If we make a further
assumption that Joule heating is equally divided between the
northern and southern hemispheres thenβ∼1/6.

Thus we now re-express Eq. (13) as

AL1i=−
βp2

α
WiS(t−ti) (15)

2.3 The minimal substorm model

Equation (15) represents the unloading component for a sin-
gle isolated substorm. In order to create a sequence of sub-
storms, we use the F&M MSM (see alsoFreeman and Far-
rugia, 1995, 1999). The model predicts the onset timeti and
total energyWi of theith substorm based on just three math-
ematical rules and an empirical solar wind power inputP .

In the MSM, the total energy released in each substorm,
Wi , is given by

Wi=AeffDP(ti) (16)

whereAeff is the effective area of the magnetopause for so-
lar wind power input (see Sect.2.1). DefiningAeff=L2

0 and
using emu units,Perreault and Akasofu(1978) estimated
L0=7RE . Converting into the SI units we use here, we have
Aeff=4πL2

0 (seeKoskinen and Tanskanen, 2002). Conse-
quently, thePerreault and Akasofu(1978) estimate would
give Aeff=196πR2

E . However, Koskinen and Tanskanen
(2002) have suggested that, though the coupling efficiency
may vary, an increased value of aboutL0=10RE fitted better
with their observations, which would giveAeff=400πR2

E

Referring to the MSM rules given by F and M, it should be
noted that in the present study, the amplified-limited power
input, Pal , has been used in rule 1 to determine the energy
flux into the magnetosphere because it is thought to represent
the effects of IMF compression in the dayside magnetosheath
on energy input through magnetopause reconnection (Reiff
et al., 1981). However, amplification-limitation has not been
used in rule 2 to determine the magnetospheric ground state
because we view this state to depend on the magnetotail
boundary condition where the magnetosheath conditions are
more similar to those of the IMF (i.e. we useP in Eq.16).

D is a constant equal to the substorm recurrence period for
constantP . F&M derived the value ofD=2.69 h by compar-
ing an observed probability distribution of substorm waiting
times with that of the MSM driven by real solar wind data,
but without applying the amplification-limitation procedure
described previously. Implementing the procedure, and re-
doing the analysis as before, yields a slightly higher best-fit
value ofD=2.73 h.
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Figures

Fig. 1. An example section of the simulated AL index. The directly driven component has been inverted

and plotted to represent the AU index. The horizontal black dot-dashed line marks the -100 nT threshold

level; the vertical red dotted lines mark substorm onsets that are counted after grouping and application of

the threshold (t = [107, 760, 1615, 2092] min); the vertical blue dashed lines mark substorm onsets that are

excluded (t = [276, 1693] min). See text for further details.

Fig. 2. Substorm magnitude (upper panel) and Joule dissipation energy (lower panel) histograms derived from

the synthetic AL index for the model set of substorms. The histograms are binned by every 100 nT in substorm

magnitude and by every 2× 1014 J in Joule dissipation energy. Compare to Fig. 5 of TEA.

20

Fig. 1. An example section of the simulated AL index. The directly driven component has been inverted and plotted to represent the AU
index. The horizontal black dot-dashed line marks the−100 nT threshold level; the vertical red dotted lines mark substorm onsets that are
counted after grouping and application of the threshold (t=(107, 760, 1615, 2092) min); the vertical blue dashed lines mark substorm onsets
that are excluded (t=(276, 1693) min). See text for further details.

Substituting Eq. (16) into Eq. (15) and summing over all
substorms, we get

AL1(t)=−

N∑
i=1

kP (ti)H(t−ti)S(t−ti) (17)

where H is the Heaviside step function and the pa-
rameter k=βp2AeffD/α. Taking β=1/6, p=−2.22 h−1,
L0=7RE , D=2.73 h, and α=3×1017 W T−1, we have
k=5.2×10−5 m2 T J−1. Neglecting contributions from
neighbouring substorms, the peak AL1 magnitude oc-
curs at t−ti= − 1/p where AL1p=kP/(pe). For
P=8×10−6 W m−2, which corresponds to a solar wind
speed of 400 km s−1 and a southward IMF of 5 nT, we find
that AL1p=−250 nT.

