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Abstract. An extensive study of ring current injection and
intensification of the storm-time ring current is conducted
with three-dimensional (3-D) test particle trajectory calcu-
lations (TPTCs). The TPTCs reveal more accurately the pro-
cess of ring current injection, with the main results being the
following: (1) an intense convection electric field can ef-
fectively energize and inject plasma sheet particles into the
ring current region within 1–3 h. (2) Injected ions often fol-
low chaotic trajectories in non-adiabatic regions, which may
have implications in storm and ring current physics. (3) The
shielding electric field, which arises as a consequence of en-
hanced convection and co-exists with the injection and con-
vection electric field, may cause the original open trajecto-
ries of injected ions with higher energy to change into closed
ones, thus playing a role in the formation of the symmetric
ring current.

Keywords. Magnetospheric physics (Electric fields; Plasma
convection; Storms and substorms)u

1 Introduction

Most intense magnetic storms are a response of the magne-
tosphere to the passage of coronal mass ejections from the
Sun. They are initiated when enhanced energy transferred
from the solar wind into the magnetosphere leads to intensi-
fication of the ring current (Tsurutani et al., 1997). The ring
current mainly consists of 10–200 keV ions and electrons that
drift azimuthally around the Earth or pass over the inner mag-
netosphere at radial distances of about 2–7 Earth radii (RE).
The main enhancement of the storm-time ring current oc-
curs at distancesL<4. Two kinds of electric fields have been
considered as being the fundamental cause of the main phase
injection of ring current particles: the induced electric field
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associated with substorm dipolarization of the geomagnetic
field and the enhanced convection electric fieldEC driven
by a strong negative z-component of the interplanetary mag-
netic field (IMF). It has been shown that the dipolarization
induced electric fields can readily inject particles from the in-
ner plasma sheet to the near synchronous altitudes; however,
they cannot displace particles at significant distances below
L=4. This indicates that substorms are not fundamental to
the injection of ring current particles toL<4 (Tsurutani et
al., 1997). On the other hand, it has been found that there is a
one-to-one relation between intense (Dst<−100 nT) storms
and large negative IMFBz (<−10 nT) that lasts for at least
3 h (Kamide et al., 1997). Numerical calculations show that
the intense magnetospheric convection electric fieldEC can
effectively energize (within 2 to 3 h) charged particles while
they are injected from the magnetotail to the ring current re-
gion (L∼3). The required electric fields were observed by
the CRRES satellite to occur in theL=2–4 region at times
of ring current injection (Wygant et al., 1998). Therefore, it
is now commonly accepted that the enhancedEC is mainly
responsible for the ring-current particle injection and the for-
mation of storm-time ring current (Tsurutani et al., 1997).

Charged particles in the magnetosphere have two types
of drift paths: a closed trajectory around the Earth and an
open trajectory traveling from the magnetotail to the magne-
topause. In the conventional ring current pictiure, the “sym-
metric” ring current consists of trapped particles with closed
orbit, while the particles with open convection paths create
an “asymmetric” or partial ring current (Le et al., 2004). The
Dst index and SYM-H index are reliable indicators of the
symmetric ring current strength, while the ASYM-H index
measures the asymmetric ring current. The conventional pic-
ture of the ring current should be understood as an approx-
imation of the first order. In fact, the closed-trajectory of
ions may be spatially asymmetric, hence also contributing to
the ASYM-H (Liemohn et al., 2001). A separatrix boundary
called the Alfv́en layer exists between the open and closed
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trajectories (Wolf, 1995; Xie et al., 2002). These two types
of trajectories are un-transformable to each other when the
electric and magnetic fields are constant in time (Lyons and
Williams, 1984; McPherron, 1991). Injection of charged par-
ticles caused byEC does not directly make a contribution to
the formation of the symmetric current. The process of the
ring current particle injection during the main phase of the
storms and the formation of the symmetric ring current de-
mands detailed studies.

