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Abstract. In this paper, we derive the dispersion equationsnetic theory of electromagnetic cyclotron waves/instabilities
for field-aligned cyclotron waves in two-dimensional (2-D) in the straight magnetic field plasma is well developed (see,
magnetospheric plasmas with anisotropic temperature. Twe.g. the publications by Sagdeev and Shafranov, 1961; Corn-
magnetic field configurations are considered with dipole andwall, 1965; Kennel and Petschek, 1966; Horng, 1977; Cu-
circular magnetic field lines. The main contribution of the perman, 1981; Gomberoff and Neira, 1983; Kozyra et al.,
trapped particles to the transverse dielectric permittivity is1984; Bespalov and Trakhtengerts, 1986; Bittencourt, 1986;
estimated by solving the linearized Vlasov equation for theirGary, 1993; Xue et al., 1996; Dasso et al., 2002; Khazanov
perturbed distribution functions, accounting for the cyclotron et al., 2003; and bibliography therein). However, the models
and bounce resonances, neglecting the drift effects, and a®f uniform plasmas confined in the straight magnetic field
suming the weak connection of the left-hand and right-handare suitable to study the wave processes in the solar wind
polarized waves. Both the bi-Maxwellian and bi-Lorentzian and quite rough for the planetary magnetospheres, which
distribution functions are considered to model the ring cur-are three-dimensional in the general case. As a more suit-
rent ions and electrons in the dipole magnetosphere. Aable approximation, the internal part of the Earth’s magne-
numerical code has been developed to analyze the dispetesphere, including the region of the Earth’s radiation belts
sion characteristics of electromagnetic ion-cyclotron wavesand the geostationary orbit, can be considered as a two-
in an electron-proton magnetospheric plasma with circulardimensional (2-D) axisymmetric plasma configuration with
magnetic field lines, assuming that the steady-state distripoint dipole magnetic field lines. Another interesting 2-D
bution function of the energetic protons is bi-Maxwellian. magnetosphere-like plasma model is a configuration with cir-
As in the uniform magnetic field case, the growth rate of cular magnetic field lines (Grishanov et al., 1998), which is
the proton-cyclotron instability (PCI) in the 2-D magneto- artificial but mathematically simpler and helpful to describe
spheric plasmas is defined by the contribution of the enerthe principal wave processes in the Earth’s magnetosphere.
getic ions/protons to the imaginary part of the transverse per-

mittivity elements. We demonstrate that the PCI growth rate  The main feature of 2-D magnetospheric plasmas is the
in the 2-D axisymmetric plasmasphere can be significantlyfact that i) the parallel velocity of charged particles mov-
smaller than that for the straight magnetic field case with the"d along the geomagnetic field lines is not constant (in
same macroscopic bulk parameters. contrast to a straight uniform magnetic field case), and ii)

) ) . . the ambient geomagnetic field is axisymmetric and has one
Keywords. Magnetospheric physics (Energetic particles, pinimum in the equatorial plane. As a result, all plas-

trapped) — Space plasma physics (Kinetic and MHD theorymagpheric particles are magnetically trapped, bouncing be-

Waves and instabilities) tween the mirror points (where their parallel velocity is equal
to zero), and the wave-patrticle resonance conditions should
take into account the cyclotron and bounce resonances. Ac-
cordingly, the instabilities of the cyclotron waves in the

Cyclotron waves are an important constituent of plasmae.Eart_h’S magnetosphere/ plasma;phere should b_e ar_lalyz_ed by
in solar corona, solar wind and planetary magnetospheres0!Ving Maxwell's equations with a correct “kinetic” di-

As is well-known, the energetic particles (electrons, pro_electnc tensor, yvh|gh can be qbtamed by solvmg_enher the
tons, heavy ions) with anisotropic temperature (pressure)\llasov or the drift-kinetic equation for trapped particles, tak-

can excite a wide class of cyclotron wave instabilities. Ki- "9 into account a 2-D nonuniformity of the geomagnetic
field and plasma parameters. The drift-kinetic equation is

Correspondence ta\. I. Grishanov suitable to study the wave properties in collisionless magne-
(nikolay@Incc.br) tized plasmas in a frequency range much less than the ion-

1 Introduction
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moment: vi/(ZB):const, and theB-field line equation:
R/ cog §=const. Introducing the variables

v:,/vﬁ—i—vf_, 2)

\ v2 cof o @)
U=
v2y/1+ 3sirf o
r R
- 4
RocoZ 6 “)