2.4 The Synthetic AL

Substituting Eqs. (17) and (11) into Eq. (1), we get the fol-
lowing expression for the complete AL index

AL(t)=−k

N∑
i=1

P(ti)H(t−ti)S(t−ti)−aVmax(Pal(t)) (18)

Thus we have two free parameters in the AL model:k, which
scales the amplitude of the unloading DP1 component; and
a, which scales the amplitude of the directly-driven DP2
component. We have estimateda<2.3×10−12 T V−1 and
k=5.2×10−5 m2 T J−1, but it is important to remember that
this is a rough approximation. Thus, in the subsequent anal-
ysis, we explore the goodness-of-fit of our model results to
the observations for a range of{a, k} parameter space.

3 Analysis and results

Following the above method, a synthetic AL index was
generated using solar wind measurements from the NASA

Wind spacecraft between 1 January 1995 and 1 July 1998
(see F and M for details). Only sections of solar wind
data that were unbroken for 100 h or more were used, of
which there were 37. An example section of the modelled
AL index is shown in Fig.1 for k=5.19×10−5 m2 T J−1,
a=1.45×10−12 T V−1 andD=2.73 h. The substorm onset
times are marked by the vertical dotted and dashed lines at
t=[107, 276, 760, 1615, 1693, 2092] min. Like the real AL
time series, the model yields a complicated time series with
substorm magnetic bays of widely-varying magnitude and
structure. In the model, substorm onset is also typically pre-
ceded by an interval of about an hour during which the DP2
component of AU and−AL is relatively enhanced, similar to
the growth phase signature observed in real auroral magnetic
records (McPherron et al., 1973).

3.1 Substorm identification

TEA defined threshold and grouping criteria to identify a
substorm from their IL data: A substorm was defined as
a magnetic bay signature whose magnitude exceeds 100 nT
and for which the time elapsed between the peak of a sub-
storm and the onset of the following substorm must exceed
2 hrs, otherwise the substorms are grouped and treated as a
single event. Through 1997 and 1999 they identifiedNa=827
“admissible” substorms. The probability distribution of the
MLT of substorm onset was approximately Gaussian with
mean =22.9 MLT and standard deviationσ=2.4 h. Assum-
ing that this distribution reflects the substorm detection ef-
ficiency using the local IL index, with perfect detection at
the mean MLT, and that substorms are uniformly distributed
in UT, then the total number of substorms is estimated to
be 24Na/(σ

√
2π)=3321, and the average substorm waiting

time is inferred to be 5.3 h. This is similar to the mean sub-
storm waiting time of 5.7 h found independently byBorovsky
et al.(1993) for 1001 substorm pairs in 1982–1983.
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Figures

Fig. 1. An example section of the simulated AL index. The directly driven component has been inverted

and plotted to represent the AU index. The horizontal black dot-dashed line marks the -100 nT threshold

level; the vertical red dotted lines mark substorm onsets that are counted after grouping and application of

the threshold (t = [107, 760, 1615, 2092] min); the vertical blue dashed lines mark substorm onsets that are

excluded (t = [276, 1693] min). See text for further details.

Fig. 2. Substorm magnitude (upper panel) and Joule dissipation energy (lower panel) histograms derived from

the synthetic AL index for the model set of substorms. The histograms are binned by every 100 nT in substorm

magnitude and by every 2× 1014 J in Joule dissipation energy. Compare to Fig. 5 of TEA.

20

Fig. 2. Substorm magnitude (upper panel) and Joule dissipation energy (lower panel) histograms derived from the synthetic AL index for
the model set of substorms. The histograms are binned by every 100 nT in substorm magnitude and by every 2×1014J in Joule dissipation
energy. Compare to Fig. 5 of TEA.

We have applied the same threshold and grouping criteria
as TEA to the substorms contained in the synthetic AL in-
dex. In the example shown in Fig.1, the substorm onsets
identified in this way can be seen at timest=(107, 760, 1615,
2092) min, marked by the vertical red dotted lines. The sub-
storm att=276 min has a peak magnitude below the threshold
level and is therefore excluded. The substorm att=1693 min
starts 78 min after the previous onset and is therefore grouped
with the substorm att=1615 min. Using the threshold and
grouping criteria the number of “admissible” substorms is
718 in 5258 data hours, corresponding to an average sub-
storm occurrence rate of approximately 7.3 h.