It has been suggested that the time variations in the con-
vection electric field can make the separatrix between the
open and closed trajectories of higher-µ particles indistinct.
This may cause the charged particles convected from the
tail to diffuse across the boundary and to be trapped on a
closed-loop trajectory (Rowland and Wygant, 1998). Chen
et al. (1994, 1997) made a numerical modeling of a great
storm whose average enhancement in the cross-tail potential
drop8C is 180 kV. They assumed the following two condi-
tions: Eq. (1) 8C has a standing fluctuation lasting for 12 h
with a cycle being 20 min and peaks reaching 300–400 kV;
Eq. (2) fluctuation lasts for 3 h, then8C remains constant for
another 6 h. The modeling showed that most ions injected
from the nightside plasma sheet with energy of 10–70 keV
atL∼3 were transported along open drift paths. Conversely,
the transport of particles with energies greater than 150 keV
at L∼3 was appropriately detailed as radial diffusion across
closed drift trajectories. In Eq. (2) the influence of the fluctu-
ations on the ion trajectories is found to be very small. While
in Eq. (1) the total energy of the ring current particles was
nearly a factor of two larger than that in Eq. (2) (Tsurutani
et al., 1997; Chen et al., 1994). These results make scien-
tists believe that the formation of the closed ring current re-
lies on the presence of storm-associated fluctuations in the
convection electric field. Nevertheless, investigations of the
correlation between the interplanetary electric field and Dst
indices during the storm time imply that the Earth’sEC does
not always possess the long-lasting fluctuations required in
Eq. (1) (Zhang et al., 2001). Data from CRRES observa-
tions indicated that the storm-time electric fields show large
fluctuations (Wygant et al., 1998), but the oscillation peaks
are considerably less than the 300–400 kV used by Chen et
al. (1994, 1997) in simulations. Therefore, it is reasonable to
consider that the fluctuation ofEc is probably not the only
mechanism contibuting to the formation of the closed ring
current.

It was discovered long ago that the inner edge of the
plasma sheet tends to shield the inner magnetosphere from
the convection electric field (Kavanagh et al., 1968; Schield
et al., 1969). In addition, while injecting inward byEC from
the plasma sheet, electrons and ions tend to drift dawnward
and duskward, respectively. This may also lead to a “shield-
ing electric field”ES that opposes to the overall dawn to dusk
electric field. The presence ofES makes the total dawn to
dusk electric field weaker than that withoutES , and even
negligibly small in the low L-region. In this paper, we pro-

pose that the shielding of the inner magnetosphere from the
EC may cause a change in an open convection drift path into
a closed-loop trajectory, and hence play an important role in
the processes of the storm-time injection and the formation
of the symmetric ring current.

In the present study, we apply three-dimensional (3-D)
test particle trajectory calculations (TPTCs) to investigate the
particle injection from the inner plasma sheet and the forma-
tion of the symmetric ring current. We focus on the drifting
paths of energetic oxygen ions whose abundance and energy
density in the ring current are extraordinarily high in the main
phase of intense magnetic storms (Daglis et al., 1997; Fu et
al., 2001). A semi-quantitative and time-independent shield-
ing electric field model based on observations and physics
analyses is adopted. In this paper we will first discuss the
appearance of the shielding electric field and its influence on
the convection path of injecting oxygen ions, and then intro-
duce the TPTCs method, and the magnetic and electric field
models used in the calculations. In Sect. 4 we present a part
of the preliminary results. In Sect. 5 we make a short discus-
sion and a brief summary.

