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Abstract. In this paper, we derive the dispersion equations
for field-aligned cyclotron waves in two-dimensional (2-D)
magnetospheric plasmas with anisotropic temperature. Two
magnetic field configurations are considered with dipole and
circular magnetic field lines. The main contribution of the
trapped particles to the transverse dielectric permittivity is
estimated by solving the linearized Vlasov equation for their
perturbed distribution functions, accounting for the cyclotron
and bounce resonances, neglecting the drift effects, and as-
suming the weak connection of the left-hand and right-hand
polarized waves. Both the bi-Maxwellian and bi-Lorentzian
distribution functions are considered to model the ring cur-
rent ions and electrons in the dipole magnetosphere. A
numerical code has been developed to analyze the disper-
sion characteristics of electromagnetic ion-cyclotron waves
in an electron-proton magnetospheric plasma with circular
magnetic field lines, assuming that the steady-state distri-
bution function of the energetic protons is bi-Maxwellian.
As in the uniform magnetic field case, the growth rate of
the proton-cyclotron instability (PCI) in the 2-D magneto-
spheric plasmas is defined by the contribution of the ener-
getic ions/protons to the imaginary part of the transverse per-
mittivity elements. We demonstrate that the PCI growth rate
in the 2-D axisymmetric plasmasphere can be significantly
smaller than that for the straight magnetic field case with the
same macroscopic bulk parameters.

Keywords. Magnetospheric physics (Energetic particles,
trapped) – Space plasma physics (Kinetic and MHD theory;
Waves and instabilities)

1 Introduction

Cyclotron waves are an important constituent of plasmas
in solar corona, solar wind and planetary magnetospheres.
As is well-known, the energetic particles (electrons, pro-
tons, heavy ions) with anisotropic temperature (pressure)
can excite a wide class of cyclotron wave instabilities. Ki-
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netic theory of electromagnetic cyclotron waves/instabilities
in the straight magnetic field plasma is well developed (see,
e.g. the publications by Sagdeev and Shafranov, 1961; Corn-
wall, 1965; Kennel and Petschek, 1966; Horng, 1977; Cu-
perman, 1981; Gomberoff and Neira, 1983; Kozyra et al.,
1984; Bespalov and Trakhtengerts, 1986; Bittencourt, 1986;
Gary, 1993; Xue et al., 1996; Dasso et al., 2002; Khazanov
et al., 2003; and bibliography therein). However, the models
of uniform plasmas confined in the straight magnetic field
are suitable to study the wave processes in the solar wind
and quite rough for the planetary magnetospheres, which
are three-dimensional in the general case. As a more suit-
able approximation, the internal part of the Earth’s magne-
tosphere, including the region of the Earth’s radiation belts
and the geostationary orbit, can be considered as a two-
dimensional (2-D) axisymmetric plasma configuration with
point dipole magnetic field lines. Another interesting 2-D
magnetosphere-like plasma model is a configuration with cir-
cular magnetic field lines (Grishanov et al., 1998), which is
artificial but mathematically simpler and helpful to describe
the principal wave processes in the Earth’s magnetosphere.

The main feature of 2-D magnetospheric plasmas is the
fact that i) the parallel velocity of charged particles mov-
ing along the geomagnetic field lines is not constant (in
contrast to a straight uniform magnetic field case), and ii)
the ambient geomagnetic field is axisymmetric and has one
minimum in the equatorial plane. As a result, all plas-
maspheric particles are magnetically trapped, bouncing be-
tween the mirror points (where their parallel velocity is equal
to zero), and the wave-particle resonance conditions should
take into account the cyclotron and bounce resonances. Ac-
cordingly, the instabilities of the cyclotron waves in the
Earth’s magnetosphere/plasmasphere should be analyzed by
solving Maxwell’s equations with a correct “kinetic” di-
electric tensor, which can be obtained by solving either the
Vlasov or the drift-kinetic equation for trapped particles, tak-
ing into account a 2-D nonuniformity of the geomagnetic
field and plasma parameters. The drift-kinetic equation is
suitable to study the wave properties in collisionless magne-
tized plasmas in a frequency range much less than the ion-
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the transverse dielectric permittivity for electromagnetic waves at the fundamental cyclotron 
frequencies) we should solve the more general Vlasov equation for the perturbed distribution 
functions in the six-dimensional phase volume using, e.g., an approach developed by Grishanov 
et al. (2004).      

       
2. Dipole magnetospheric plasma with the bi-Maxwellian distribution 

At first, let us derive the contribution of energetic particles with anisotropic temperature 
to the transverse dielectric tensor components for field aligned cyclotron waves in a dipole 
magnetospheric plasma, see Fig. 1, where the module of the geomagnetic field, in the spherical 
coordinates ( ϕθ ,,R ), is  
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Here, R0 is the radius of the Earth, R is the geocentric distance, θ  is the geographical latitude, BB0 
is the Earth's equatorial magnetic field, i.e., at the point R=R0 and θ =0.  The dotted lines in Fig.1 
correspond to the point dipole magnetic field lines R/R0cos θ =const; and the solid curves 
B(R,θ)=const, are corresponding to the lines of the constant geomagnetic field. 
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Fig.1. Dipole magnetic field configuration for the inner Earth’s magnetosphere. 
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Fig. 1. Dipole magnetic field configuration for the inner Earth’s
magnetosphere.

cyclotron frequency, in particular, to describe the influence
of the drift effects, the finitebetaand the finite Larmor ra-
dius corrections on the low and ultra-low frequency geomag-
netic pulsations in the Earth’s magnetosphere (Southwood
et al., 1969; Karpman et al., 1977; Chen and Hasegawa,
1991; Klimushkin, 1998; Dettrick et al., 2003). However,
to describe the cyclotron effects (for example, by the con-
tribution of the resonant particles to the transverse dielec-
tric permittivity for electromagnetic waves at the fundamen-
tal cyclotron frequencies), we should solve the more general
Vlasov equation for the perturbed distribution functions in
the six-dimensional phase volume, using, for example, an ap-
proach developed by Grishanov et al. (2004).