This is considerably longer than the TEA mean waiting
time of 5.3 h. Applying a shorter grouping window than
stated in TEA decreases the average waiting time. In fact, in
the original model time series (without grouping) 932 sub-
storm onsets occurred, corresponding to a mean substorm
waiting time of 5.7 h. Inspection of the TEA data set shows
that where substorms were of shorter duration, the grouping
criterion was not strictly applied. In many cases, this reduced
the inter-substorm interval to about 1 hour. For example, re-
ducing the grouping window to 27 min (i.e. if onset occurs
during the expansion phase of the previous substorm then
the substorms are grouped) gives 904 modelled substorms in
5258 h, a mean inter-substorm interval of 5.8 h. This com-
pares much better to theBorovsky et al.data set mean wait-
ing time of 5.7 h used to define theD parameter of the MSM.

In the subsequent analysis we adopt the TEA grouping cri-
terion, but also examine the effect of changing the grouping
window on the distribution of substorm magnitudes.

3.2 Substorm bay magnitudes

For each substorm identified under the TEA criteria, the peak
magnitude of the simulated AL index was found, and the
total energy dissipated by Joule heating was calculated us-
ing the first line of Eq. (14) with the upper integration limit
replaced by the end time of the substorm, taken here to be
3 h after the onset. In the case of multiple substorms being
grouped, the end time is 3 h after the onset of the last sub-
storm in the group. Figure2 shows the occurrence distribu-
tion of these substorm magnitudes and Joule dissipation en-
ergy for the same choice of the model free parameters{a, k}

that was used in Fig.1. These distributions can be compared
to the upper and lower panels of Figs. 5 and 7 of TEA, which
show the equivalent observed distributions for isolated and
stormtime substorms separately. The model distributions are
similar to those presented by TEA, if the isolated and storm-
time substorms are considered together. For example, the tail
of the model distribution cannot be accounted for by isolated
substorms alone.

3.3 Statistical tests

The null hypothesis that the observed and simulated distri-
butions of substorm AL magnitude come from the same dis-
tribution was tested over a range of{a, k} values using two
different test statistics. Figure3 shows contours of constant
test statistic over the{a, k} parameter space for the two-sided
Kolmogorov–Smirnov (K-S) test (left panel) and the two-
sampleχ2 test (right panel) (e.g.Conover, 1999).
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Fig. 3. Contour maps showing (on the left) the Kolmogorov-Smirnov test statistic and (on the right) the χ2 test

statistic for {a,k} parameter space. The thick red contours indicate the 5% significance level. The point of best
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Fig. 3. Contour maps showing (on the left) the Kolmogorov-Smirnov test statistic and (on the right) theχ2 test statistic for{a,k} parameter
space. The thick red contours indicate the 5% significance level. The point of best fit is marked by a cross. The dashed blue line is the linear
equationk=sa−ped, for s=2×107 m2 C−1,ped=-8×10−5 m2 T J−1, as described in Sect.4.1

The two-sampleχ2 test (e.g.Conover, 1999) requires that
the data be sorted into bins and is more sensitive to differ-
ences in the bins with low observed frequencies (i.e. those
bins in the tail of the distribution). The data were binned in
100 nT intervals and neighbouring bins were joined where
the expected frequencies were less than five. At the opti-
mal values ofa and k (indicated by a cross in the figure)
this resulted in 13 classes and hence 12 degrees of free-
dom. The calculated value ofχ2=8.06 is less than the corre-
spondingχ2=21.03 at the 5% significance level and allows
us to accept the null hypothesis for the optimal values of
a=2.03×10−12 T V−1 andk=4.22×10−5 m2 T J−1.

The K-S test is based on the maximum difference be-
tween the cumulative distribution functions of the two
samples. Hence it is more sensitive to differences near
the median of the distribution. For the optimal fit at
a=2.10×10−12 T V−1, k=3.89×10−5 m2 T J−1, the K-S pa-
rameters=0.025, which is also less than the 5% significance
level (s=0.069).