2 Formation and effect of the shielding electric field

The drift motion of charged particles in the magnetosphere
is broken down into three components: the magnetic field
gradient drift vG=W⊥B×∇B/qB3, the field line curva-
ture drift vc=2W//R×B/qB2R2 and the electric field drift
vE=E×B/B, whereW⊥ andW// are the particle kinetic en-
ergy perpendicular and parallel to the magnetic field, respec-
tively, q is the particle charge,∇B represents the magnetic
field gradient,R denotes the curvature radius of the magnetic
field line. When energetic particles are injected byEC from
the magnetotail to the inner magnetosphere, under the action
of the co-existing gradient and curvature drifts, most ions and
electrons tend to drift duskward and dawnward of the Earth,
respectively. As a whole, electrons drift closer to the Earth
on the dawnside than ions. In the same way, ions drift closer
to the Earth on the duskside than electrons. Figure 1 shows
the calculated drift trajectories of ions with 90◦ pitch angle
in the equatorial plane calculated by 3-D TPTCs. The asym-
metrical, noncircular drift paths for ions and electrons lead to
a charged-separation layer near the dipole where particles of
the opposite sign are separated by the drift motion. Schield et
al. (1969) called this charge separation layer the Alfvén layer.
Thus the dawnside inner edge and duskside inner edge tend
to charge up negatively and positively, respectively. Figure 2
shows the sketch of the drift paths of ions and electrons mov-
ing in a dipole magnetic field with a uniform electric field. In
this illustration, a net positive charge will accumulate on the
duskside of the Earth and a negative charged will be gathered
on the dawnside.

To keep charge from accumulation indefinitely, field-
aligned currents flow from the magnetosphere to the
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Fig. 1. Drift trajectories of ions from different positions in the equa-
torial plane.

conducting ionosphere on the duskside, and from the iono-
sphere to the magnetosphere on the dawnside (Wolf et al.,
1982). As a result of this charge separation, a shielding elec-
tric field ES occurs whose direction is opposite to the over-
all dawn to duskEC . The shielding configuration is shown
schematically in Fig. 3. In addition to the energetic parti-
cles, lower energy particles also have their Alfvén layers,
which are closer to the Earth than particles with higher en-
ergies. The convection flow of the plasma sheet with lower
energy population may yield a velocity shear in the lower
L-region. Based on Sato (1982), this flow shear also pro-
duces positive and negative net charges on the duskside and
dawnside of the inner magnetosphere, respectively, thus cre-
ating an additional part of the shielding electric field. This is
an alternative mechanism responsible for the buildup of the
region-2 field-aligned current (Hasegawa and Sato, 1979).
In the presence ofES , the total dawn to dusk electric field
is weaker than that withoutES . The shielding electric field
may even shield some local areas of the low-L region (L<5)
completely from theEC . It is clear thatES arises as a conse-
quence of enhanced convection and co-exists with the persis-
tence of injection andEC . The distribution and evolution of
ES are determined by the self-consistent interaction between
injected particles and the convection electric field, and vary
along with the variations ofEC . The concept of the shielding
electric field was first proposed by Kavanagh et al. (1968).
Thereafter Wolf et al. (1982), through a number of computer
simulation tests, confirmed the occurrence ofES in the inner
magnetosphere accompanied by an intenseEC . CRRES fur-
ther observed the effect ofES in the low-L region and its re-
lationship to the geomagnetic activity (Rowland and Wygant,
1998). The magnitude of8 is decreased with increasing dis-
tance to the Earth. More details about the magnetospheric
shielding can be founded in the literature.

Fig. 2. Sketch of drift paths of ions and electrons moving in a dipole
magnetic field with a uniform electric field.

Recently, a few scientists have realized thatES may prob-
ably be a factor in the formation of the ring current (Fok et
al., 2001; Ebihara et al., 2004). The gradient and curvature
drift under the inner magnetospheric condition tends to cause
particles to move around the Earth. They therefore are ad-
vantageous to the formation of the closed orbit. The higher
the particle energy is, the more intense this effect becomes.
On the other hand, the open trajectories originate from the
EC×B drift. The larger the magnitude ofEC is, the stronger
the sunward injection becomes. Suppose that in the early
main phase of a storm, energetic particles are injected from
the plasma sheet into the inner magnetosphere along open
trajectories. If there were noES , the injection paths would
remain open forever. Once the shielding field is created, the
sunward drift will be weakened, the relative importance of
the gradient and curvature drift will be increased. This may
cause the original open trajectories (in the case withoutES)