2 Dipole magnetospheric plasma with the bi-
Maxwellian distribution

At first, let us derive the contribution of energetic particles
with anisotropic temperature to the transverse dielectric ten-
sor components for field-aligned cyclotron waves in a dipole
magnetospheric plasma, see Fig. 1, where the module of the
geomagnetic field, in the spherical coordinates (R, θ, ϕ), is

B(R, θ) = B0

(
R0

R

)3√
1 + 3 sin2 θ . (1)

Here,R0 is the radius of the Earth,R is the geocentric dis-
tance,θ is the geographical latitude,B0 is the Earth’s equa-
torial magnetic field, i.e. at the pointR=R0 andθ=0. The
dotted lines in Fig. 1 correspond to the point dipole mag-
netic field linesR/R0cos2θ =const; and the solid curves
B(R,θ )=const, are corresponding to the lines of the constant
geomagnetic field.

To solve the Vlasov equation for collisionless trapped par-
ticles with anisotropic temperature we use a standard method
of switching to new variables associated with the conserva-
tion integrals of the energy:v2

||
+v2

⊥
=const , the magnetic

moment: v2
⊥
/(2B)=const , and theB-field line equation:

R/ cos2 θ=const . Introducing the variables

v =

√
v2
||

+ v2
⊥
, (2)

µ =
v2
⊥

cos6 θ

v2
√

1 + 3 sin2 θ
, (3)

L =
R

R0 cos2 θ
(4)

(instead ofv||, v⊥, R), the perturbed distribution function can
be found as

f (t, R, θ, ϕ, v||, v⊥, α) =

±1∑
s

±∞∑
l

f s
l (θ, L, v, µ) exp(−iωt + imϕ + ilα), (5)

whereα is the gyrophase angle in velocity space,v is the
module of the particle velocity associated with the particle
energy,µ is the nondimensional magnetic moment associ-
ated with the pitch angle, andL is the nondimensionalL-
shell parameter, i.e. the shell distance at the equatorial plane,
normalized to the Earth’s radius. By the indexess=±1 we
distinguish the particles with positive and negative values of
the parallel velocity relative toB:

v|| = sv
√

1 − µb(θ). (6)

The linearized Vlasov equation for (interesting us) harmon-
icsf s

±1 can be rewritten in the form
√
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where
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b(θ) =

√
1 + 3 sin2 θ

cos6 θ
. (11)

Here, En and Eb are, respectively, the normal and bi-
normal perturbed electric field components relative toB;
El=En−ilEb is the transverse electric field component cor-
responding to either the right-hand polarized wave, ifl=1,
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and to left-hand polarized wave, ifl= −1; F0 is the bi-
Maxwellian distribution function of plasma particles with
densityN, parallel and perpendicular temperatureT|| and
T⊥, chargee and massM. Note in Eq. (7) that we have
neglected the drift corrections, assuming that the wave fre-
quencyω is much larger than the drift frequency and the Lar-
mor radius of plasma particles is small, which is valid when
mv2

T ⊥
L2/(vT ||R0ωco)�1, whereωco=eB0/Mc andm is the

azimuthal wave number over theϕ (east-west) direction in an
equatorial plane. Moreover, deriving Eq. (7), as well as the
dispersion equation for field-aligned cyclotron waves, we as-
sume that the plasma is perfectly conducting, i.e.E||=0, and
the left-hand polarized (E−1=En+iEb) and right-hand po-
larized (E+1=En−iEb) waves are connected weakly.

Depending onµ andθ , the domain of the perturbed distri-
bution functions is defined by the inequalities

µ0 ≤ µ ≤ 1 and −θt (µ) ≤ θ ≤ θt (µ), (12)

where

µ0 =
1

b(arccos
√

1/L)
=

1

L2.5
√

4L − 3
, (13)

and±θt (µ) are the local mirror (or turning, or stop, or reflec-
tion) points for trapped particles at a given (byL) magnetic
field line, which are defined by the conditionv||(±θt )=0.
Any untrapped particle withµ≤µ0 cannot survive more than
one-half of the bounce time and will be precipitated into the
atmosphere/ionosphere.

Since the trapped particles, with a given (byµ) pitch
angle, execute the bounce-periodic motion, the solution of
Eq. (7) (in the zeroth order of a magnetization parameter)
can be found as

f s
l (θ, L, v, µ) =

+∞∑
p=−∞

f s
l (L, v, µ) exp

[
ip

2π

τb

τ(θ)+isl
R0ωco

L2v
C(θ)

]
, (14)

where

τ(θ) =

θ∫
0

cosη
√

1 + 3 sin2 η
√

1 − µb(η)
dη, (15)

C(θ) =

θ∫
0

b(η)
cosη

√
1 + 3 sin2 η

√
1 − µb(η)

dη − b̄τ (θ), (16)

b̄ =
4

τb

θt∫
0

b(θ)
cosθ

√
1 + 3 sin2 θ

√
1 − µb(θ)

dθ. (17)

The perturbed distribution functions, in the form of Eq. (14),
satisfy automatically the corresponding boundary conditions
for the trapped particles, namely, the continuity of the distri-
bution functions at the reflection points±θt :

f +1
l (±θt ) = f −1

l (±θt ), (18)

or the same

f s
l (τ (θ)) = f s

l (τ (θ) + τb), (19)

whereτb=τb(µ)=4τ(θt ) is the normalized bounce period of
the trapped particles. In our notations, the bounce frequency
of the trapped particles with a given temperatureT|| and pitch
angleµ is defined as

ωb =
2πvT ||

R0Lτb

. (20)

After solving Eq. (7), the contribution of the trapped parti-
cles to the two-dimensional transverse current density com-
ponent,j±1(θ, L), can be expressed as

jl(θ, L)=
πe

2
b1.5(θ)

±1∑
s

∞∫
0

v3dv

1/b(θ)∫
µ0

√
µf s

l (θ, L, v, µ)
√

1−µb(θ)
dµ

l = ±1. (21)

Note that the normal and binormal (toB) current density
components in our notation are equal, respectively, to

jn = j+1 + j−1 and jb=i(j+1−j−1). (22)

To solve the wave (or Maxwell’s) equations it is convenient
to expand the perturbed values in a Fourier series over the
coordinateλ along the geomagnetic field line

λ(θ) =

R0L

2
√

3

[
√

3 sinθ

√
1+3 sin2 θ+ ln

(
√

3 sinθ+

√
1+3 sin2 θ

)]
,(23)

measured from the equator. In particular, for the transverse
components of the current density,jl , and electric field,El ,
we have:

jl(θ, L)
√

b(θ)
=

±∞∑
n

j
(n)
l (L) exp

[
iπn

λ(θ)

λo

]
, (24)

El(θ, L)
√

b(θ)
=

±∞∑
n′

E
(n′)
l (L) exp

[
iπn′

λ(θ)