The 5% significance level is marked in each plot by a
heavy red line. At this level, the model distribution of sub-
storm magnitude is found to be drawn from the same distri-
bution as the observed distribution for a wide range of pa-
rametersa andk, but there is a clear relationship between
the two parameters. As thea contribution to AL from the
directly-driven component is scaled down, thek contribu-
tion from unloading necessarily increases, thus preserving
the substorm AL magnitude. Averaging the best fit param-
eters of the two tests gives overall best fit parameters of
k=4.05×10−5 m2 T J−1 anda=2.07×10−12 T V−1.

For these parameters, the model and observed distributions
of substorm AL magnitude are shown in Fig.4. The obser-
vational data includes both “isolated” and “stormtime” sub-
storms, as defined by TEA. The distribution of modelled sub-
storm AL magnitudes is shown by the solid red line and the

distribution measured by TEA is shown by the solid black
line. The occurrence frequency of modelled magnitudes has
been normalized to the number of substorms in the obser-
vational data set. The good agreement can be clearly seen.
For comparison, the blue dashed line shows the distribution
of modelled substorm magnitudes using a 27 min grouping
window (see Sect.3.1). It can be seen that this distribution is
similar to that obtained using the TEA grouping and thresh-
old criteria. The light blue dotted line shows the MSM sub-
storm magnitude distribution with no grouping applied.

4 Discussion

4.1 Substorm magnetic bay magnitudes

We have shown that the distribution of substorm magnetic
bay magnitudes derived from the IL index by TEA is not sig-
nificantly different to that derived from a synthetic AL index
based on the MSM and using similar substorm threshold and
grouping criteria.

Apart from the single free parameterD of the MSM,
which is fixed by the distribution of substorm waiting times
(Freeman and Morley, 2004), two free parameters,a andk,
are used in the construction of the synthetic AL index, and
hence in the derivation of the substorm magnitudes. Param-
etera scales the amplitude of the directly-drivenDP2 com-
ponent and parameterk scales the amplitude of the unloading
DP1 component. The relative importance of these parame-
ters to the substorm AL magnitude can be understood from
Fig. 3, which shows how the similarity of the observed and
modelled distributions of substorm AL magnitude varies for
different combinations ofa andk.

Considering the 5% significance level, highlighted in the
figure by the bold curve, the model is able to account for
the observed distribution of substorm AL magnitudes over

www.ann-geophys.net/25/2427/2007/ Ann. Geophys., 25, 2427–2437, 2007



2434 S. K. Morley et al.: Statistical comparison of substorm magnitude

Fig. 3. Contour maps showing (on the left) the Kolmogorov-Smirnov test statistic and (on the right) the χ2 test

statistic for {a,k} parameter space. The thick red contours indicate the 5% significance level. The point of best

fit is marked by a cross. The dashed blue line is the linear equation k = sa − ped, for s = 2 × 107 m2 C−1,

ped = −8× 10−5 m2 T J−1, as described in Sect. 4.1

Fig. 4. A histogram of substorm magnitude as measured using the IL index by TEA (thick black line) and

using the synthetic AL index derived from the minimal substorm model using the TEA grouping and threshold

criteria (solid red line). For comparison the modelled distributions using a shortened grouping criterion (dark

blue dashed line) and no grouping criterion (light blue dotted line) are included. Note that the x-axis starts at

100 nT.

21

Fig. 4. A histogram of substorm magnitude as measured using the IL index by TEA (thick black line) and using the synthetic AL index
derived from the minimal substorm model using the TEA grouping and threshold criteria (solid red line). For comparison the modelled
distributions using a shortened grouping criterion (dark blue dashed line) and no grouping criterion (light blue dotted line) are included. Note
that the x-axis starts at 100 nT.

an approximately linear region of{a, k} space. This can be
understood from Eq. (18). Neglecting the effect of the TEA
substorm grouping and of overlapping substorms, we have
that:

ALpi≈kS(−1/p)P (ti) + aVmax(Pal(ti−1/p)) (19)

where ALpi is the peak value of−AL at the end of thei-
substorm expansion phase at timeti−1/p. In the approxima-
tion thatVmax=hPal (h= constant) and(Pal(ti−1/p))=P(ti)

then

ALpi≈

(
ha−

k

pe

)
P(ti)=dP (ti) (20)

whered=constant. Thus the model will yield the same dis-
tribution of ALpi , with equally good fit to the observed
distribution, for any{a, k} satisfying the linear equation
k=sa−ped, wheres=peh. In Fig. 3, we show this line for
s= − 2×107 m2 C−1, ped= − 8×10−5 m2 T J−1, which is
a good fit to the 5% plateau for 0.8<a<2.4×10−12 T V−1.
The approximation may be justified as follows: (a) From a
superposed epoch analysis of substorms, the IMF is pref-
erentially southward at substorm onset which, for a typi-
cal 5 nT IMF and a solar wind speed of 400 km/s, implies
2<Pal<8 µW m−2. Plotting Eq. (10) over this range (not
shown), we find thatVmax is approximately proportional
to Pal with h≈94 kV/8µ W m−2 (see end of Sect.2.1)and
hences= − 2×107 m2 C−1. (b) Furthermore, the average
north-south component of the IMF changes relatively little
during the expansion phase (≈ 25% on average) and hence
Pal(ti − 1/p) ∼ Pal(ti). (c) For these (and most) IMF con-
ditions, we haveB≤60/F=8.6 nT, and hencePal=P from
Eq. (9). Consequently, in this approximation, the two free
parameters reduce to just one free parameterd and the peak
amplitude of a substorm is simply proportional to the solar

wind power input at the time of substorm onset such that
ALpi [nT]≈48P(ti) [µ W m−2].

The range of parametera that gives acceptable fits to the
observed distribution of substorm magnitudes at the 5% level
matches the expected range of 0<a<2.3×10−12 T V−1 given
at the end of Sect.2.1, based on the bulk of the TEA sub-
storms. Interestingly, an acceptable fit is found even in the
absence of the directly-drivenDP2 component (a=0). How-
ever, the best fit is obtained fora≈2.1×10−12 T V−1, empha-
sizing the general necessity of a directly-driven component
of AL, for which there is other compelling evidence (e.g.
Weimer, 1994; Sun et al., 1998). The unloading component
also appears to be essential (i.e.k>0), and so the substorm
cannot be explained by the linear directly-driven process
alone as has been claimed (Akasofu, 1981). The range of
acceptablek also includes the value ofk=5.2×10−5 m2 T/J
estimated at the end of Sect.2.3, but the best fit value ofk
(marked by a cross) is lower than this estimate. This could
mean that our estimate of the partitioning of unloading en-
ergy (β) is too high, or that the coupling efficiency (Aeff)
is lower than believed. The former is more likely because
Koskinen and Tanskanen(2002) argue thatAeff should, if
anything, be higher. Overall, the MSM explains the distribu-
tion of substorm bay magnitudes for reasonable values ofa

andk.

4.2 Energy input and output

TEA also investigated the relationship between energy in-
put and energy output over different phases of the substorm.
They found that the best linear relationship was between the
energy input over the expansion phase and the energy output
over the same phase. F and M pointed out that, in the limit
that the expansion phase duration (∼30 min) was short com-
pared to the substorm recurrence time (∼3 h), the empirical
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Fig. 5. Joule heating dissipation, We, for modelled substorms as a function of solar wind energy input, Win,

during the expansion phase. Compare to Fig. 6a of Tanskanen et al. (2002).
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Fig. 5. Joule heating dissipation,We, for modelled substorms as a function of solar wind energy input,Win, during the expansion phase.
Compare to Fig. 6a ofTanskanen et al.(2002).

linear relationship was consistent with the assumption of the
MSM that the total substorm energy loss is defined to be pro-
portional to the solar wind power input at the time of sub-
storm onset (see alsoMorley and Freeman, 2007).

Using the synthetic AL index, we can explore this rela-
tionship further for non-zero expansion phase duration. Us-
ing the best fit parameters ofa andk we integrate both the
solar wind power inputPal and the ionospheric Joule heat-
ing power output derived from the synthetic AL over the ex-
pansion phase of each substorm of the MSM. The expansion
phase is defined as the time from substorm onset (t=ti) to
peak−AL ( tp=ti − 1/p). Figure5 shows the resulting rela-
tionship between the modelled energy input and output dur-
ing the expansion phase. It shows a linear dependence with
slope∼0.5, similar to the linear relationship found by TEA
but with a slope of∼0.3. The energy dissipated by Joule
heating can therefore be said to account for about half of so-
lar wind energy input during the substorm expansion phase
in the model, compared to the 30% reported by TEA for iso-
lated substorms. This discrepancy could result from an over-
estimate ofβ or an underestimate ofAeff. The former is more
likely, as discussed in the previous section.