to change into closed ones, in particular for energetic parti-
cles with higher energies. To summarize this section in short:
the storm-time ring currents consist of both the asymmetric
and symmetric ring current. The former should first enhance
in the early main phase, the latter reinforces in the late time.
The enhancement of the symmetric ring current manifests the
intrinsic consequence of particle injection, which should take
place prominently after the increase in the asymmetric ring
current, and is composed of the energetic ions with higher
energies. Calculations made in this paper confirm this con-
jecture, suggesting that the shielding electric field plays an
important role in the ring current particle injection and the
formation of the symmetric ring current.
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Fig. 3. Illustration of the formation of shielding electric field.

3 3-D TPTC and magnetic and electric field models

3.1 3-D TPTC

Charged particle motion in the magnetosphere is divided into
three components: the gyro motion, bounce motion and drift
motion. The TPTC method exactly tracks the full motion of
a charged particle which reads

dp

dt
= q ×

(
E +

dr

dt
× B

)
. (1)

In addition to Eq. (1), we have

p = m0γ dr
/
dt , (2)

where

γ =

√
1 − v2/c2. (3)

m0 andp represent the rest mass and relativistic momentum
of the particle, respectively. Att=0 the test particle is situ-
ated in the source region. The initial equatorial pitch angle
of the test particle can be assigned an arbitrary value outside
the loss cone.

3.2 Magnetic field model

The T96 magnetic field model (Tsyganenko et al., 1996) is
used in calculations, which is a semiempirical global model
based on a large number of satellite observations (IMP,
HEOS, ISEE, POLAR, Geotail, etc.). It incorporates the
official International Geomagnetic Reference Field (IGRF)
model as the Earth’s internal field and includes the con-
tributions from external magnetospheric sources: ring cur-
rent, magnetotail current system, magnetopause currents and
large-scale system of field-aligned currents. The Earth’s
dipole magnetic field model is also adopted in some calcu-
lation runs for comparison.

3.3 Electric field models

3.3.1 Convection electric field models

Two main sources of magnetospheric electric fields are con-
sidered: the dawn-to-duskEc field associated with the en-
hanced magnetospheric convection and the corotation elec-
tric field (Eco) related to the rotation of the Earth along its
spin axis. Besides, the shielding electric field in conjunction
with injection and enhanced convection is also included, as
mentioned before.

Three convection electric field models are adopted in this
paper:

- The uniform convection field model:

8C = −E0rsin(φ) , (4)

where8C represents the cross-tail potential of the convec-
tion electric field and8C=0 at 12:00 MLT,φ denotes the
azimuthal angle in the GSM system,r is the geocentric dis-
tance,E0 represents the uniform convection electric field.

- The Volland-Stern model (Volland, 1978):

8C = −Kr2sin(φ). (5)

K =
0.045

(1 − 0.159KP + 0.093K2
P )3

kV/R2
E , (6)

whereK depends only on theKP index (Maynard and Chen,
1975), 8C is measured in kV andRE denotes the Earth’s
radius.

- The Heppner-Maynard-Rich model (Heppner et al.,
1987):

The Heppner-Maynard-Rich (MHR) electric field model
is constructed based on Polar-Orbiting Geophysical Obser-
vatory 6 (OGO 6) and Dynamics Explorer 2 (DE 2) electric
field measurements (Heppner et al., 1987). It provides the
electric potential and field poleward of 60◦ geomagnetic lati-
tude. Readers are referred to the original reference for details
of the MHR model.
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Fig. 4. Equipotential contours of the total electric field. Left: Sum of uniform convection electric field and corotation electric field. Right:
Sum of convection, shielding and coratation electric field.

3.3.2 Corotation electric field models

If the magnetic field in the near-Earth region is approxi-
mately represented by a dipolar field with its moment anti-
parallel to the Earth’s rotation axis, the co-rotation electric
field can be expressed as (Lyons and Williams, 1984)

8co = −ωER3
EB0

/
r , (7)

whereωE is the angular velocity of the Earth andB0 is the
field magnitude on the Earth’s surface at the equator.