(instead o}, v, R), the perturbed distribution function can

] ) o ] ) ) be found as
Fig. 1. Dipole magnetic field configuration for the inner Earth’s
magnetosphere. f@, R, 0,0,v),v,a)=
+1 +o0
DD £, Lo, pyexp—iot +imp +ila),  (5)
cyclotron frequency, in particular, to describe the influence s 1

of the drift effects, the finitdbetaand the finite Larmor ra- wherew is the gyrophase angle in velocity spaceis the

d|u_s corrections on the low an,d ultra-low frequency geomag g je of the particle velocity associated with the particle
netic pulsations in the Earth’s magnetosphere (Southwoo%nergy”u is the nondimensional magnetic moment associ-
et al.., 1?69; rfkgrpman _et al., .1i77; (IZhen and Hasegaway o yith the pitch angle, and is the nondimensional.-
1991, K_|mus in, 1998; Dettrick et al., 2003). However, g parameter, i.e. the shell distance at the equatorial plane,
to describe the cyclotron effects (for example, by the con-. . 2iioad to the Earth's radius. By the indexest1 we

tr!butlon .Of. t.he resonant parucle_s to the transverse dleIec'distinguish the particles with positive and negative values of
tric permittivity for electromagnetic waves at the fundamen- ihe parallel velocity relative tB:

tal cyclotron frequencies), we should solve the more general
Vlasov equation for the perturbed distribution functions in v = svy/1 — ub(). (6)

the six-dimensional phase volume, using, for example, an ap- ) ) ) . .
proach developed by Grishanov et al. (2004). The linearized Vlas_ov equation for (interesting us) harmon-
ics £, can be rewritten in the form

VIZEb@ 3 . Rl
cosfv/1+ 3sirty 90 v

Wco

[a) +1 E b(@)] =0

2 Dipole magnetospheric plasma with the bi-
Maxwellian distribution
[ =+1, 7
At first, let us derive the contribution of energetic particles
with anisotropic temperature to the transverse dielectric tenWhere
sor components for field-aligned cyclotron waves in adipole & eRoL R
magnetospheric plasma, see Fig. 1, where the module of the! — W%H‘/ﬁ 0x

geomagnetic field, in the spherical coordinatesd, ¢), is
{Y E, [b(g)_l_i_ﬂ]_iv\/m(l—m/n)i E } -

3 NG T, RoL cosd+/1+3sirf g 90 vb(0)
B(R.0) = By (%) J1+3sifo 1) oo

N(L 2
. . . o Ozw(—)zep{—T[l—MO—J)”v ©)
Here, Rg is the radius of the Earth® is the geocentric dis- TEEVT VU vy L
tance, is the geographical latitude&y is the Earth’s equa-

torial magnetic field, i.e. at the poilt=Ro and6=0. The ;2 — , v == (10)
dotted lines in Fig. 1 correspond to the point dipole mag- M M

netic field linesR/Rocosd =const; and the solid curves P

B(R,0)=const, are corresponding to the lines of the constanp ) = 1+3sirfd (11)

geomagnetic field. cofo

To solve the Vlasov equation for collisionless trapped par-Here, E, and E;, are, respectively, the normal and bi-
ticles with anisotropic temperature we use a standard methodormal perturbed electric field components relativeBto
of switching to new variables associated with the conserva-E;=E, —il E};, is the transverse electric field component cor-
tion integrals of the energyvﬁJrvi:const, the magnetic responding to either the right-hand polarized wave=i,
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and to left-hand polarized wave, I —1; Fp is the bi- or the same

Maxwellian distribution function of plasma particles with s

density N, parallel and perpendicular temperatufge and fiEO) = fi @O +w). (19)

T,, chargee and massM. Note in Eq. {) that we have = Wheret,=1,(1)=47(6;) is the normalized bounce period of

neglected the drift corrections, assuming that the wave frethe trapped particles. In our notations, the bounce frequency

quencyw is much larger than the drift frequency and the Lar- of the trapped particles with a given temperatfjj@nd pitch

mor radius of plasma particles is small, which is valid when angley is defined as

mleL / (vt Roweo) <1, Wherew.,=eBo/Mc andm is the 27 vy

azimuthal wave number over thg(east-west) directioninan ®» = RoLty (20)

equatorial plane. Moreover, deriving EQ)(as well as the

dispersion equation for field-aligned cyclotron waves, we as-

sume that the plasma is perfectly conducting, Eg=0, and

the left-hand polarizedH_1=E,+i E;) and right-hand po-

larized E1=E,—iE;) waves are connected weakly. 1/b(0 F50. Lov. )
Depending on and6, the domain of the perturbed distri- (9, L)— TCp15(9) Z/ 3dv / \/_ 1= U

After solving Eq. 7), the contribution of the trapped parti-
cles to the two-dimensional transverse current density com-
ponent,j+1(@, L), can be expressed as

bution functions is defined by the inequalities V1=pb(6)

po<pm <1 and —6,(n) <0 <6,(n), (12) [ ==+l (21)

where Note that the normal and binormal (B) current density
1 1 components in our notation are equal, respectively, to

H0= p(arccos/IjL) ~ L25VAL -3 ) — i+ and i, (22)

and=6; (i) are the local mirror (or turning, or stop, or reflec- To solve the wave (or Maxwell’s) equations it is convenient

tion) points for trapped particles at a given (by magnetic  to expand the perturbed values in a Fourier series over the

field line, which are defined by the conditian (£6;)=0. coordinate. along the geomagnetic field line

Any untrapped particle witjy <po cannot survive more than (0) =

one-half of the bounce time and will be precipitated into the RoL

atmosphere/ionosphere. {f sing\/ 1+3sirf 6+ In (f sinf++/ 143 sn‘?eﬂ (23)
Since the trapped particles, with a given (py pitch 2«[

angle, execute the bounce-periodic motion, the solution ofmeasured from the equator. In particular, for the transverse