λo

]
, (25)

whereλo=λ(arccos
√

1/L) is the half-length of a given by
L magnetic field line. This procedure converts the opera-
tor, representing the dielectric tensor, into a matrix whose
elements can be calculated independently of the solutions of
Maxwell’s equations. As a result, there is the following con-

nection for harmonicsj (n)
l andE

(n′)
l :

4πi

ω
j

(n)
l (L) =

±∞∑
n′

ε
n,n′

l (L) · E
(n′)
l (L), (26)

and the contribution of a given kind of plasma particles
to the transverse permittivity elements,ε

n,n′

l (L), after the
s-summation, is

ε
n,n′

l =

∞∑
p=−∞

ε
n,n′

l,p , (27)

where
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ε
n,n′

l,p =
ω2

poL
2R2

0T||

8ωπ1.5λovT ||T⊥
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exp
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du (28)

is the separate contribution of thep-bounce resonant term toεn,n′

l (L), and the other definitions are

ω2
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4πNe2

M
, u =

v
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ω + l

ωco

L3
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, (29)
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−θt

(
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+
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Dn
p,l(u, µ) =

θ t∫
−θt

cos
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nπ
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lR0ωco
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√
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Thus, the transverse permittivity elements for electromag-
netic waves (at the fundamental cyclotron frequency) in an
axisymmetric dipole magnetospheric plasma are expressed
by thep-summation of the bounce-resonant terms, including
the double integration in velocity space, the resonant denom-
inatorspu-Zl(µ), and the phase coefficientsGn

p,l(u, µ) and
Dn

p,l(u, µ). As follows from Eq. (26), due to a 2-D geomag-
netic field nonuniformity, the whole spectrum of the electric
field (by6±∞

n′ ) is present in the given (byn) current density
harmonic. It should be noted that the bounce-resonance con-
ditions,pu-Zl(µ)=0 for trapped particles in magnetospheric
plasmas, are different from the corresponding expressions in
the straight magnetic field case. Of course, as in the straight
magnetic field,l=1 corresponds to the effective resonant in-
teraction of electrons with the extraordinary (or right-hand
polarized) waves at the fundamental electron-cyclotron fre-
quency, andl= −1 corresponds to the resonant interaction
of ions with an ordinary (or left-hand polarized) wave at the
fundamental ion-cyclotron frequency. Note that it is impos-
sible to carry out the analytical Landau integration over the
particle energyu=v/vT || (by introducing the plasma disper-
sion functions) because the phase coefficientsGn′

p,l(u, µ) and
Dn

p,l(u, µ) depend onu. As for the particles with isotropic
temperature, i.e. ifT||=T⊥, the phase coefficientsGn

p,l(u, µ)

can be reduced to

Gn
p,l(u, µ) = Dn

p,l(u, µ). (32)

As was noted above, Eqs. (27–31) describe the contribution
of any kind of the trapped particles to the transverse permit-
tivity elements. The corresponding expressions for plasma
electrons and ions can be obtained from Eqs. (27–31) by re-
placing the temperaturesT|| and T⊥, densityN , massM,
chargee by the electronT||e, T⊥e, Ne, Me, ee and ionT||i ,
T⊥i , Ni , Mi , ei parameters, respectively.

Since the cyclotron wave instabilities are an important
contributor to the geomagnetic storms during the solar ac-
tivity, it is possible to develop a 2-D numerical code to de-
scribe these processes in the Earth’s magnetosphere with new
dielectric tensor components, accounting for the bounce-
resonant effects. To have some analogy with linear theory
of cyclotron wave instabilities in the straight magnetic field
(e.g. Kennel and Petschek, 1966), let us assume that the n-th
harmonic of the electric field gives the main contribution to
the n-th harmonic of the current density (one-mode approx-
imation). In this case, for the field-aligned electromagnetic
cyclotron waves (whenm=0, ∂/∂L=0,E||=0,H||=0), from
the Maxwell’s equations

El +
8πi

ω
jl =
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−c2√b(θ)

ω2R2
0L2 cosθ

√
1 + 3 sin2 θ

∂

∂θ

1

cosθ
√

1 + 3 sin2 θ

∂

∂θ

El
√

b(θ)
,(33)

excluding theE(n)
l -harmonics by Eqs. (24–26), we obtain the

following dispersion equation:(
nπc

λoω

)2

= 1 + 2
∑
σ

ε
n,n
l,(σ )(L), (34)

whereσ denotes the particle species (electron, proton, heavy
ions). This equation is suitable to analyze the instability of
the right-hand polarized waves, ifl=1, and the left-hand po-
larized waves, ifl= −1. Note that, in our notation, the paral-
lel wave vector is defined ask||=nπ/λo, so thatnπc/(λoω)

is the nondimensional parallel refractive index. Further,
Eq. (34) should be resolved numerically for the real and
imaginary parts of the wave frequency,ω=Reω+iImω, to
define the conditions of the wave instabilities in the dipole
magnetospheric plasmas with anisotropic temperature. As
usual, the growth (damping) rate of the electromagnetic cy-
clotron waves, Imω, is defined by the contribution of the res-
onant particles to the imaginary part of the transverse per-
mittivity elements, Imεn,n

l,(σ ), that can be readily derived from
Eqs. (27) and (28), using the well-known residue (or Landau
rule) method.

3 Dipole magnetospheric plasma with the bi-Lorentzian
distribution

Of course, an approach developed in the previous section
for magnetospheric plasmas with bi-Maxwellian distribution

functions in velocity space can be applied, as well for plas-
mas with the more general distributions including, for ex-
ample, the bi-Lorentzian distribution functions. According
to Summers and Thorne (1991), Chan et al. (1994), Xue
et al. (1996), the generalised steady-state bi-Lorentzian (or
kappa) distribution functions can be expressed as

F0=
N(L)

π1.5ϑ||ϑ
2
⊥
κ1.5

0(1+κ)

0(κ−0.5)

{
1+

v2

κϑ2
||

[
1−µ

(
1−

T||

T⊥

)]}−(1+κ)

(35)

with the associated effective thermal speeds corresponding to
T|| andT⊥,

ϑ2
||

=
2κ − 3

κ

T||

M
, ϑ2

⊥
=

2κ − 3

κ

T⊥

M
, (36)

where the parameterκ is the spectral index (here it takes pos-
itive valuesκ≥2); 0(x)=

∫
∞

0 tx−1 exp(−t)dt is the gamma
function. It should be noted that the parameterκ is a mea-
sure of the proportion of the high energy particles present in
the distribution; typically for the space plasmas, it is found
to be in the range 2≤κ≤6. Moreover, the generalised bi-
Lorentzian distribution contains the standard bi-Maxwellian
distribution, Eq. (9), as a special case lettingκ→∞.