3.3.3 Shielding electric field model

For simplicity we choose the time when the tilt angle is min-
imum near the equinoxes, so that GSM Z≈0 in the equa-
torial plane where the magnetic field is minimum along the
field lines. The following steady-state shielding electric field
model is adopted at the equatorial plane:

8s(x, y) = A + Bx2y , (8)

wherex andy are coordinates of the GSM system,A and
B are constant. This shielding electric field is not self-
consistent. Suppose that during the later main phase of
the intense magnetic storms the inner magnetosphere region
−8RE<x<8RE is partially shielded from the convection
electric field, we obtainA=8 kV andB=0.02 kV.

While using these models in the calculations, we regard
the field lines as equipotential lines by assuming an infini-
tively large conductivity along the field lines. For particles
mirroring at higher latitudes, we trace the field lines from the
equator to off-equatorial points, or vice versa, to obtain the
corresponding potential and electric fields inside the magne-
tosphere.

Figure 4 shows the equipotential contours of the total elec-
tric field in the equatorial plane without (left) or with (right)
the shielding electric field. In these figures, the convec-
tion electric filed model (Eq.5) and corotation electric field
(Eq.7) have been used. One can clearly see that the presence
of the shielding electric field (Eq.8) makes overall dawn to
dusk electric field apparently weaker than without the shield-
ing effect. It should be mentioned that the evolution ofEC ,
ES , particle injection and the partial and symmetric ring cur-
rent is a self-consistent coupled dynamical process. Carry-
ing out TPTCs under steady-state conditions can only reveal
some key features of physics, but not the real and whole
process. The purpose of adopting the shielding field model
(Eq.8) is just to illustrate qualitatively the important role that
ES plays in the storm-time injection and formation of the
symmetric ring current, but not to obtain a strictly quantita-
tive result.

4 Calculation results and discussions

Two sources of the oxygen ion population have been con-
sidered: energetic O+, with a few tens of keV, originally lo-
cated at L<=8 or L∼15 and the thermal ions (<

=10 keV), up-
flowing from the Earth’s ionosphere. The initial conditions
for the test particles att=0 are set as follows:E=5∼20 keV,
x=−7∼−15RE andy=−2∼−8RE . The cross-tail convec-
tion electric potential is chosen to be 150 kV.

4.1 Injection and energization of ring current O+ ions

The top diagram of Fig. 5 plots the trajectories of O+ ini-
tially situated atx=−8RE , y=−2RE andz=0 with energy
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Fig. 5. Three drift trajectories of 15 keV O+ with an equatorial pitch angle of 60◦ initially situated atx=−8RE , y=−2RE andz=0 and the
energization process for the case corresponding to the Uniform, Volland and MHR electric fields in the T96Dst=−100 nT magnetic field
model.

Fig. 6. Three drift trajectories of 10 keV O+ with an equatorial pitch angle of 60◦ initially situated atx=−12RE , y=−3RE andz=0 and
the energization process for the case corresponding to the Uniform, Volland and MHR electric fields in the T96 withDst=−100 nT magnetic
field model.

E=15 keV and pitch angleα=70◦. The electric field models
used in (a), (b) and (c) are the uniform, Volland-Stern, and
HMR models, respectively. The T96 magnetic field model
with Dst=−100 nT, IMFBy=0, Bz=−10 nT and solar wind
pressurePsw=10 nPa is used in drawing all these trajectories.
The bottom diagram of Fig. 5 illustrates the corresponding
energization process via drift time. Figure 6 plots the drift
paths of O+ initially situated atx=−12RE , y=−3RE , and
z=0 with energyE=10 keV and pitch angleα=60◦. The
electric field models and magnetic field model used are the
same as those in Fig. 5. It is shown in Figs. 5 and 6 that par-
ticles initially located in the near-Earth tail can be effectively
energized and injected into the inner magnetosphere within