Eqg. (7) (in the zeroth order of a magnetization parameter)components of the current densify, and electric field £/,

can be found as we have:
. +o00
fls(9 Lov,p)= J10, L) ) [ )»(9)]
= ex , 24
27T oeo m ;]1 ( ) p iTn )\’0 ( )
Z (L, v, 1) eXp|:zp—t(9)+lsl C(@)] (14) .
p=—00 E; 0, L) o) |: /)»(9)]
o E;"(Lyexp|linn — |, 25
where /50) ; ! P I (25)
. cosn,/1+ 3sirfy wherei,=A(arccosy/1/L) is the half-length of a given by
T(0) = =50 dn, (15) L magnetic field line. This procedure converts the opera-

tor, representing the dielectric tensor, into a matrix whose
elements can be calculated independently of the solutions of

: cosny/1+ 3sirfn _ Maxwell's equations. As a result, there is the following con-
o) = O/b(”) T— b0 dn — bz (0), (18)  nection for harmonicg,” andE":
iy = Y e (1) B (26)
—J — e . s
B /b( )cos@ 1+ 3sirfo a7 w ! ! !
VI—ub®) . and the contribution of a given kind of plasma particles

o . ) to the transverse permittivity elemen@”,’",(L), after the
The perturbed distribution functions, in the form of Ety), s-summation. is

satisfy automatically the corresponding boundary conditions

for the trapped particles, namely, the continuity of the distri- n n _ Z P @7)
bution functions at the reflection points,: p=—t0 Lp
£ = £ =00, (18)  where
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nn' LZRZTH / / 4 pl(u M)G (”a,u) ex 2 1 1 TH J (28)
fLp = 8&)7‘[15)» v T pu — Z[(,u,) P —u ’ T, "

is the separate contribution of tiebounce resonant term uﬁ’”/(L), and the other definitions are

47 Nez v 1 ,
2 7 co
= ) = ) ll/ l b ) 29
@po M " vT|| ) = wp (w ) (29)

cos@x/l+35ir129d0

0
G;’,,,(u,u)=/<b(9)—1-}—;l+m (1 T'),/l ub(e))cos[’;”x(e) pz—r(e) lR"ww C(e)]
1 0

) WA, T, 2yy il V1= ub(9)
0
Tnuvr|| T lRoww } cosfy/14-3sirf 6
-1)? b(H)-1 1-— 1-ub(0) ) cos| —A(0 —1(0 C do, (30
+( )/(() —I- —|— o ( TJ_>\/ M()) [ ()-I-p ()-I- ) T=00) (30)
-6,
0
21 IR s9v/1+ 3sirf 6
D (. ) = / cos[ﬂk(e) PoT6) - Owc" C(G):|b(9)co oSO
P, Ao 1— ub(0)
—6;
0y
21 O co COS@\/l+3Siﬂ29
1?7 | cos| —Ar(@ —1(0 C@®)|b® do 31
+(=D / [A ()+p T()+ ()} ) T=1000) (31)
—6;
Thus, the transverse permittivity elements for electromag-can be reduced to
netic waves (at the fundamental cyclotron frequency) in an ., o
axisymmetric dipole magnetospheric plasma are expressegl’»l(u’ W =Dy (s 1. (32)

by the p-summation of the bounce-resonant terms, includingAs was noted above, Egs. (27-31) describe the contribution
the double integration in velocity space, the resonant denomef any kind of the trapped particles to the transverse permit-
inatorspu-Z (), and the phase coefficientfs" 4(u, n) and tivity elements. The corresponding expressions for plasma
D" D) As follows from Eq. 26), due to a 2 D geomag- €lectrons and ions can be obtained from Egs. (27-31) by re-
netic field nonuniformity, the whole spectrum of the electric placing the temperature and 7, density N, massM,

field (by £7;°°) is present in the given (by) current density ~ chargee by the electrorfj, T., Ne, M, e, and ionTj;,
harmonic. It should be noted that the bounce-resonance corLi, Ni, M;, e; parameters, respectively.

ditions, pu-Z(1)=0 for trapped particles in magnetospheric ~ Since the cyclotron wave instabilities are an important
plasmas, are different from the corresponding expressions igontributor to the geomagnetic storms during the solar ac-
the straight magnetic field case. Of course, as in the straightivity, it is possible to develop a 2-D numerical code to de-
magnetic field/=1 corresponds to the effective resonant in- scribe these processes in the Earth’'s magnetosphere with new
teraction of electrons with the extraordinary (or right-hand dielectric tensor components, accounting for the bounce-
polarized) waves at the fundamental electron-cyclotron fre-resonant effects. To have some analogy with linear theory
quency, and= —1 corresponds to the resonant interaction of cyclotron wave instabilities in the straight magnetic field
of ions with an ordinary (or left-hand polarized) wave at the (€.g. Kennel and Petschek, 1966), let us assume that the n-th
fundamental ion-cyclotron frequency. Note that it is impos- harmonic of the electric field gives the main contribution to
sible to carry out the analytical Landau integration over thethe n-th harmonic of the current densityng-mode approx-
particle energy:=v /vy (by introducing the plasma disper- imation). In this case, for the field-aligned electromagnetic
sion functions) because the phase coefficiéiffs(u, 1) and cyclotron waves (whem=0, /3 L=0, E, =0, H;=0), from