To estimate the main contribution of the trapped particles
with the bi-Lorentzian distribution functions to the transverse
permittivity elements we should solve again Eq. (7), where
the right-hand side is

Q̂s
l =

eR0L
√

µ(1 + κ)F0

Mκϑ2
||

[
1 +

v2

κϑ2
||

[
1 − µ

(
1 −

T||

T⊥

)]]
[

sEl
√

b(θ)

[
b(θ) − 1 +

T||

T⊥

]
−

iv
√

1 − µb(θ)(1 − T||/T⊥)

ωR0L cosθ
√

1 + 3 sin2 θ

∂

∂θ

El
√

b(θ)

]
. (37)

As a result, one can derive the new expressionε
n,n′

l (L) for field-aligned waves in magnetospheric plasmas with the bi-
Lorentzian distribution functions in velocity space, instead of Eqs. (27–31):

ε
n,n′

l =
ω2

poLR0T||(κ + 1)0(κ + 1)

8ωπ1.5λoT⊥

√
κϑ||0(κ − 0.5)

∞∑
p=−∞

1∫
µ0

µ dµ

∞∫
−∞

u4D̂n
p,l(u, µ)Ĝn′

p,l(u, µ)du

[pu − Ẑl(µ)]
[
1 + u2

(
1 − µ

(
1 −

T||

T⊥

))]κ+2
, (38)

where

Ĝn
p,l(u, µ)=

θ t∫
−θt

(
b(θ)−1+

T||

T⊥

+
πnu

√
κϑ||

ωλo

(
1−

T||

T⊥

)√
1−µb(θ)

)
cos

[
nπ

λo

λ(θ)−p
2π

τb

τ(θ)−
lR0ωco

L2u
√

κϑ||

C(θ)

]
cosθ

√
1+3 sin2 θ

√
1−µb(θ)

dθ

+(−1)p

θ t∫
−θt

(
b(θ)−1+

T||

T⊥

+
πnu

√
κϑ||

ωλo

(
1−

T||

T⊥

)√
1−µb(θ)

)
cos

[
nπ

λo

λ(θ)+p
2π

τb

τ(θ)+
lR0ωco

L2u
√

κϑ||

C(θ)

]
cosθ

√
1+3 sin2 θ

√
1−µb(θ)

dθ, (39)

D̂n
p,l(u, µ) =

θ t∫
−θt

cos

[
nπ

λo

λ(θ) − p
2π

τb

τ(θ) −
lR0ωco

L2u
√

κϑ||

C(θ)

]
b(θ)

cosθ
√

1 + 3 sin2 θ
√

1 − µb(θ)
dθ
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+(−1)p

θ t∫
−θt

cos

[
nπ

λo

λ(θ) + p
2π

τb

τ(θ) +
lR0ωco

L2u
√

κϑ||

C(θ)

]
b(θ)

cosθ
√

1 + 3 sin2 θ
√

1 − µb(θ)
dθ, (40)

u =
v

√
κϑ||

, Ẑl(µ) =
R0Lτb

2π
√

κϑ||

(
ω + l

ωco

L3
b̄
)

. (41)

It should be noted that, in the variables (v, µ), there are
identities for the phase coefficients:Gn

p,l(v, µ)=Ĝn
p,l(v, µ)

andDn
p,l(v, µ)=D̂n

p,l(v, µ). Accordingly, the single wave-
particle resonance conditions are also independent of the
steady-state distribution functions of the trapped particles
and can be written as

ω + l
ωco

L3
b̄(µ) = p

2πv

R0Lτb(µ)
, (42)

involving the wave frequencyω, the bounce-averaged cy-
clotron frequencyωcob̄(µ)/L3 and the bounce frequency of
the trapped particles 2πv/[R0Lτb(µ)], with the given energy
v and pitch angleµ at the given (byL) magnetic field line,
wherel=0, ±1, ... andp=0, ±1, ... are the numbers of the
cyclotron and bounce resonances, respectively.

In the case of the bi-Lorentzian distribution functions, the
dispersion equation for the cyclotron waves will be the same
as Eq. (34), where the new transverse dielectric tensor com-
ponents, Eq. (38), should be included. For specified values
of the ambient magnetic field lineL, and the parametersκ
T||σ , T⊥σ , Nσ , Mσ , eσ that describe each particle species,
an iterative scheme can be used to solve Eq. (34) for a com-

plex wave frequency, for prescribed real values of the wave
numberk||=nπ/λo.

4 Magnetospheric plasma with circular magnetic field
lines (bi-Maxwellian distribution)

By analogy, we can derive the contribution of the resonance
particles to the transverse dielectric permittivity for waves in
magnetospheric plasmas with circular magnetic field lines,
where the module of the magnetic field is

B = B0

(
R0

R

)3 1

cosθ
=

B0

L3 cos4 θ
. (43)

Here the newL-shell variable is introduced instead ofR as
L=R/(R0 cosθ), taking into account that the equation of the
B-field lines, in this case, has a formR/ cosθ=const, and the
nondimensional parameterb(θ) is

b(θ) =
B(L, θ)

B(L, 0)
=

1

cos4 θ
. (44)

In this case, the linearized Vlasov equation for harmonics
fl can be reduced to

√
1 − µb(θ)

∂f s
l

∂θ
− is

R0L

v

[
ω + l

ωco

L3
b(θ)

]
f s

l = Qs
l , l = ±1, (45)

where

Qs
l =

eR0L

Mv2
T ||

√
µF0

[
s

El
√

b(θ)

(
b(θ) − 1 +

T||

T⊥

)
− i

v
√

1 − µb(θ)

ωR0Lc

(
1 −

T||

T⊥

)
∂

∂θ

(
El

√
b(θ)

)]
. (46)

In contrast to a dipole geomagnetic field, the length element along the magnetic field line in magnetospheric plasmas with
circular magnetic field lines is proportional to the latitude angle (as a linear function), i.e.λc(θ) = R0Lθ , and the new
time-like variableτ can be introduced by the elliptic integrals

τ(θ, ν) =

√
2(1 − ν)2

1 − 2ν
5

(
arcsin

(√
1 − 2ν

2(1 − ν) − sin2 θ
sinθ

)
,

−ν

1 − 2ν
, ν

)
−

√
1 − 2ν

2
F

(
arcsin

(√
1 − 2ν

2(1 − ν) − sin2 θ
sinθ

)
, ν

)
, (47)

where

5(α, δ, ν) =

α∫
0

dη

(1 − δ sin2 η)