1–3 h and that all trajectories of these particles are open. For
the case of uniformEC , the injection and energization time
can even be as short as a few tens of minutes. Because of
the page limitation, we cannot show all interesting plots in
the paper. Nevertheless, the following conclusion can be
drawn: the intense convection electric field can effectively
energize the injected particles; the stronger the convection
electric field/the closer the inner edge of the plasma sheet,
the shorter the injection time. These results are in agreement
with the fact that intense storms, in general, occur in the cases
when a strongEC lasts longer than 3 h and the decreasing
time of the main phase in some storms is only several tens of
minutes to 1 h.
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Fig. 7. The spatial distribution ofκ<3 for 20 keV O+ (gray and
black) and protons (black) in the equatorial plane of the magneto-
sphere based on T96 model withDst=−100 nT and Solar Wind
Pressure=10 nPa.

4.2 Chaotic injection trajectories

The present understanding of the ring current injection is
mostly based on the modeling studies in which the magnetic
field is usually assumed to be the dipole field. With this ap-
proximation the drift trajectory of an injection particle gen-
erally manifests a regular path. However, it is found in our
calculations that when a more realistic magnetic field model
(such as T96) is adopted, the storm-time injection often pos-
sesses disordered orbits in certain spatial regions. We refer to
these type of orbits as the chaotic trajectories, which appear
under the condition that the gyro-radii of the charge parti-
cles are comparable to the curvature radii of the field lines at
the equator (Speiser et al., 1991), where particles lose their
adiabaticity. When particles are passing over the equatorial
plane, they will miss the field line that they originally cir-
cle around and stochastically change their pitch angles. This
happens to both Oxygen ions and protons. As defined by√

Rcur

/
Rg(Rcur is the curvature radii of the field lines,Rg

is the gyro-radii of charge particles), the values ofκ greater
than 3 indicate the adiabatic motion of the certain particle. In
the regions withκ less than 3, the magnetic moment would
no longer conserve, indicating the appearance of chaotic tra-
jectories. Figure 7 shows the spatial distributions ofκ<3 for
O+ and protons with initial energy being 20 keV in the equa-
torial plane of the magnetosphere based on the T96 model.
The black region is the chaotic region (κ<3) for both protons
and Oxygen ions, while the gray one is only chaotic for Oxy-

Fig. 8. A chaotic injection trajectory of an 20 keV O+ with equa-
torial pitch angle of 60◦ initially located atx=−8RE , y=−2RE ,
andz=0 in T96 withDst=−100 nT magnetic field model and HMR
electric model.

gen ions. It is seen that the chaotic trajectories of O+ can be
much closer to the Earth than protons. Thus, the injecting O+

will more easily be trapped in the inner magnetopshere under
the action of fluctuations and the shielding electric field.

In the realistic geomagnetic field the minimumB on each
field line is not exactly located on the equatorial plane, hence
the pitch angle of an originally equatorially mirroring parti-
cle can also stochastically vary in the non-adiabatic region,
and then the particle begins to bounce along the field lines.
Figure 8 illustrates a chaotic injection trajectory of an O+

particle initially located atx=−8RE , y=−2RE , andz=0
with energyE=20 keV and pitch angleα=60◦. T96 with
Dst=−100 nT and the HMR model are used in calculations.
It is shown that the stochastic changing of the pitch angle
may cause the particle to move, approaching the Earth along
the field lines, and even down to the ionosphere. Chaotic mo-
tion may possibly displace particles across the Alfvén layer,
changing an open drift path into a closed path circling the
Earth. This may also make a contribution to the enhance-
ment of the symmetric ring current. We will make a detailed
study regarding this topic in a future paper.