D" (u, n) depend one. As for the particles with isotropic the Maxwell's equations

temperature, i.e. if)=7, the phase coefﬁmen@" g, ) E + @jl _
w
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—c2J/b(0) ki 1 0 E (33)  functions in velocity space can be applied, as well for plas-
©2R2L2 cosp /1+ 3526 99 cosh/1 + 3sirke 90 Vb(O) mas with the more general distributions including, for ex-

) - ) ample, the bi-Lorentzian distribution functions. According
excluding theZ; ™ -harmonics by Egs. (24-26), we obtain the {5 symmers and Thorne (1991), Chan et al. (1994), Xue

following dispersion equation: et al. (1996), the generalised steady-state bi-Lorentzian (or
2 kapp3 distribution functions can be expressed as
nic
(3) =142y 0 (34)
ot o ~(L40)

. . V2
whereo denotes the particle species (electron, proton, heavyg _ N(L) P+ 1+ [1_ (1_TH>}
ions). This equation is suitable to analyze the instability of ~ 7159 92«15 ' (x—0.5) T,
the right-hand polarized waves /i1, and the left-hand po- (35)
larized waves, if= —1. Note that, in our notation, the paral-
lel wave vector is defined ag=n /%, so thatic/(ho®)  with the associated effective thermal speeds corresponding to
is the nondimensional parallel refractive index. Further, 1 andr
|| andiy,
Eq. (34) should be resolved numerically for the real and
imaginary parts of the wave frequenay=Rew+ilmw, to 2% — 37, , 2% —3T,
define the conditions of the wave instabilities in the dipole ﬁH — . Ui = —
Kk M’ Kk M
magnetospheric plasmas with anisotropic temperature. As
usual, the growth (damping) rate of the electromagnetic cy\yhere the parameteris the spectral index (here it takes pos-
clotron waves, I, is defined by the contribution of the res- jtive valuesk>2): I'(x)= Jo¥ r*Lexp(—n)dr is the gamma
onant particles to the |mag|nary part of the transverse perfynction. It should be noted that the parametds a mea-
mittivity elements, Ina;", that can be readily derived from  syre of the proportion of the high energy particles present in
Egs. @7) and @8), usmg 'the well-known residue (or Landau the distribution; typically for the space plasmas, it is found
rule) method. to be in the range 2«<6. Moreover, the generalised bi-
Lorentzian distribution contains the standard bi-Maxwellian
3 Dipole magnetospheric plasma with the bi-Lorentzian ~ distribution, Eq. 9), as a special case letting co. .
distribution To estimate the main contribution of the trapped particles
with the bi-Lorentzian distribution functions to the transverse
Of course, an approach developed in the previous sectiopermittivity elements we should solve again Ed), (where
for magnetospheric plasmas with bi-Maxwellian distribution the right-hand side is

: (36)

05 = eRoL /(1 + k) Fo [sEz [;,(9)_ N ﬂ} inI=@b@A—Ty/TL) o E } an
| Mo [1+ [1_ (1‘%)]} b T.l wRoLcossy/1+ 3sife 90 Vb(©)

As a result, one can derive the new expressi;’?rﬁ’(L) for field-aligned waves in magnetospheric plasmas with the bi-
Lorentzian distribution functions in velocity space, instead of Egs. (27-31):

wn @ooLRoTjj(c + DT (k + 1) Z WD, )G (u, pydu 8)
&’ 15 _ /“ “/ P
8a)7r AT k) T'(k —05) Lpu — 2100)] [1+u (1_M(1_%>)]
where
Jtnufl?” T nm 3 g 3 [Roweo i|COS@\/ 1+3sirf o
" )= /(b(@) 1+ + " ( I ),/1 ub(9)>cos[/\ok(6) pthT(Q) 7L2uﬁﬁ”0(9) .= do
—6;
6,
T nnuﬁﬁ||< T) ) [ IRoweo }cos@x/l—l—:’asinze
Y4 _ 1 _ _ _
+(-1) /(b(@) 1+TL+ o 1 7 V1-1b(0) | cos x(9)+p 1(0)+L2uﬁ9”0(9) M=) do, (39)
—6,
0,
D" (u )—/cos[ﬂk(e)— ﬁr(e)—MC(Q)} b(0) 2 1+3sito
pl 1= o P L2u k9, Na=rQ)

-6
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O

+(—1)P/cos[ﬂx(9)+ 2 ) + R0 C(G)}b(e)cose 1+3sifo (40)
*o P L2u. /9 JI-ub@
—6,
v A _ RoLty, Dco -
u= o A0 =5 (w—H > b). (41)

It should be noted that, in the variablas (1), there are  plex wave frequency, for prescribed real values of the wave
identities for the phase coefficienté‘.’;’l(v, M)=G’,§,l(v, In) numberk)=nmw /A,.
and Dg’l(v, u):ﬁ;’l(v, w). Accordingly, the single wave-
particle resonance conditions are also independent of th
steady-state distribution functions of the trapped particles
and can be written as