√
1 − ν sin2 η

(48)

and

F(α, ν) =

α∫
0

dη√
1 − ν sin2 η

(49)

are the incomplete elliptic integrals of the third and first kind,
respectively. Accordingly, the bounce periods of the trapped
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particles (normalized toR0L/vT ||) can be expressed by the
complete elliptic integral of the third kind as

Tb(ν) = 2
√

2(1 − 2ν)5 (π/2, 2ν, ν) , (50)

where the ν variable is introduced instead ofµ as
µ=(1−2ν)2, varying in the interval

0 ≤ ν = 0.5(1 −
√

µ) ≤
L2

− 1

2L2
. (51)

Here we have taken into account that, in the case of the circu-
lar magnetic field lines, the reflection points for the trapped
particles are defined by the simple relation

θt (ν) = arcsin
√

2ν, (52)

and the maximalθt (ν) for trapped particles with the given

νo =
L2

− 1

2L2
, (53)

at theL-shell is

θo = θt (νo) = arccos

(
1

L

)
. (54)

As a result, using the Fourier expansions

jl(θ, L)
√

b(θ)
=

±∞∑
n

j
(n)
l (L) exp

[
iπn

θ

θo

]
, (55)

El(θ, L)
√

b(θ)
=

±∞∑
n′

E
(n′)
l (L) exp

[
iπn′

θ

θo

]
, (56)

the contribution of the resonant particles toε
n,n′

l (L):

4πi

ω
j

(n)
l (L) =

±∞∑
n′

ε
n,n′

l (L) · E
(n′)
l (L), (57)

can be expressed as

ε
n,n′

l =

∞∑
p=−∞

ε
n,n′

l,p , (58)

where

ε
n,n′

l,p =
ω2

poLR0T||

2ωπ1.5θov
T⊥

T ||

νo∫
0

(1 − 2ν)3dν

∞∫
0

u4An
p,lY

n′

p,l

pu − Zl(ν)
exp

[
−u2

(
1 − (1 − 2ν)2

(
1 −

T||

T⊥

))]
du, (59)

and the phase coefficients are

Y n
p,l(u, ν)=

θ t∫
−θt

(
b(θ)−1+

T||

T⊥

+
πnuvT ||

ωR0Lθo

(
1−

T||

T⊥

)√
1−(1−2ν)2b(θ)

)
cos

[
nπ

θo

θ−p
2π

τb

τ (θ)−
lR0ωco

L2uvT ||

C(θ)

]
dθ√

1−(1−2ν)2b(θ)
+

(−1)p

θ t∫
−θt

(
b(θ)−1+

T||

T⊥

+
πnuvT ||

ωR0Lθo

(
1−

T||

T⊥

)√
1−(1−2ν)2b(θ)

)
cos

[
nπ

θo

θ+p
2π

τb

τ(θ)+
lR0ωco

L2uvT ||

C(θ)

]
dθ√

1−(1−2ν)2b(θ)
, (60)

An
p,l(u, ν) =

θ t∫
−θt

cos

[
nπ

θo

θ−p
2π

τb

τ(θ)−
lR0ωco

L2uvT ||

C(θ)

]
b(θ) dθ√

1−(1−2ν)2b(θ)
+

(−1)p

θ t∫
−θt

cos

[
nπ

θo

θ+p
2π

τb

τ(θ)+
lR0ωco

L2uvT ||

C(θ)

]
b(θ)dθ√

1−(1−2ν)2b(θ)
, (61)

C(θ) =

√
2(1 − ν)

(1 − 2ν)1.5
5

(
arcsin

(√
1 − 2ν

2(1 − ν) − sin2 θ
sinθ

)
, ν, ν

)
−

1
√

2(1 − 2ν)1.5
F

(
arcsin

(√
1 − 2ν

2(1 − ν) − sin2 θ
sinθ

)
, ν

)
. (62)
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In this case, the Maxwell’s equations for the transverse elec-
tric field and current density components can be reduced to

El +
8πi

ω
jl =

−c2√b(θ)

ω2R2
0L2

∂2

∂θ2

El
√

b(θ)
, (63)

and excludingE(n)
l -harmonics by Eqs. (55–57) we have de-

rived the dispersion equation(
nπc

ωR0Lθo

)2

= 1 + 2
∑
σ

ε
n,n
l,(σ )(L). (64)

As was mentioned above,ε
n,n
l,(σ ), in the magnetospheric plas-

mas with circular magnetic field lines, is simpler than that for
a dipolar magnetosphere, since there is the exact expression
for the reflection points,θt (ν)= arcsin

√
2ν, and the phase

coefficients can be calculated using the elliptic inegrals and
Jacobi elliptic functions, which are convenient for computa-
tions by the last versions of such mathematical programmes
as Maple, Mathematica and Mathcad, operating the complete
and incomplete elliptic integrals and elliptic functions in the
standard forms, such as the usual elementary functions. In

particular, the new variableα can be introduced instead ofθ

by the transformation

θ(α) = arcsin

(√
2ν(1 − ν)

1 − 2ν + νsn2(α,
√

ν)
sn(α,

√
ν)

)
(65)

or

α(θ) =

arcsin
(√

1−2ν

2(1−ν)−sin2 θ
sinθ

)∫
0

dη√
1 − ν sin2 η

, (66)

where sn(α,
√

ν) is the Jacobi elliptic function (e.g.
Abramovitz and Stegun, 1972).

5 Magnetized plasma in the straight magnetic field (bi-
Maxwellian distribution)

In the straight magnetic field case, the transverse dielectric
tensor component for field-aligned cyclotron waves is

εl,σ =
ω2

po,σ

2ω2

[
T⊥,σ

T||,σ

− 1 +

(
T⊥,σ

T||,σ

− 1

)
ω − l�co,σ

k||vT ||,σ

Z

(
ω − l�co,σ

k||vT ||,σ

)
+

ω

k||vT ||,σ

Z

(
ω − l�co,σ

k||vT ||,σ

)]
, (67)

where the plasma dispersion function Z(ζ ), Fried and Conte
(1961), is associated with the bi-Maxwellian distribution,
namely,

Z(ζ ) =
1

√
π

∞∫
−∞

exp(−t2)

t − ζ
dt Imζ > 0 (68)

with the complexζ and with the suitable extension for
Imζ≤0 by analytic continuation.