4.3 Effect of the shielding electric field

The primary result of this paper is the fact the 3-D TPTCs
reveal that the shielding electric field may play an important
role in the development of the storm-time ring current. Fig-
ure 9 illustrates the different injection paths for an equatori-
ally mirroring O+ with or without the action of the shield-
ing electric field Eq. (7). At t=0 the Oxygen ion is lo-
cated atx=−8RE , y=−3RE andz=0 with the initial en-
ergy E=15 keV for the upper panel andE=5 keV for the
lower panel, respectively. The Volland and Stern electric
field model (Eq.4) and the Earth’s dipolar magnetic field
are adopted in the calculations. It is seen in the upper panel
that the original open trajectory of 15 keV O+ with vanish-
ing Es turns closed when the shielding field (Eq.4) is added.

www.ann-geophys.net/24/3547/2006/ Ann. Geophys., 24, 3547–3556, 2006
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Fig. 9. Different injection paths for an equatorially mirroring O+ initially situated atx=−8RE , y=−3RE andz=0 with or without the
action of the shielding electric field. The initial energy isE=15 keV for the upper panel andE=5 keV for the lower panel.

 

Fig. 10. Injection path of an 20 keV O+ with equatorial pitch angle
of 70◦ initially located atx=−8RE , y=−2RE , andz=0 in the
T96Dst=−100 magnetic field model. The upper(a) and lower(b)
panels represent the cases without and withEs , respectively.

On the other hand, the trajectory of 5 keV O+ remains open
even though theEs becomes nonzero. This implies that the
higher the initial energy is of a particle, the easier its open
drift path changes to closed. Similar phenomena can be seen
for ions initially bouncing along the field lines. Figure 10
shows the injection path of an Oxygen ion initially located
at x=−8RE , y=−2RE , andz=0, with energyE=20 keV
and equatorial pitch anglesα=70◦. The adopted magnetic
field and electric field models are T96 withDst=−100 nT
and the Volland and Stern model, as well. The upper (a)
and lower (b) panels represent the cases without and with
theEs , respectively. The 3-D trajectory plotted in Fig. 10b
more clearly shows how an injected particle gradually be-
comes a symmetric ring current population under the action
of the shielding field. A vast amount of calculations illustrate
the same feature. All these strongly support our viewpoint
that the shield electric field may play an important role in the
formation of the symmetric ring current.

5 Discussions and summary

A study of ring current particle injection and intensification
of the storm-time symmetric ring current is conducted in this
paper. Three-dimensional TPTCs for Oxygen ions with dif-
ferent pitch angles are carried out, reflecting more accurately
the process of ring current injection.
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There has been a symmetric ring current paradigm for
years in which the ring current quickly becomes symmet-
ric after the storm main phase, when ions drifting on open
drift trajectories are trapped in closed drift paths, in response
to the decrease in the convection electric field (Le et al.,
2004). However, both the present work and Chen et al. (1994,
1997) challenge this paradigm that trapping of injected ions
in closed paths may appear earlier in the main phase. There-
fore, the peak in the symmetric ring current contribution hap-
pens later than the asymmetric ring current, but does not nec-
essarily occur after theDst minimum. The shielding electric
field is created after the convection electric field increases for
a period of time. This makes a number of injected particles
change their drift paths and a great part of the partial ring
current becomes the closed ring current.

In summary, the 3D-TPTC results show that: (a) when
more realistic magnetic field models are adopted, injected
ions often follow chaotic trajectories in non-adiabatic re-
gions, which may have further implications in storm and ring
current physics. (b) Shielding electric fieldES may arise as
a consequence of enhanced convection and co-exists with in-
jection andEC , which may cause the original open trajecto-
ries (in the case withoutES) to change into closed ones and
play a role in the formation of the symmetric ring current.
The shielding field mechanism is not in contradiction to the
convection field fluctuation mechanism. Nevertheless, it is
possible that the shielding field mechanism may manifest a
more intrinsic factor in ring current injection than the con-
vection field fluctuation mechanism. The present paper only
illustrates qualitatively the importance ofES in the creation
of the symmetric ring current. More accurate study invoking
time-dependentEC andES is highly desired.
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