Magnetospheric plasma with circular magnetic field
lines (bi-Maxwellian distribution)

By analogy, we can derive the contribution of the resonance
, (42) particles to the transverse dielectric permittivity for waves in
RoLy(p) magnetospheric plasmas with circular magnetic field lines,
where the module of the magnetic field is

Weo 27,

L3

®+1—Z3b(u) = p
involving the wave frequencw, the bounce-averaged cy-
clotron frequencyw.,b(1)/L® and the bounce frequency of Ro\3 1 Bo
the trapped particles® /[ RoL 1, ()], with the given energy B = Bo ( ) cosd — L3codd
v and pitch angle. at the given (byL) magnetic field line,
wherel=0, +1, ... and p=0, &1, ... are the numbers of the Here the newL-shell variable is introduced instead Bfas
cyclotron and bounce resonances, respectively. L=R/(Rpc0s), taking into account that the equation of the
In the case of the bi-Lorentzian distribution functions, the B-field lines, in this case, has a forRy cosf=const, and the
dispersion equation for the cyclotron waves will be the samenondimensional paramet&() is
as Eq. 84), where the new transverse dielectric tensor com- B(L.6) 1
ponents, Eq.38), should be included. For specified values b(6) = B(L.0) = odd
of the ambient magnetic field ling, and the parameters ’
Tio, Tis, No, My, e, that describe each particle species, In this case, the linearized Vlasov equation for harmonics
an iterative scheme can be used to solve Bd) for a com-  f; can be reduced to

R

(43)

(44)

off co
1— Mb(e)éié _ jsRol [a)—l— 1‘2—31;(9)] =08 =41, (45)
where
. eRoL E .n __v«/l—,ub(9)< _ﬂ>i( E >]
Qi = Mv%llﬂFo [S«/b(e) (b(g) 1+ Tl> okole . \17 1 ) 50\ @ )| (46)

In contrast to a dipole geomagnetic field, the length element along the magnetic field line in magnetospheric plasmas with
circular magnetic field lines is proportional to the latitude angle (as a linear function)pi@®) = RoL6, and the new
time-like variabler can be introduced by the elliptic integrals

1(0,v) = 2(1_V)ZH arcsinf [— =2 sing). ", —,/ﬂF arcsin [— =2 sing) v (47)
VNI T 21— v) —sirt6 -2 2 2(1-v) —sirf g A

where and
o dn
Flaw = [ —2— (49)
o o Vy1-v sirfp
d
(e, s, v) = / 7 (48) are the incomplete elliptic integrals of the third and first kind,
o (=36 sie n)y/1 — vsirt respectively. Accordingly, the bounce periods of the trapped
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particles (normalized t®oL /vr|) can be expressed by the As aresult, using the Fourier expansions
complete elliptic integral of the third kind as

_ NG AR .(n) .0
Tp(v) = 2/2(1 — 2v)T1 (77/2, 2v, V), (50) i Z J" (L) exp imn g |, (55)
where the v variable is introduced instead ofi as
u=(1—2v)?, varying in the interval
R S | -
0<v=051-n) < TR (51) vb(©0) 6
Here we have taken into account that, in the case of the circu-
lar magnetic field lines, the reflection points for the trappedthe contribution of the resonant partcheSde’ (L):
particles are defined by the simple relation
i 7oLy = Ze Ly EM(L) (57)
0;(v) = arcsinv2v, (52) i )
and the maximad,; (v) for trapped particles with the given
can be expressed as
L2-1
Yo =1z 53)
at theL-shell is & = p;oo Lp (58)
1
6, = 0;(v,) = arcco Z . (54) where
. W2,LRoTy f T utAn yn T
e = Zpe 0 f 1— 2v)3dv/ il 2t 2 exp[—uz (1 — (1—20)? (1 _ J))} du, (59)
P 20)711590le| J pu—Zi(v) T,
and the phase coefficients are
9' o I do
. Tnuvr)| T nmw Roweo
Y’ (u, v):/ (b(@) 1—|— + (l—) v 1—(1—2v)2b(9)> COS|:(9— —1(0)— C(G)} +
Pl ) T, wRoL0, T, B0 b Tp L2uvr), V1-(1-2v)2h(6)
0; J
Ti [Roweo 0
(-1)7 / (b(@) 1+ i +””“”T“ (1 ! ) V1-(1- 2v)2b(9>) cos[0+p TO)+ 75 cw)} —  (60)
) wRoLO, T, 6 Zuvy| V1-(1-2v)2h(H)
0;
" 27 [ Roweo b(0)do
A" (u,v) = [ cos "y p—t(@)——C(@) +
’ J 0o L2uvy), V1-(1-2v)2b(9)
i 2 IR b(6)do
(—1)? / cos[ﬂ9+p—”r(9)+ S C(@)} © , (61)
) o T Leuvr V1-(1-2v)2h(0)
V2(1-v) _ 1—2v .
Cll) = ——=II|arcsinf | ————siné | ,v,v | —
©) (1—2v)L5 2(1—v) —sirfe
;F arcsin & sing | ,v|. (62)
V2(1—2v)15 2(1—v) —sirfo
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In this case, the Maxwell's equations for the transverse elecparticular, the new variable can be introduced instead &f
tric field and current density components can be reduced to by the transformation