As a result, the dispersion equation for field-aligned elec-
tromagnetic cyclotron waves (see e.g. Abramovitz and Ste-
gun, 1972; Bespalov and Trakhtengerts, 1986; Bittencourt,
1986; Chan et al., 1994; Chen and Hasegawa, 1991; Corn-
wall, 1965; Cuperman, 1981; Dasso et al., 2002; Dettrick
et al., 2003) in magnetized plasmas, confined in the straight
magnetic field, has the well-known form (see, e.g. Kennel
and Petschek, 1966; Xue et al., 1996) similar to Eqs. (34)
and (64)(

k||c

ω

)2

= 1 + 2
∑
σ

εl,σ (L), (69)

where the parallel wave vector componentk|| is connected
with the eigenmode numbersn ask||=nπ/λo for the stand-
ing waves in the dipolar magnetospheric plasmas, and
k||=nπ/[R0L arccos(1/L)] for plasmaspheres with circular
magnetic field lines.

As is well-known, the squared refractive index of the ion-
cyclotron waves (l=–1) in the hydrogen plasma, including
the electrons and protons, is defined by the expression(

k||c

Reω

)2

≈
�2

pp

�c0(�c0 − Reω)
, (70)

where �2
pp=4πNpe2/Mp is the squared Langmuir fre-

quency of the protons calculated by the sum-density of the
cold (Nc) and resonant hot (Nh) protons, i.e.Np=Nc+Nh,
and �c0=eB(L, 0)/Mpc=ωco,p/L3 is the equatorial gy-
rofrequency ofL-shell protons, so that the eigenmode num-
bersn (sincek||=nπ/λo) can be estimated as

n ≈
λo�ppReω

πc
√

�c0(�c0 − Reω)
(71)

for dipolar geomagnetic field, and by analogy

n ≈
R0L arccos(1/L)�ppReω

πc
√

�c0(�c0 − Reω)
(72)

for the case of circular magnetic field lines. As follows
from Eq. (70), the propagation of the electromagnetic ion-
cyclotron (EMIC) waves is possible in the frequency range
Reω<�c0. It should be noted that Eqs. (70), (71) and (72)
are based upon the cold plasma approximation and may not
be strictly valid for hot magnetospheric plasmas. The incre-
ment (decrement)γ of EMIC waves in the hydrogen plasma,
including the energetic protons with anisotropic temperature,
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under the conditionγ=Imω�Reω, is defined by the expres-
sion

γ

�c0
≈ −2

Reω (�c0 − Reω)2

�2
pp (2�c0 − Reω)

Imε−1,h, (73)

where

Imε−1,h =
�2

ph�c0
√

π

2(Reω)2k||vT ||h

[
Reω

�c0
−

(
1 −

Reω

�c0

)(
T⊥h

T||h

− 1

)]
exp

[
−

(
Reω − �c0

k||vT ||h

)2
]

(74)

is the contribution of the hot protons to the transverse dielec-
tric permittivity for the left-hand polarized cyclotron waves
(l=–1). By the subscribed indexh we denote the corre-
sponding plasma parameters for energetic/hot protons with
densityNh, perpendicular temperatureT⊥h, thermal veloc-
ity of the resonant protonsvT ||h=

√
2T||h/Mp, calculated by

the parallel temperatureT||h. As follows from Eqs. (73) and
(74), for the temporal growth (damping) rate of EMIC waves,
the instability (whenγ>0) is possible under the conditions
Imε−1,h<0. As is well-known, this is possible if the reso-
nant protons have the temperature anisotropy andT⊥h>T||h

(for the left-hand polarized waves).

6 Numerical results

Now let us compare the growth rates of the PCI instabil-
ity in the plasmas, confined in the straight magnetic field,
γs , and in the 2-D axisymmetric magnetosphere, with cir-
cular magnetic field lines,γc. We parameterize the position
along a field line using the geographical latitudeθ . In the fol-
lowing magnetic field model, the ionosphere then occurs at
±θ0=± arccos(1/L), whereL is theL-shell parameter (i.e.
the radius at the equator, normalized to the Earth’s radius),
and the parallel wave vector k|| and eigenmode numbern
are connected by Eq. (72). In our simulations,L=6.6, which

roughly corresponds to geosynchronous orbit. For simplic-
ity, a hydrogen plasma is considered, including the cold elec-
trons with Ne=11 cm−3, the cold protons withNc=10 cm−3,
and the energetic protons withNh=1 cm−3. The parallel and
transverse temperatures of the energetic protons are given
equal toT||h=10 keV andT⊥h=30 keV, respectively, whereas
the temperature of the cold particles is small and isotropic.
In this case, the eigenmode numbersn of the field-aligned
EMIC waves can be defined by the well-known expression
for the wave refractive index (see, e.g. Eq.70); the corre-
sponding dependencen(ω) is plotted in Fig. 2 using Eq. (72).

The growth rateγ s for EMIC waves in the straight mag-
netic field plasma is estimated, as usually, by Eqs. (73) and
(74). As for γ c, for EMIC waves in the magnetospheric-like
plasma with circular magnetic field lines, we use the expres-
sion similar to Eq. (73),

γc

�c0
≈ −2

Reω (�c0 − Reω)2

�2
pp (2�c0 − Reω)

Imε
n,n
−1,h , (75)

where the imaginary part of the transverse dielectric permit-
tivity is estimated by Eqs. (58) and (59) as

Imε
n,n
−1,h =

∑
∞

p=1
Imε

n,n
−1,p,h, (76)

where

Imε
n,n
−1,p,h =

�2
phLR0T||

2ω
√

πθovT ||T⊥p5

νo∫
0

(1 − 2ν)3An
p,−1

(
Z−1,h

p
, ν

)
Y n

p,−1

(
Z−1,h

p
, ν

)
×

Z4
−1,h exp

[
−

Z2
−1,h

p2

(
1 − (1 − 2ν)2

(
1 −

T||

T⊥

))]
dν (77)

is the separate contribution of the bounce resonant terms to
Imε

n,n
−1,h. In the other words, we assume that the growth rates

γ s andγ c (under the same wave frequency, eigenmode num-
ber and bulk parameters) are different by the different con-
tributions of the energetic protons to the imaginary part of
the transverse dielectric permittivity for EMIC waves in the
considered plasma models.