The value of the gradient can be understood as follows:
Similar to Eq. (14), the energy dissipated by Joule heating
in the northern hemisphere ionosphere during the expansion
phase is

We = −α

∫ tp

0
ALdt (21)

Substituting for AL using Eq. (18) and neglecting contribu-
tions from neighbouring substorms, we get

We = αk

∫ tp

0
P(ti)S(t)dt + αa

∫ tp

0
Vmax(Pal(t))dt (22)

In the approximationVmax=hPal andPal=P (see Sect.4.1)
we get

We=αk

∫ tp

0
P(ti)S(t)dt+αah

∫ tp

0
P(t)dt (23)

Finally noting that the solar wind energy input over the ex-
pansion phase is given byWin=Aeff

∫ tp
0 Pal(t)dt , we find

that

We=
−αk

pAeff

(
1−

2

e

)
Win+

αah

Aeff
Win (24)

and approximatingPal(t)=P(t)=P(ti) during the expansion
phase (see Sect.4.1). Using the values estimated in Sect.2.1
and4.1we findWe'0.26Win +0.28Win'0.54Win, which is
in agreement with the gradient found in Fig.5.

Thus also the linear relationship found by TEA is consis-
tent with that expected by the MSM and the synthetic AL in-
dex. Even though the substorm energy output is assumed by
construction to be proportional to the solar wind power input
in the MSM, it is worth noting that the linear dependence is
not an obvious consequence. In the MSM, the energy output
depends on a single point measurement of the solar wind at
the time of substorm onset, whereas in Fig.5 the energy in-
put integrates measurements over the expansion phase. Thus
the linear dependence also stems from the long coherence in
solar wind parameters relative to the expansion phase dura-
tion.

4.3 Further work

Whilst the MSM is able to account for the statistical distribu-
tion of substorm magnetic bay magnitude and waiting time,
it is worth restating the caveat of F and M that it is uncertain
to what extent the MSM can predict these variables for indi-
vidual substorms. This is because (a) the solar wind power
input driving the minimal model is estimated from single-
point measurements taken several hundred RE upstream of
the earth and (b) the MSM is inherently non-linear as small
uncertainties in the driving variables can cause large uncer-
tainties in the simulated substorm onset time and magni-
tude. Importantly, these are factors that are likely common
to most magnetospheric substorm models and so the question
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of predictability is quite generic. Work on this is currently in
progress.

5 Conclusions

We have generated a synthetic AL index, using theFreeman
and Morley(2004) minimal substorm model in conjunction
with a simple model of ionospheric convection and some em-
pirical relationships, from which model substorm bay magni-
tudes are derived. There are two free parameters in the model
which scale the contributions to AL from the directly-driven
DP2 electrojet and loading-unloading DP1 electrojet.

Comparison of the distribution of modelled substorm mag-
netic bay magnitudes, driven by 3.5 yrs of solar wind mea-
surements from the NASA Wind spacecraft, with 2 years of
independent observations of substorm bay magnitudes made
by TEA using the IMAGE magnetometer chain, shows that
the minimal model can successfully reproduce the statistical
distribution of this variable across a region of the 2-parameter
space.

The ranges of the two parameters giving acceptable (5%
significance) agreement are consistent with expectations us-
ing results from other studies. The approximately linear
relationship between the two free parameters over these
ranges can be understood by a similar linear dependence of
both directly-driven and unloading components on the so-
lar wind power input, which is argued to be a valid approx-
imation for certain conditions. For this approximation, the
substorm magnitude simply scales linearly with the solar
wind power input at the time of substorm onset such that
ALpi [nT]≈48P(ti) [µ W m−2].