8ri . —c2J/b@) 9% E
L . ©) ) = arcs G
w W?RZL2 362 \/b(®) Ole) = aresin\ \ T 50 vs(@, Vo)

and excludingEl(")-harmonics by Egs. (55-57) we have de- .
rived the dispersion equation

sn(a, ﬁ)) (65)

nme \? 14 22 ) (64) arCSir(\/ mjﬁ Sme) J
JE— = £ .
wRoLO, . €1.(0) a(6) = — (66)
wl—vgﬁ
As was mentioned abovel',’”; , in the magnetospheric plas- 0 1

mas with circular magnetic field lines, is simpler than that for yhere stie, «/v) is the Jacobi elliptic function (e.g.
a dipolar magnetosphere, since there is the exact expressigtyramovitz and Stegun, 1972).

for the reflection pointsg, (v)=arcsinv/2v, and the phase

coefficients can be calculated using the elliptic inegrals and

Jacobi elliptic functions, which are convenient for computa-5 Magnetized plasma in the straight magnetic field (bi-
tions by the last versions of such mathematical programmes  Maxwellian distribution)

as Maple, Mathematica and Mathcad, operating the complete

and incomplete elliptic integrals and elliptic functions in the In the straight magnetic field case, the transverse dielectric
standard forms, such as the usual elementary functions. ltensor component for field-aligned cyclotron waves is

Elo = w1270,20 |:TJ_,U’ 14+ (TJ_,O' _ 1) @ — cho,a 7 <(1) - cho,a) 4 @ 7 <w - cho,o>:| ’ (67)

20° | Tjj.o Tio kjjor .o kjvr |0 kjjvr .o kjjr .o
where the plasma dispersion functiort % (Fried and Conte As is well-known, the squared refractive index of the ion-
(1961), is associated with the bi-Maxwellian distribution, cyclotron wavesIE—1) in the hydrogen plasma, including
namely, the electrons and protons, is defined by the expression

00 ke 2 92
1 exp(—t2 I A PP 70

Z() = — / EXRED) 4, Imz >0 (68) (Rea) Q.0(Q0 — Rew) ’ (70)

N t—¢

—00

where Q3 =4w N,e?/M,, is the squared Langmuir fre-
with the complex¢ and with the suitable extension for duency of the protons calculated by the sum-density of the
Im¢ <0 by analytic continuation. cold (N.) and resonant hot\,) protons, i.e.Ny=N.+Nj,
As a result, the dispersion equation for field-aligned elec-and Qco=eB(L, 0)/Mpc=awy,,/L* is the equatorial gy-
tromagnetic cyclotron waves (see e.g. Abramovitz and Stefofrequency ofL.-shell protons, so that the eigenmode num-
gun, 1972; Bespalov and Trakhtengerts, 1986; BittencourtPers» (sincek;=nx/4,) can be estimated as

1986; Chan et al., 1994; Chen and Hasegawa, 1991; Corn- Ao S2ppReEw
wall, 1965; Cuperman, 1981; Dasso et al., 2002; Dettrick” ~ (71)
c/R2:0(2c0 — Rew)

et al., 2003) in magnetized plasmas, confined in the straight o
magnetic field, has the well-known form (see, e.g. Kennelfor dipolar geomagnetic field, and by analogy
ang Pjtschek, 1966; Xue et al., 1996) similar to E4) ( RoL arccosl/L)S,,,Rew
n~
and 69 e/ Q0o — Rew)

k 2 for the case of circular magnetic field lines. As follows
(—C) =142 &), (69) "
o

(72)

from Eq. (70), the propagation of the electromagnetic ion-
cyclotron (EMIC) waves is possible in the frequency range
where the parallel wave vector componéqtis connected Rew<Q. It should be noted that Eqs/@, (71) and (72)

with the eigenmode numbersask;=nm/A, for the stand-  are based upon the cold plasma approximation and may not
ing waves in the dipolar magnetospheric plasmas, ande strictly valid for hot magnetospheric plasmas. The incre-
ky=nm/[RoL arccogl/L)] for plasmaspheres with circular ment (decrement) of EMIC waves in the hydrogen plasma,
magnetic field lines. including the energetic protons with anisotropic temperature,

@
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under the conditiow=Imw<«Rew, is defined by the expres- where

sion
Rew (2.0 — Rew)?
Y ~_2 5 (82c0 ) Ime_14, (73)
Qo 92,220 Rew)
Q2, Q0T [Rew Rew\ (T Rew — Q.02
Ime_y, = —2" ZC [ - (1 - ) (ih - 1)} exp| — <—CO> (74)
2(Rew)2kjjvr)n | o Q0 /) \ Tin kjjvrjn