The temporal growth rates of the PCI instability versusω

are present in Fig. 3a for EMIC waves in the straight mag-
netic field plasma by Eqs. (73, 74), and in Fig. 3b for EMIC
waves in the 2-D plasmasphere with circular magnetic field
lines by Eqs. (75–77). The computations ofγc are carried
out in the interval 2 Hz≤ω≤7 Hz, whereas the minimal gy-
rofrequency of the protons atL=6.6 is closed to�c0≈11 Hz.
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waves in the hydrogen plasma including the energetic protons with anisotropic temperature, 
under the condition ωωγ ReIm <<= , is defined by the expression 
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is the contribution of the hot protons to the transverse dielectric permittivity for the left-hand 
polarized cyclotron waves (l=-1). By the subscribed index ’h’ we denote the corresponding 
plasma parameters for energetic/hot protons with density Nh, perpendicular temperature , 

thermal velocity of the resonant protons 
hT⊥

phhT MTv /2 |||| =  calculated by the parallel temperature 

. As follows from Eqs. (73) and (74) for the temporal growth (damping) rate of EMIC waves, 
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Fig. 2. Dependence of the mode number n on the wave frequency ω for left-hand  
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Fig. 2. Dependence of the mode numbern on the wave frequencyω or left-hand polarized cyclotron waves (l=–1) in the hydrogen plasma at
magnetic shellL=6.6 with the particle densityNe=Nc+Nh=11 cm−3.
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is the separate contribution of the bounce resonant terms to . In the other words, we 
assume that the growth rates γ

nn
h

,
,1Im −ε

s and γc  (under the same wave frequency, eigenmode number and 
bulk parameters) are different by the different contributions of the energetic protons to the 
imaginary part of the transverse dielectric permittivity for EMIC waves in the considered plasma 
models.  

 

 
 

    Fig. 3. The growth rates versus ω  for EMIC waves in the hydrogen plasmas confined in  
                            the straight magnetic field (a),  and in the magnetosphere with circular magnetic 
                            field lines (b), under the same macroscopic bulk parameters. 
 

The temporal growth rates of the PCI instability versus ω  are present in Fig. 3a for 
EMIC waves in the straight magnetic field plasma by Eqs. (73, 74), and in Fig. 3b for EMIC 
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Fig. 3. The growth rates versusω for EMIC waves in the hydrogen plasmas confined in the straight magnetic field(a), and in the magneto-
sphere with circular magnetic field lines(b), under the same macroscopic bulk parameters.

As shown in Figs. 3a and b, the instability of EMIC waves is
possible for the both plasma models in the frequency range
ω<�c0. It should be noted that the proton-cyclotron insta-
bility is impossible for EMIC waves in the frequency range
�c0<ω<�c0b(θo), where�c0b(θo) is the maximal gyrofre-
quency of the protons at the givenL-shell magnetic field line.

As one can see, the dependence ofγs(ω) and γ c(ω) on
the wave frequencyω is similar; however,γ c(ω)�γ s(ω) un-
der the same bulk parameters. The ratioγs/γc∝4÷10 versus
ω, for considered magnetospheric-like plasmas, is present in
Fig. 4. This dependence is not linear; the difference is very
large (by factor 10) for EMIC waves in the range ofω∼2 Hz
and is smaller (by factor 4) in the range of the high frequen-
ciesω∼7 Hz.

The large difference betweenγs and γc is connected to
the fact that the wave-particle interaction in the straight mag-
netic field plasma is more effective, since the resonant par-
ticles move along the uniform magnetic field line with the
constant parallel velocity and interact permanently (in time)
with the wave, according to the well-known resonance con-
dition ω−�c0=k||v||. As for 2-D axisymmetric magneto-
spheric plasmas, sincev|| 6=const for the trapped particles,
there is another wave-particle resonance condition involving
the particle energy and pitch angle

ω − �c0b̄(µ) = pωb(v, µ) , (78)

where ωb(v, µ) is the bounce frequency,�c0b̄(µ) is the
bounce-averaged gyrofrequency, andp is a integer. As a
result, the trapped particle bouncing between the reflection
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waves in the 2D plasmasphere with circular magnetic field lines by Eqs. (75-77). The 
computations of γc are carried out in the interval Hz7Hz2 ≤≤ ω , whereas the minimal 
gyrofrequency of the protons at  L=6.6 is closed to Hz110 ≈Ω c . As shown in Fig. 3a and Fig. 
3b, the instability of EMIC waves is possible for the both plasma models in the frequency range 

0cΩ<ω . It should be noted that the proton-cyclotron instability is impossible for EMIC waves 
in the frequency range )(00 occ b θω Ω<<Ω , where )(0 oc b θΩ  is the maximal gyrofrequency of 
the protons at the given L-shell magnetic field line. 

As one can see, the dependence γs(ω) and γc(ω) on the wave frequency ω   are similar; 
however, γc(ω)<<γs(ω) under the same bulk parameters. The ratio 104/s ÷∝cγγ  versus ω  for 
considered magnetospheric-like plasmas is present in Fig. 4. This dependence is not linear; the 
difference is very large (by factor 10) for EMIC waves in the range of Hz2~ω and is smaller 
(by factor 4) in the range of the high frequencies Hz7~ω . 

The large difference between γs and γc is connected with the fact that the wave-particle 
interaction in the straight magnetic field plasma is more effective since the resonant particles 
move along the uniform magnetic field line with the constant parallel velocity and interact 
permanently (in time) with the wave according to well known resonance condition 

||||0 vkc =Ω−ω . As for 2D axisymmetric magnetospheric plasmas, since  for the 
trapped particles, there is another wave-particle resonance condition involving the particle 
energy and pitch angle  

constv ≠||

),()(0 μωμω vpb bc =Ω−                                             (78) 

where ),( μω vb  is the bounce frequency, )(0 μbcΩ  is the bounce-averaged gyrofrequency, and p 
is a integer. As a result, the trapped particle bouncing between the reflection points only part of 
the bounce-time can interact effectively with the wave. 
 

 
 

Fig. 4. The ratio γ s/γ c versus ω for EMIC waves in the hydrogen 1D and 2D plasma models. 

 
According to Eqs. (75-77), the PCI growth rate γc, as well as the imaginary part of the 

transverse dielectric permittivity, is calculated by the summation of the contributions of the 
separate bounce resonant terms to . The typical structure of the bounce resonance terms 

, Eq. (77), is shown in Fig. 5 for the different wave frequencies  a) 
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first bounce resonance terms to  is very small; ii) the maximal values of   
correspond to the bounce resonance numbers 
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Fig. 4. The ratioγ s /γ c versusω for EMIC waves in the hydrogen 1-D and 2-D plasma models.