The linear relationship between energy input and energy
output during the expansion phase previously observed by
TEA is reproduced by the model (with similar variability).
This supports an assumption of the model that the energy
output is entirely determined by the state of the solar wind
at substorm onset, but it is not a necessary consequence of
this assumption. We conclude that the linearity is also due to
the persistence (i.e. a long autocorrelation time) of the solar
wind.

In the model, the Joule dissipation during the expansion
phase is approximately 50% of the solar wind energy in-
put during the same interval, which is higher than the ob-
servations of TEA. This discrepancy probably results from
an overestimate of the fraction of total energy dissipated by
Joule heating.
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Büchner, J.: A nonlinear dynamical analogue model of geomag-
netic activity, J. Geophys. Res., 97, 12 253–12 266, 1992.

Klimas, A. J., Baker, D. N., Vassiliadis, D., and Roberts, D. A.:
Substorm recurrence during steady and variable solar wind driv-
ing: Evidence for a normal mode in the unloading dynamics of
the magnetosphere, J. Geophys. Res., 99, 14 855–14 861, 1994.

Klimas, A. J., Uritsky, V. M., Vassiliadis, D., and Baker,
D. N.: Reconnection and scale-free avalanching in a driven
current-sheet model, J. Geophys. Res., 109, A02218, doi:
10.1029/2003JA010036, 2004.

Koskinen, H. J. and Tanskanen, E. I.: Magnetospheric energy bud-
get and the epsilon parameter, J. Geophys. Res., 107, 1415, 2002.

Lockwood, M. and Cowley, S. W. H.: Ionospheric convection and
the substorm cycle, in “Substorms 1, Proceedings of the First
International Conference on Substorms, ICS-1”, ed C. Mattock,
ESA-SP-335, European Space Agency Publications, Nordwijk,
The Netherlands, 99–110, 1992.

Lui, A. T. Y.: A synthesis of magnetospheric substorm models, J.
Geophys. Res., 96, 1849–1856, 1991.

Lui, A. T. Y.: A Multiscale Model for Substorms, Space Sci. Rev.,
95, 325–345, 2001.

McPherron, R. L., Russell, C. T., and Aubry, M. P.: Satellite studies
of magnetospheric substorms on 15 August 1968,9. Phenomeno-
logical model for substorms, J. Geophys. Res., 78, 3131–3149,
1973.

Morley, S. K. and Freeman, M. P.: On the associa-
tion between northward turnings of the interplanetary mag-
netic field and substorm onsets, Geophys. Res. Lett., 34,
L08104,doi:10.1029/2006GL028891, 2007.

Nishida, A. and Kokubun, S.: New polar magnetic disturbance, Rev.
Geophys. Space Phys., 9, 417–425, 1971.

Perreault, P. and Akasofu, S. I.: A study of geomagnetic storms,
Geophys. J., 54, 547, 1978.

Raeder, J. and Maynard, N. C.: Foreword, J. Geophys. Res.,
106(A1), 345–348, 2001.

Reiff, P. H., Spiro, R. W., and Hill, T. W.: Dependence of polar cap
potential drop on interplanetary parameters, J. Geophys. Res.,
86, 7639–7648, 1981.

Ruohoniemi, J. M. and Greenwald, R. A.: Statistical patterns of
high-latitude convection obtained from Goose Bay HF radar ob-
servations, J. Geophys. Res., 101, 21 743–21 763, 1996.

Russell, C. T., Luhmann, J. G., and Lu, G.: Nonlinear response of
the polar ionosphere to large values of the interplanetary electric
field, J. Geophys. Res., 106, 18 495–18 504, 2001.

Siscoe, G. L., Raeder, J., and Ridley, A. J.: Transpolar potential sat-
uration models compared, J. Geophys. Res., 109, A09203, doi:
10.1029/2003JA010318, 2004.

Sun, W., Xu, W. Y., and Akasofu, S. I.: Mathematical separa-
tion of directly driven and unloading components in the iono-
spheric equivalent currents during substorms, J. Geophys. Res.,
103, 11 695–11 700, 1998.

Tanskanen, E., Pulkkinen, T. I., Koskinen, H. E. J., and Slavin,
J. A.: Substorm energy budget during low and high solar ac-
tivity: 1997 and 1999 compared, J. Geophys. Res., 107, 1086,
doi:10.1029/2001JA900153, 2002.
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