is the contribution of the hot protons to the transverse dielectoughly corresponds to geosynchronous orbit. For simplic-
tric permittivity for the left-hand polarized cyclotron waves ity, a hydrogen plasma is considered, including the cold elec-
(I=-1). By the subscribed indek we denote the corre- trons with N.=11 cn3, the cold protons withiv.=10 cn13,
sponding plasma parameters for energetic/hot protons wittand the energetic protons wit¥y,=1 cn 3. The parallel and
density Nj,, perpendicular temperatuf® 5, thermal veloc-  transverse temperatures of the energetic protons are given
ity of the resonant protorsr,=,/27),/M,, calculated by  equal toTj;,=10keV andrl'; ,=30keV, respectively, whereas
the parallel temperaturg,. As follows from Egs. {3) and  the temperature of the cold particles is small and isotropic.
(74), for the temporal growth (damping) rate of EMIC waves, In this case, the eigenmode numbersf the field-aligned
the instability (wheny >0) is possible under the conditions EMIC waves can be defined by the well-known expression
Ime_1 5, <0. As is well-known, this is possible if the reso- for the wave refractive index (see, e.g. Ef); the corre-
nant protons have the temperature anisotropy &ngd-T7j;, sponding dependenefw) is plotted in Fig. 2 using Eq7Q).

(for the left-hand polarized waves). The growth rate/; for EMIC waves in the straight mag-
netic field plasma is estimated, as usually, by E@8) &nd
(74). As for y ., for EMIC waves in the magnetospheric-like

6 Numerical results plasma with circular magnetic field lines, we use the expres-

Now let us compare the growth rates of the PCI instabil- sion similar to Eq.73),

ity in the plasmas, confined in the straight magnetic field, Ve Rew (R0 — Rew)?
ys, and in the 2-D axisymmetric magnetosphere, with cir- -
cular magnetic field linesy.. We parameterize the position
along a field line using the geographical latitéddn the fol-  \where the imaginary part of the transverse dielectric permit-
lowing magnetic field model, the ionosphere then occurs atjyity is estimated by Eqs5@) and 69) as

+0p== arccosl/L), whereL is the L-shell parameter (i.e.

the radius at the equator, normalized to the Earth’s radius)lmef*f’h = Z;O_l Ims’j{”pyh, (76)
and the parallel wave vectonkand eigenmode number

are connected by Eq72). In our simulations.=6.6, which ~ where

~

C n.n
~ Ime™7 (75)
Qo Q2 (2Q.0 — Rew) Lh

Q2 LRoT,,  F zZ zZ_
Ime"y = o2 2T /(1_ 20)°A% 4 (j v> ;—1( Lh’”) )
P 2w/70,vr T1 p , ’ p ' p

z? T
Z%, , exp [— p;’h (1 —(1—2v)? (1 - T—Dﬂ dv (77)

is the separate contribution of the bounce resonant terms to The temporal growth rates of the PCI instability versus
Ims’i’f,h. In the other words, we assume that the growth ratesare present in Fig. 3a for EMIC waves in the straight mag-
ys andy . (under the same wave frequency, eigenmode numetic field plasma by Egs. (73, 74), and in Fig. 3b for EMIC
ber and bulk parameters) are different by the different con-waves in the 2-D plasmasphere with circular magnetic field
tributions of the energetic protons to the imaginary part oflines by Eqgs. (75-77). The computationsjygfare carried
the transverse dielectric permittivity for EMIC waves in the out in the interval 2 Hzw<7 Hz, whereas the minimal gy-

considered plasma models. rofrequency of the protons &t=6.6 is closed t&2.0~11 Hz.
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Fig. 2. Dependence of the mode numiason the wave frequenay or left-hand polarized cyclotron waves{1) in the hydrogen plasma at

magnetic shell.=6.6 with the particle density,=N.+N,=11cnt 3.
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Fig. 3. The growth rates versus for EMIC waves in the hydrogen plasmas confined in the straight magnetiddigland in the magneto-
sphere with circular magnetic field linéls), under the same macroscopic bulk parameters.

As shown in Figs. 3a and b, the instability of EMIC waves is

The large difference between andy. is connected to

possible for the both plasma models in the frequency rangé¢he fact that the wave-particle interaction in the straight mag-
w<Q.0. It should be noted that the proton-cyclotron insta- netic field plasma is more effective, since the resonant par-
bility is impossible for EMIC waves in the frequency range ticles move along the uniform magnetic field line with the

Qo<w<Q0b(6,), whereQ.ob(6,) is the maximal gyrofre-
quency of the protons at the givénshell magnetic field line.

As one can see, the dependenceydfv) and y.(w) on
the wave frequency is similar; howevery .(w)<y s (w) un-
der the same bulk parameters. The ratipy. o410 versus

constant parallel velocity and interact permanently (in time)
with the wave, according to the well-known resonance con-
dition w—Q.0=kjjv);. As for 2-D axisymmetric magneto-
spheric plasmas, sincg|#const for the trapped particles,
there is another wave-particle resonance condition involving
the particle energy and pitch angle

w, for considered magnetospheric-like plasmas, is present in

Fig. 4. This dependence is not linear; the difference is very” ~ $200(1t) = pop (v, 1) .