 
 
    Fig. 5. The separate contributions of the bounce resonant terms to   nn

h
,
,1Im −ε

                        for the different wave frequencies:  a) Hz5.2=ω ,  b) Hz5.3=ω ,  
                         c) Hz5.4=ω ,  d) Hz5.5=ω ,  e) Hz5.6=ω . 
 

 
7. Conclusion 

In this paper, we have derived the dispersion equations for field-aligned cyclotron waves 
in an axisymmetric magnetospheric plasmas with dipole, Eq. (34), and circular, Eq. (64), 
magnetic field lines, assuming that the energetic ‘ring current’ particles have either the bi-
Maxwellian or bi-Lorentzian distribution functions in velocity space. Our dispersion equations 
can be used to analyze the eigenfrequencies and the temporal growth/damping rates of both the 
left-hand and right-hand circularly polarized cyclotron waves in both the 2D magnetosphere-like 
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Fig. 5. The separate contributions of the bounce resonant terms to Imε
n,n
−1,h

for the different wave frequencies:(a) ω=2.5 Hz,(b) ω=3.5 Hz,
(c) ω=4.5 Hz,(d) ω=5.5 Hz,(e)ω=6.5 Hz.
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points during only part of the bounce-time can interact effec-
tively with the wave.

According to Eqs. (75–77), the PCI growth rateγ c, as
well as the imaginary part of the transverse dielectric per-
mittivity, is calculated by the summation of the contribu-
tions of the separate bounce resonant terms to Imε

n,n
−1,h. The

typical structure of the bounce resonance terms Imε
n,n
−1,p,h,

Eq. (77), is shown in Fig. 5 for the different wave frequen-
cies a)ω=2.5 Hz, b)ω=3.5 Hz, c)ω=4.5 Hz, d)ω=5.5 Hz,
e) ω=6.5 Hz. As we see, i) the contribution of the first
bounce resonance terms to Imε

n,n
−1,h is very small; ii) the max-

imal values of Imεn,n
−1,p,h correspond to the bounce resonance

numberspmax∼[ω−�c0b̄]/ωb. Accordingly, thepmax num-
bers are shifted to the left for the EMIC waves with a larger
frequency.

7 Conclusions

In this paper, we have derived the dispersion equations
for field-aligned cyclotron waves in an axisymmetric mag-
netospheric plasmas with dipole, Eq. (34), and circular,
Eq. (64), magnetic field lines, assuming that the energetic
“ring current” particles have either the bi-Maxwellian or
bi-Lorentzian distribution functions in velocity space. Our
dispersion equations can be used to analyze the eigenfre-
quencies and the temporal growth/damping rates of both
the left-hand and right-hand circularly polarized cyclotron
waves in both the 2-D magnetosphere-like plasmas. The
concrete computations are carried out for the left-hand po-
larized waves in a hydrogen plasma with circular magnetic
field lines. As in the case of a uniform plasma confined in
the straight magnetic field, the growth/damping rate of the
cyclotron waves in a 2-D magnetosphere is defined by the
contribution of the resonant particles to the imaginary part of
the transverse dielectric permittivity elements.

To evaluate the contribution of the trapped particles to the
transverse current density components the Vlasov equation
is solved using a standard method of switching to new vari-
ables associated with the conservation integrals of particle
energy, magnetic moment and the equation of the geomag-
netic field lines. The new time-like variable is introduced
(instead of the geomagnetic latitude angle) to describe the
bounce-periodic motion of the trapped particles along the 2-
D geomagnetic field, Eq. (15) and Eq. (47); the perturbed
electric field and current density components are Fourier-
decomposed over the length of the geomagnetic field lines,
Eqs. (24, 25) and Eqs. (55, 56), for magnetospheric plasmas
with dipole and circular magnetic field lines, respectively. As
a result, we have derived the contribution of the trapped par-
ticles to the transverse permittivity elements for waves in a
dipole magnetosphere with bi-Maxwellian distribution func-
tions, Eqs. (27, 28); for waves in a dipole magnetosphere
with bi-Lorentzian distributions, Eq. (38); and for waves in
a magnetospheric plasma with circular magnetic field lines

and bi-Maxwellian distribution functions, Eqs. (58, 59). The
new dielectric characteristics are expressed by summation of
the bounce-resonant terms, including the double integration
in velocity space, the resonant denominators, and the cor-
responding phase coefficients. Due to 2-D magnetic field
nonuniformity, the bounce-resonance conditions for trapped
particles in magnetospheric plasmas are different from the
ones in the straight magnetic field; the whole spectrum of the
electric field is present in the given current density harmonic;
the left-hand and right-hand polarized waves are coupled in
the general case.

To have some analogy with the linear theory of cyclotron
waves in the straight magnetic field, we assumed that the n-
th harmonic of the electric field gives the main contribution
to the n-th harmonic of the current density and that the con-
nection of the left-hand and right-hand waves is small. In
this case, the dispersion equations for field aligned cyclotron
waves have the simplest forms and are suitable to analyse the
instabilities of both the electron-cyclotron and ion-cyclotron
waves, accounting for the cyclotron and bounce resonances.

The comparison of the PCI growth rates is carried out
for EMIC waves in the hydrogen plasmas with the straight
and circular magnetic field lines under the same bulk
magnetosphere-like parameters at the geostationary orbit
L=6.6. It is shown that the PCI growth rate in the 2-D ax-
isymmetric magnetosphere is much smaller than the corre-
sponding value estimated for EMIC waves in the scope of the
1-D plasma model in the uniform magnetic field. This means
that the previous studies of the EMIC waves in the inner mag-
netosphere, based on the plasma models in the straight mag-
netic field, could, therefore, be seriously in error.

Of course, a similar approach can be used to analyze the
dispersion characteristics of the EMIC waves in the 2-D mag-
netospheric multi-ions plasmas with dipole and circular mag-
netic field lines, including the protons and heavy ions (such
as He+ and O+) with the temperature anisotropy.

It should be noted that the plasma model with circular
magnetic field lines (being artificial) is simpler than the
model of a dipole magnetosphere and, accordingly, has the
more advanced mathematics. Nonetheless, the main physical
features of the wave processes, including the cyclotron and
bounce resonance wave-particle interactions, in the Earth’s
magnetosphere, can be analyzed qualitatively by using a
model of magnetospheric plasmas with circular magnetic
field lines.
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