large (by factor 10) for EMIC waves in the rangew®2 Hz

(78)

where wy, (v, 1) is the bounce frequency.ob(u) is the

and is smaller (by factor 4) in the range of the high frequen-bounce-averaged gyrofrequency, ands a integer. As a

ciesw~7Hz.
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Fig. 5. The separate contributions of the bounce resonant termsdb{'lr,pfor the different wave frequencie@) v=2.5Hz,(b) »=3.5Hz,
(c) w=4.5Hz,(d) ®=5.5 Hz,(e) w=6.5 Hz. '
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points during only part of the bounce-time can interact effec-and bi-Maxwellian distribution functions, Egs. (58, 59). The
tively with the wave. new dielectric characteristics are expressed by summation of
According to Eqgs. (75-77), the PCI growth ratg, as  the bounce-resonant terms, including the double integration
well as the imaginary part of the transverse dielectric per-in velocity space, the resonant denominators, and the cor-
mittivity, is calculated by the summation of the contribu- responding phase coefficients. Due to 2-D magnetic field
tions of the separate bounce resonant terms téi[m The nonuniformity, the bounce-resonance conditions for trapped

typical structure of the bounce resonance terms’| . particles in magnetospheric plasmas are different from the
Eq. (77), is shown in Fig. 5 for the different wave fr'equen- ones in the straight magnetic field; the whole spectrum of the
cies a)w=2.5Hz, b)w=3.5Hz, c)w=4.5Hz, d)w=>5.5Hz, electric field is present in the given current density harmonic;
e) w=6.5Hz. As we see, i) the contribution of the first the left-hand and right-hand polarized waves are coupled in
bounce resonance terms todhf’h is very small; i) the max-  the general case.

n,n

imal values of Ina™; , , i:orrespond to the bounce resonance  Tq have some analogy with the linear theory of cyclotron
numberspmax~[w—:0b]/wp. Accordingly, thepmax num- waves in the straight magnetic field, we assumed that the n-
bers are shifted to the left for the EMIC waves with a larger th harmonic of the electric field gives the main contribution
frequency. to the n-th harmonic of the current density and that the con-
nection of the left-hand and right-hand waves is small. In
. this case, the dispersion equations for field aligned cyclotron
7 Conclusions waves have the simplest forms and are suitable to analyse the
énstabilities of both the electron-cyclotron and ion-cyclotron

In this paper, we have derived the dispersion equation )
waves, accounting for the cyclotron and bounce resonances.

for field-aligned cyclotron waves in an axisymmetric mag-
netospheric plasmas with dipole, E4], and circular, The comparison of the PCI growth rates is carried out
Eq. 64), magnetic field lines, assuming that the energeticfor EMIC waves in the hydrogen plasmas with the straight
“ring current” particles have either the bi-Maxwellian or and circular magnetic field lines under the same bulk
bi-Lorentzian distribution functions in velocity space. Our magnetosphere-like parameters at the geostationary orbit
dispersion equations can be used to analyze the eigenfre=6.6. It is shown that the PCI growth rate in the 2-D ax-
quencies and the temporal growth/damping rates of bothsymmetric magnetosphere is much smaller than the corre-
the left-hand and right-hand circularly polarized cyclotron sponding value estimated for EMIC waves in the scope of the
waves in both the 2-D magnetosphere-like plasmas. The-D plasma model in the uniform magnetic field. This means
concrete computations are carried out for the left-hand pothat the previous studies of the EMIC waves in the inner mag-
larized waves in a hydrogen plasma with circular magneticnetosphere, based on the plasma models in the straight mag-
field lines. As in the case of a uniform plasma confined in netic field, could, therefore, be seriously in error.

the straight magnetic field, the growth/damping rate of the

cyclotron waves in a 2-D magnetosphere is defined by the ©Of course, a similar approach can be used to analyze the

contribution of the resonant particles to the imaginary part ofdiSPersion characteristics of the EMIC waves in the 2-D mag-

the transverse dielectric permittivity elements. net_osphen(_: muIt_|-|ons plasmas with dipole and cm_:ular mag-
To evaluate the contribution of the trapped particles to the"€tiC field lines, including the protons and heavy ions (such

transverse current density components the Viasov equatioAS HE" and O°) with the temperature anisotropy.

is solved using a standard method of switching to new vari- |t should be noted that the plasma model with circular

ables associated with the conservation integrals of particlenagnetic field lines (being artificial) is simpler than the

energy, magnetic moment and the equation of the geomagmnodel of a dipole magnetosphere and, accordingly, has the

netic field lines. The new time-like variable is introduced more advanced mathematics. Nonethe|essy the main physica|

(instead of the geomagnetic latitude angle) to describe theeatures of the wave processes, including the cyclotron and

bounce-periodic motion of the trapped particles along the 2ounce resonance wave-particle interactions, in the Earth's

D geomagnetic field, Eq.16) and Eq. 47); the perturbed  magnetosphere, can be analyzed qualitatively by using a

electric field and current density components are Fouriermodel of magnetospheric plasmas with circular magnetic

decomposed over the length of the geomagnetic field linesge|d lines.

Egs. (24, 25) and Egs. (55, 56), for magnetospheric plasmas

with dipole and circular magnetic field lines, respectively. As

a result, we have derived the contribution of the trapped par-

ticles to the transverse permittivity elements for waves in aacknowledgementsThis research was supported by CNPq of

dipole magnetosphere with bi-Maxwellian distribution func- Brazil (Conselho Nacional de Desenvolvimento Cificth e Tec-
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